The invention relates to optical clocks.
Optical clocks which produce ultra-short optical pulses with low timing jitter are of interest in applications such a high bit-rate optical communication and photonic analogue-to-digital conversion (ADC). In the case of photonic ADC, ultra-short optical clock pulses are required so that an analogue signal can be sampled at a series of discrete times, avoiding integration over a range of signal values each time the analogue signal is sampled. Low timing jitter is desirable because errors in sampling time result in inaccurate conversion of a rapidly changing analogue signal.
Optical clocks having the above characteristics typically comprise modelocked lasers, for example a diode-laser modelocked in an external cavity. Such a device requires significant human intervention in order to set the device up and keep it running in a desired operational state. Such devices are therefore highly unsuited to practical applications outside the laboratory. Clocks based on modelocked fibre-lasers (see for example W. Ng et al, Journal of Lightwave Technology, 22, pp 1953-1961, August 2004) provide some degree of physical and operational robustness, however such a device requires a feedback arrangement to compensate for drift in repetition rate resulting from path length changes caused by temperature fluctuations in the surrounding environment. Such clocks are therefore physically complex. Furthermore, modelocked lasers comprise very specialised components, making clocks based on them unsuitable for mass-production. Another problem associated with clocks based on modelocked lasers (including modelocked fibre-lasers) is that adjustment of the repetition rate of the optical clock pulses is complicated as this involves careful adjustment of the laser cavity length.
A first aspect of the invention provides an optical clock comprising a laser source, an amplitude-modulator arranged to cooperate with the laser source to produce a series of optical pulses, and optical fibre arranged to compress the optical pulses, wherein the linewidth of the laser source is sufficient to inhibit stimulated Brillouin scattering (SBS) of the optical pulses within the optical fibre.
An optical clock of the invention is simple in terms of construction, is robust and may be assembled from readily-available components. Such a clock may operate indefinitely without human intervention. Furthermore, an optical clock of the invention provides for simple (electronic) adjustment of the repetition rate of the optical clock pulses. Pulse compression occurs by a mechanism which includes self phase-modulation (SPM). Stimulated Brillouin scattering (SBS), which typically occurs within optical fibres at peak-powers also associated with SPM, and which can reduce optical power output and stability from the optical fibre, is inhibited as a result of the linewidth of the laser source and the optical pulses. Unlike optical clocks based on modelocked lasers, precise alignment of the components of a clock of the invention is not required. Optical pulses output from the optical fibre have low timing-jitter and may be as short as 10-15 ps as a result of compression by SPM, or SPM and group velocity dispersion. Optical pulses output from the optical fibre may be used directly as optical clock pulses, or they may be manipulated in some way (e.g. pulse-picked) to produce a series of optical clock pulses.
The laser source may comprise a broadband laser oscillator having a suitable linewidth. Alternatively it may comprise a narrow linewidth laser oscillator and modulating means arranged to cooperate with the laser oscillator to produce phase-modulated radiation and provide said radiation to the amplitude-modulator. The depth and frequency of the phase-modulation needs to be chosen to produce spectral broadening which is sufficient to inhibit SBS within the optical fibre.
The modulating means may comprise a phase-modulator arranged to phase-modulate the output of the laser oscillator, or alternatively, if the laser oscillator is a semiconductor laser oscillator, such as a DFB laser for example, the modulating means may comprise means arranged to modulate (dither) the injection-current of the semiconductor laser oscillator. A DFB laser has a very narrow linewidth so that in this case the linewidth of the laser source is controlled almost entirely by the modulation of its injection current.
In embodiments in which the laser source comprises a laser oscillator and modulating means arranged to cooperate with the laser oscillator to produce phase-modulated radiation, timing-jitter in the optical clock pulses may be reduced by arranging the modulating means to provide phase-modulation with a minimum modulation-depth consistent with inhibiting SBS within the optical fibre.
In order to reduce frequency-noise in the repetition frequency fclock of optical clock pulses output from the clock in the range from 10 Hz to fclock/2, and hence make the output optical clock pulses better suited to sampling applications (e.g. photonic ADC), preferably the modulating means is arranged to provide phase-modulation at a frequency which is at least half the repetition frequency of the optical clock pulses. In some embodiments, the modulating means is arranged to carry out phase-modulation at a frequency less than half the repetition frequency of the series of phase-modulated optical pulses input to the optical fibre, and means are provided to pulse-pick optical pulses output from the optical fibre to produce optical clock pulses having a repetition frequency less than or equal to twice the frequency of phase-modulation. SBS within the optical fibre is inhibited provided phase-modulation is carried out at a frequency which is not equal to the repetition rate of the series of optical pulses introduced into the optical fibre, or a harmonic of this frequency, and provided a sufficient modulation depth is used.
The optical fibre may comprise standard telecommunications fibre, or dispersion decreasing fibre, or alternating lengths of standard telecommunications fibre and dispersion-shifted fibre.
To reduce the output power required of the laser source, an optical amplifier (e.g. an erbium-doped fibre-amplifier (EDFA)) may be used to amplify the series of optical pulses prior to compression by the optical fibre. The amount of amplified spontaneous emission entering the optical fibre from the fibre may be reduced by using a circulator at the end of the optical fibre into which the series of phase-modulated optical pulses is introduced, the circulator being coupled to a Bragg grating having a suitable grating-pitch.
A second aspect of the invention provides a method of generating a series of optical clock pulses, the method comprising the steps of:
Embodiments of the invention are described below by way of example only, and with reference to the accompanying drawings in which:
In
Referring to
A second optical clock of the invention is indicated generally by 200 in
A third optical clock of the invention is indicated generally by 300 in
Phase-modulation is carried out at a frequency of 3 GHz and with a modulation-depth less than or equal to 3π/5 radians. Signal generator 314 is operated at 2 GHz so that the series of phase-modulated optical pulses output from the amplitude-modulator 312 has a repetition frequency of 4 GHz. Optical clock pulses are output from the fibre 328 at a repetition frequency of 4 GHz (i.e. the DC supply 318 is adjusted so that the amplitude modulator 312 operates in a region of its transfer function equivalent to the region 136 in
Number | Date | Country | Kind |
---|---|---|---|
0618021.0 | Sep 2006 | GB | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/GB2007/003372 | 9/10/2007 | WO | 00 | 3/9/2009 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2008/032021 | 3/20/2008 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
5010346 | Hamilton et al. | Apr 1991 | A |
5315426 | Aoki | May 1994 | A |
5619364 | Burns et al. | Apr 1997 | A |
5838475 | Takeyari et al. | Nov 1998 | A |
5930024 | Atlas | Jul 1999 | A |
6134038 | DeSurvire et al. | Oct 2000 | A |
6501591 | Kumar et al. | Dec 2002 | B1 |
6735229 | Delfyett et al. | May 2004 | B1 |
20040240037 | Harter | Dec 2004 | A1 |
20050036525 | Liu | Feb 2005 | A1 |
20050265407 | Braun et al. | Dec 2005 | A1 |
20060018668 | Xu | Jan 2006 | A1 |
20110002029 | Mcdonald | Jan 2011 | A1 |
Number | Date | Country |
---|---|---|
0 503 579 | Mar 1992 | EP |
0504834 | Mar 1992 | EP |
0 504 834 | Sep 1992 | EP |
0 595 536 | May 1994 | EP |
WO 0103254 | Jan 2001 | WO |
WO 2008032021 | Mar 2008 | WO |
Entry |
---|
NG, et al.; “Characterization of the Jitter in a Mode-Locked Er-Fiber Laser and Its Application in Photonic Sampling for Analog-to-Digital Conversion at 10 Gsample/s;” Journal of Lightwave Technology; Aug. 2004; pp. 1953-1961; vol. 22, No. 8. |
International Search Report issued in related International Application No. PCT/GB2009/000622 dated Jun. 12, 2009. |
Written Opinion of the International Searching Authority issued in related International Application No. PCT/GB2009/000622 dated Jun. 12, 2009. |
Great Britain Search Report issued in Great Britain Application No. 0804564.3 dated Aug. 8, 2008. |
U.S. Appl. No. 12/918,885 in the name of McDonald, filed Aug. 23, 2010. |
International Search Report issued Mar. 3, 2008 in copending International Application No. PCT/GB2007/003372. |
Great Britain Search Report issued Nov. 16, 2006 in copending British Application No. GB0618021.0. |
Written Opinion issued in Application No. PCT/GB2007/003372 on Feb. 22, 2008. |
Nov. 19, 2012 Office Action in U.S. Appl. No. 12/918,885. |
Number | Date | Country | |
---|---|---|---|
20100002281 A1 | Jan 2010 | US |