The invention relates generally to optical filters and more particularly to filters applied to viewing surfaces, including plasma display panels and glass used for vehicles, buildings, refrigeration and the like.
The selection of target optical properties for coatings on a substrate will vary significantly, depending upon the intended application. For example, U.S. Pat. No. 5,071,206 to Hood et al., which is assigned to the assignee of the present patent document, describes a filter arrangement which may be used for a vehicle, housing and office windows. For a vehicle window, the number of considerations is increased if the window is to include conductive traces or wiring intended to provide defogging. In comparison, there may be other factors that must be considered in the design of an optical filter for a plasma display panel (PDP). Such factors include the degree of neutrality of transmitted color, the level of reflected light and the color shift with changes in the incidence angle of a viewer, and the transmission levels of infrared and electromagnetic radiation. Unfortunately, modifying a PDP filter to increase conditions with respect to one factor sometimes conflicts with maintaining a target level for another factor. The possibility of tradeoffs is also a concern with other optical members, such as windows for which surface heating is a consideration (e.g., controlled window defogging and deicing).
While the PDP filter 12 reduces infrared transmission and EMI from the display, the filter must also be cosmetically acceptable and must enable good fidelity in the viewing of displayed images. Thus, the transmissivity of the filter should be high in the visual region of the light spectrum and should be relatively colorless, so as not to change the color rendering of the plasma display. Further, a general expectation exists that displays should be low in reflectance.
Color can be expressed in a variety of fashions. In the above-cited Hood et al. patent, color is expressed in the CIE La*b*1976 color coordinate system and in particular the ASTM 308-85 method. Using this method, a property is shown by values for a* and b* near 0. Generally, consumers expect that computer displays will appear either neutral or slightly bluish in color. Referring briefly to the La*b* coordinate system shown in
Users of large information displays generally expect minimal change in reflected color with changes in the viewing angle. Any color change is distracting when a display is viewed from a close distance, where the color of the display appears to change across the surface. Since plasma display panels are intrinsically large, due to the large number of pixels required for imaging and the large pixel size, the need for reduced color travel with viewing angle is heightened. In particular, it is objectionable if the “red-green” component of color, Ra*, changes substantially with angle. Changes along the other axis, Rb*, are generally less of an issue when the display has large reflected negative Rb* (i.e., strong blue reflected color) at normal incidence.
As previously noted, different factors regarding the design of PDP filters may conflict. Generally, obtaining high visible transmission and infrared reflection competes with EM screening capability.
Controlling reflection within the red region of the light spectrum is rendered even more difficult by the need for a low sheet resistance in the PDP filter 12. Attempts have been made to balance the goals of maximizing red transmission and minimizing sheet resistance. U.S. Pat. No. 6,102,530 to Okamura et al. describes an optical filter for plasma displays, where the filter has a sheet resistance of less than 3 ohms/square. Generally, a sheet resistance of less than 1.0 ohms/square is required to meet Federal Communication Commission (FCC) Class B standard, even for PDP sets having the highest luminance efficiencies. Copper wire mesh PDP EMI filters having a sheet resistance of 0.1 to 0.2 ohms/square are often used to provide Class B compatibility.
The requirement for lower sheet resistance increases the color problem for etalon EMI filters. The transmission bandwidth of the filter becomes narrower as the conductive layers become thicker, resulting in both an increase in the red reflection and a loss of color bandwidth in transmission.
The use of thin silver layers in multilayered sputtered coatings gives the conductive properties to these products. However, certain applications require electrical properties that are beyond the physical/optical and/or economic capabilities of sputtered films alone. The increased electrical conductivity in sputtered thin film products can be accomplished, generally, through the use of thicker silver layers, and/or the use of a greater number of silver layers of a given thickness. Both of these methods contribute to lower visible light transmission and/or higher visible light reflection, and thus create unacceptable optics for the application. The general limitations of these silver-dielectric coatings for optical applications (visible light transmission >˜50%) are with sheet resistances in the range of ˜1-7 ohms/square, whereas the preferred electrical resistance for certain key markets (such as plasma EMI display filters and heated automotive glass) is in the 0.7 ohm/square range, or lower. In the automotive applications, the available electrical potential is relatively low (14 volts), so sheet resistance is a concern if the glass is to be heated efficiently. The need to increase electrical conductivity without negatively affecting the optical properties is essential. It is also important that the desired electro-optical properties are obtained in a cost-effective way.
What is needed is a filter that addresses the issues regarding emission control, color travel, color bandwidth, and low sheet resistance in transmission for use with a viewing surface, such as a plasma display screen or a window of a vehicle.
It is often desirable either for the protection or convenience of a user to provide a substrate having a target combination of optical and electrical properties. In some applications, the desired optical properties may merely be maintaining sufficient transparency while achieving the target electrical properties. For these applications, the invention described below may be applied to an uncoated flexible substrate. In other applications, the goal may be to obtain more sophisticated optical filtering capabilities, such as IR filtering or reductions in reflected light and color shift, in combination with achieving electrical properties, such as heating or EMI shielding. In these applications, the invention is applied to a substrate which has an optical coating or to a substrate to which an optical coating is subsequently formed.
Coatings which are comprised of a sequence of layers that are cooperative to provide filtering properties are known. However, the known techniques may not provide a sufficiently low sheet resistance or may not provide desired heating capability. Therefore, the invention includes the formation of ultra-narrow conductive traces (conductive micro traces) that are in electrical contact (not necessarily physical contact) with the substrate. These ultra-narrow conductive traces may be used to provide improved conductivity (i.e., lower sheet resistance) over the surface of the substrate. Alternatively, the ultra-narrow conductive traces may be used as current-carrying elements.
One possible embodiment of the invention utilizes metallic inks to form the ultra-narrow conductive traces. The metallic ink may be applied to an inkjet printing process in the form of lines that are deposited at high speeds, preferably in a continuous or semi-continuous method.
A second embodiment of the invention utilizes a photolithographic process. The ultra-narrow metal traces are formed in a multi step that includes dipping the surface upon which the traces are to be printed in a liquid precursor containing a nano-particle catalyst, activating the areas that will form the ultra-narrow metal traces by exposure to UV light, and dipping the exposed surface in a solution containing the metal ions that will grow in the exposed areas. Alternatively, it is possible to use an inverse exposure step and final dipping step. That is, the areas that will not form the traces are exposed to the UV light such that when the surface is dipped into the metal ion solution, the traces will grow in the unexposed areas to form the ultra-narrow conductive traces. Moreover, other approaches to providing ultra-narrow metal traces on a substrate that is then dipped into a solution that includes ions of a highly conductive material (such as silver or copper) may be used. Both sides of the substrate may be immersed in a manner consistent with conventional electroplating or only the side of the substrate on which the ions are to be attacked can be immersed.
A third embodiment of the invention is to provide printing of the ultra-narrow traces using offset, gravure, or a similar type of printing technique in a continuous or semi-continuous mode.
The substrate may be a coated or uncoated plastic or may be glass, either flexible, rigid, flat or bent (such as a shaped automotive windshield). The coating and the ultra-narrow conductive traces may be applied directly to the end product or may be formed on a substrate (e.g., PET) that is to be applied to the final product. Thus, the applications include, but are not limited to, building retrofits, refrigeration glass, vehicle windows for which heating is desired, and plasma display panels. However, the invention is particularly suitable for use in forming vehicle windows and plasma display panels.
As one possibility, the ultra-narrow conductive traces may be formed on a side of the coating opposite to the substrate on which the coating is formed. As a second possibility, the ultra-narrow conductive traces may be formed between the substrate and the coating. It is also possible to form the coating and the ultra-narrow conductive traces on opposite sides of the substrate, if the coating and traces are electrically connected. For example, the traces may be interconnected to a bus which is electrically linked to the coating.
The object of this invention is to create cost-effective large area devices for applications that require transparent yet electrically conductive properties. Conventional techniques for making transparent dielectric or insulating optical materials/substrates (such as plastic and glass) electrically conductive have optical, electrical, physical and/or economic limitations such that certain product requirements cannot be fully satisfied in many applications.
This invention employs highly conductive metal traces 64 (
This invention involves the novel combination of low-cost printing of highly conductive traces in ultra-narrow lines (˜25 microns) over large areas of coated and uncoated substrates (such as plastic and glass) to form multi-functional products useful for a wide range of markets and applications. The improved conductivity (i.e., lower sheet resistance) over the surface of the substrate allows for the use of the material in applications including: active electrical heating, electromagnetic interference shielding, and active transmission/reception of electromagnetic information (antenna) while maintaining high visible light transmission and/or low visible light reflection. For an automobile windshield, the visible light transmissivity must be at least 70 percent in some countries (e.g., vehicles in the United States, as provided by the U.S. National Transportation Safety Board).
One way of applying the narrow conductive metal traces 64 is through the use of metallic inks. The metallic inks contain highly conductive nano-materials (including copper, silver and gold) applied and cured at temperatures low enough for application onto plastic substrates. Furthermore, the application of these inks can be performed by low-cost methods, such as inkjet printing, where the conductive lines are applied at high speeds, potentially in a continuous manner such as on sheets of glass or plastic or roll-to-roll for flexible plastic film. Alternatively, the narrow metal traces can be created through a three-step process of: dipping of the substrate in a liquid precursor, containing nano-particle catalysts (such as palladium), then through selective UV light exposure activate the areas that will form the narrow metal traces (such as a scanning UV laser or exposure through a mask), and finally dipping of the exposed substrate in a solution containing the metal ions that will now selectively grow in the exposed areas, forming the conductive metal trace. Thus, electroplating techniques may be employed. A third embodiment of the invention is to print the ultra-narrow traces using offset, gravure, or similar type printing techniques in a continuous or semi-continuous mode.
The combination of these narrow conductive lines 64 with sputtered coatings creates the ability to meet demanding EMI-shielding applications such as plasma displays, where the required sheet resistance needs to be ˜0.5 ohms/square or less while also meeting the requirement to block the near-IR portion of the spectrum and maintain high visible transmission. Likewise, solar control glass for automobiles uses sputtered coatings to reduce the IR transmission into the vehicle, but for this glass to be actively heated (for defrosting and deicing) with the available 14 volts from the car's battery, the sheet resistance needs to be ˜0.5 ohms/square. The combination of the silver-based sputtered film and the highly conductive metallic ink makes this possible in a cost-effective way.
In forming the alternating pattern 26 of layers, it is desirable to deposit the materials on the polymeric substrate 28 at near room temperature. The alternating pattern includes at least eleven layers, with the layer nearest the substrate being a dielectric layer 34. While not shown in
In the fabrication of the filter 100 of
Formed atop the first dielectric layer 34 is the first metallic layer 36. A “metallic” layer is a layer having a sufficiently low resistivity to promote an end product having the desired sheet resistance. Each metallic layer may be silver or a silver alloy metal layer. The thickness of the first metallic layer is preferably in the range of 6 nm to 12 nm. A second dielectric/metallic pair in the alternating pattern 26 duplicates the materials of the first pair. The second dielectric layer 38 has a thickness in the range of 70 nm to 95 nm, while the second metallic layer 40 has a thickness in the range of 9 nm to 18 nm. The third and fourth metallic layers 44 and 48 have the same thickness as the second metallic layer 40, within ±20 percent, at least in the preferred embodiment. The thickness of the third, fourth and fifth dielectric layers 42, 46 and 50 is preferably the same as the range of the second dielectric layer 38.
The final metallic layer 52 may be thinner than the middle metallic layers 40, 44 and 48. The thickness of the fifth metallic layer 52 is preferably in the range of 6 nm to 12 nm. Similarly, the final dielectric layer 54 has a reduced thickness, similar to the first dielectric layer 34. The first and sixth dielectric layers 34 and 54 may have a thickness in the range of 20 nm to 60 nm. The various layer thicknesses of the filter 100 can be adjusted within suitable ranges in order to achieve target optical properties for a particular application. If the dielectric layers are equal in thickness and the metallic layers are equal in thickness, a high transparency will result, but with a possible excessive color shift. Therefore, a color correcting layer 56 may be included to provide a color shift that is in the opposite direction, so as to offset the color shift exhibited by the alternating pattern 26. It has been determined that if fewer than five silver alloy layers are used, it is difficult to provide a sheet resistance below 1.2 ohms/square with low color shift with viewing angle.
Between the color correcting layer 56 and the alternating pattern 26 is a hardcoat layer 58 that can be included in order to protect the underlying layers from scratches and contamination. Like the color correcting layer 56, the hardcoat layer is included in the preferred embodiment. However, the hardcoat layer is less important if the filter 100 is to be used with a top anti-reflection coating 18 on a second polymeric substrate 20, as shown in
The total thickness of the metallic layers 36, 40, 44, 48 and 52 plays a significant role in achieving the desired optical properties. As previously noted, the total thickness should be greater than 50 nm. Optical properties for a filter having six indium oxide layers and five silver layers, where the total thickness for the silver layers was less than 50 nm, were computed. Specifically, the eleven layer thicknesses were 40 nm/10 nm/70 nm/10 nm/70 nm/10 nm/60 nm/6 nm/40 nm/6 nm/20 nm. This is consistent with Example 5 in U.S. Pat. No. 6,104,530 to Okamura et al. Transmission in the visible range of the spectrum (Tvis), reflection in the visible range (Rvis), and other optical properties were determined using an optical model calculation for this structure on PET, laminated with clear adhesive to glass and laminated with a commercial antireflective coating. The computed optical properties are shown in Table A. Generally, it is highly preferred that a plasma display have visible reflectance (Rvis) of less than approximately five percent and that the reflected color at normal incidence (0 degrees) should be such that −Rb* is about 2 or more times larger than Ra*. Additionally, the color travel along the Ra* axis should be less than approximately 10 CIE units between viewing angles of 0 degrees and 60 degrees. From Table A, it can be seen that the filter has a large positive Rb* at 60 degrees, which would result in a brown or yellowish reflection appearance. In comparison, the filter 100 described with reference to
In another embodiment of the invention in which applications requiring sheet resistances lower than 0.5 ohms/square or less, a selected pattern of ultra-narrow conductive traces 64 may be printed onto the dielectric layer 54 prior to application of hardcoat 58. An inkjet printer may be used to apply a metallic ink containing highly conductive nano-particles, such as but not limited to copper, silver, gold or a combination of such materials. The ultra-narrow conductive traces 64 depicted in
In another embodiment of the invention, the ultra-narrow conductive traces 64 may be printed onto the dielectric layer 54 utilizing a combination of photolithographic and electroplating techniques. Referring to
As shown in
The structure of
While the preferred embodiment is one in which the optical properties are formed by coating a substrate, embodiments are also contemplated in which the substrate itself is fabricated or treated to achieve the desired optical properties, such as a high infrared absorbence. Thus, the sputtering of layers is not critical to the invention. The substrate itself may be plain plastic, glass, IR-absorbing PET or PVB, an electrically conductive polymer, or optically coated substrates such as sputter coated glass and pyrolytically coated glass.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/US2006/013993 | 4/14/2006 | WO | 00 | 10/11/2007 |
Number | Date | Country | |
---|---|---|---|
60671804 | Apr 2005 | US |