OPTICAL COMMUNICATION MONITORING DEVICE

Information

  • Patent Application
  • 20230327757
  • Publication Number
    20230327757
  • Date Filed
    September 11, 2020
    4 years ago
  • Date Published
    October 12, 2023
    a year ago
Abstract
A plurality of optical sensors (3) are installed in an optical path control device (1) configured to control a plurality of optical paths (2) without using an electrical element. The plurality of optical sensors (3) detect optical signals each passing through at least one of the plurality of optical paths (2). A transmitter (4) simultaneously determines communication states of the plurality of optical paths (2) based on detection of the optical signals by the plurality of optical sensors (3), and transmits information on the determined communication states.
Description
TECHNICAL FIELD

The present disclosure relates to an optical communication monitoring device that monitors a communication state of an optical path control device having no electrical element.


BACKGROUND ART

In an optical communication system such as a passive optical network (PON) system, a device has been proposed that specifies a failure section in case where a communication failure occurs in an optical path (see, for example, Patent Literature 1).


CITATION LIST
Patent Literature



  • Patent Literature 1: JP 2010-171652 A



SUMMARY OF INVENTION
Technical Problem

The optical communication system uses an optical path control device such as an optical splitter that branches an optical path, a coupler that concentrates optical paths, or a patch panel that switches optical paths. The optical path control device controls an optical path without using an electrical element, and thus cannot monitor a communication state of the optical path. Therefore, it is difficult to specify a failed optical path in a case where a communication failure occurs, and it takes time to specify the failed optical path. This difficulty is a larger problem in a case where there are many failures or in a case where the failures are scattered in various places.


In addition, in the PON system, there is a case where one slave station device fails, ignores control of a master station device, and continuously transmits light at all times. In this case, the transmitted light overlaps with an uplink signal from another slave station device, and thus the master station device cannot identify each slave station device. For this reason, a problem of uplink error rate degradation or service interruption occurs.


The present disclosure has been made to solve the above-described problems, and an object thereof is to obtain an optical communication monitoring device capable of monitoring a communication state of an optical path control device having no electrical element.


Solution to Problem

An optical communication monitoring device according to the present disclosure includes: a plurality of optical sensors that are installed in an optical path control device configured to control a plurality of optical paths without using an electrical element and detect optical signals each passing through at least one of the plurality of optical paths; and a transmitter that simultaneously determines communication states of the plurality of optical paths based on detection of the optical signals by the plurality of optical sensors and transmits information on the determined communication states.


Advantageous Effects of Invention

In the present disclosure, optical signals passing through a plurality of optical paths are each detected, communication states of the plurality of optical paths are simultaneously determined based on detection of the optical signals, and information on the determined communication states is transmitted. With this configuration, it is possible to monitor a communication state of an optical path control device having no electrical element. Furthermore, simultaneously determining communication states of a plurality of optical paths each connected to a corresponding one of a plurality of slave station devices makes it possible to specify a slave station device abnormally emitting light.





BRIEF DESCRIPTION OF DRAWINGS


FIG. 1 is a diagram illustrating an optical communication system according to a first embodiment.



FIG. 2 is a diagram illustrating an optical communication monitoring device according to the first embodiment.



FIG. 3 is a diagram illustrating the optical communication monitoring device according to the first embodiment.



FIG. 4 is a diagram illustrating an optical communication monitoring device according to a second embodiment.





DESCRIPTION OF EMBODIMENTS

An optical communication monitoring device according to each embodiment will be described with reference to the drawings. The same or corresponding components are denoted by the same reference signs, and repetition of the description may be omitted.


First Embodiment


FIG. 1 is a diagram illustrating an optical communication system according to a first embodiment. This optical communication system is a passive optical network (PON) system. A master station device 100 is connected to a plurality of slave station devices 200a to 200x via optical paths, and performs optical communication with each of the plurality of slave station devices 200a to 200x. The master station device 100 is an optical line termination or optical line terminal (OLT). The slave station devices 200a to 200x are optical network units (ONUs). In the PON system, an optical path control device 1 is a coupler that concentrates a plurality of optical paths 2 each connected to a corresponding one of the plurality of slave station devices 200a to 200x on an optical path 2 connected to the master station device 100. Each of the optical paths 2 is an optical fiber (optical core wire) or the like.



FIGS. 2 and 3 are diagrams illustrating an optical communication monitoring device according to the first embodiment. The optical path control device 1 controls the optical paths 2 without using an electrical element, and is an optical passive component such as an optical splitter that branches an optical path, a coupler that concentrates a plurality of optical paths, or a patch panel that switches light of a plurality of optical paths. For example, the optical path control device 1 is a device that distributes N optical paths to M optical paths (N and M are integers of 1 or more). The optical passive component includes no electrical element and functions without requiring electric power supply.


A plurality of optical sensors 3 are each installed in a corresponding one of the plurality of optical paths 2 of the optical path control device 1. Each of the plurality of optical sensors 3 detects an optical signal passing through the corresponding one of the plurality of optical paths 2. Here, each of the optical sensors 3 is a light receiving element such as a photodiode that converts leakage light of the optical signal passing through the corresponding one of the optical paths 2 into an electrical signal and provides the electrical signal to a transmitter 4 outside the optical path control device 1. The electrical signal does not have to be provided constantly, and may be provided once every certain period in accordance with the transmission frequency of the optical signal. Detection of the optical signal is, for example, detection of the presence or absence or intensity of the optical signal.


The transmitter 4 is a device related to Internet of things (IoT), and includes a plurality of communication state determination units 5, an information arrangement unit 6, and a transmission unit 7. Each of the plurality of communication state determination units 5 is provided for a corresponding one of the plurality of optical sensors 3, and simultaneously determines a communication state of a corresponding one of the plurality of optical paths 2 based on detection of an optical signal by the corresponding one of the plurality of optical sensors 3. The communication state is determined periodically, for example, every several milliseconds. The information arrangement unit 6 collectively converts the determination results of the plurality of communication state determination units 5 into information with which the communication state (port state) of each optical path can be grasped. The transmission unit 7 transmits the information to the outside of the transmitter 4.


A reception device 8 is a device related to IoT, and receives the information transmitted from the transmitter 4 through a communication network such as the Internet. A management unit 9 is a general term for functional units that manage a network. The management unit 9 specifies a failed one of the optical paths 2 based on the information received by the reception device 8. With this configuration, it is possible to monitor a communication state of the optical path control device 1 having no electrical element.


In addition, in the PON system, there is a case where one slave station device 200x fails, ignores control of the master station device 100, and continuously transmits light at all times. In this case, the transmitted light overlaps with an uplink signal from another slave station device. Therefore, the master station device 100 cannot identify each of the slave station devices 200a to 200x, and a problem of uplink error rate degradation or service interruption occurs.


Meanwhile, in the present embodiment, the optical path control device 1 is provided with the optical communication monitoring device. The transmitter 4 simultaneously determines the communication states of the plurality of optical paths 2 each connected to a corresponding one of the plurality of slave station devices 200a to 200x, and transmits information on the communication states. The management unit 9 specifies the slave station device 200x abnormally emitting light based on the information. This configuration eliminates need for an operation of sequentially investigating the plurality of optical paths 2 branched in the optical path control device 1 and specifying the slave station device 200x abnormally emitting light.


Note that, if the communication state determination units 5 of the transmitter 4 continuously determine the communication states of the plurality of optical paths all day, abnormal light emission can be recognized in real time. However, abnormal light emission does not occur frequently and is less likely to occur. Therefore, from the viewpoint of energy saving, the communication state determination units 5 may determine the communication states of the plurality of optical paths only for a certain period of time.


Second Embodiment


FIG. 4 is a diagram illustrating an optical communication monitoring device according to a second embodiment. Unlike the first embodiment, each of the optical sensors 3 is an optical splitter that branches a part of an optical signal passing through a corresponding one of the optical paths 2 and provides the part of the optical signal to the transmitter 4. The plurality of communication state determination units 5 simultaneously determine communication states of the plurality of optical paths 2 based on optical signals each branched from a corresponding one of the plurality of optical sensors 3. The configuration of the second embodiment is similar to that of the first embodiment other than this point. With this configuration, effects similar to those of the first embodiment can be obtained. Note that, in order to suppress a reduction in light intensity of a main signal, it is preferable that the branching ratio is not 1:1 but the ratio of an optical signal toward the transmitter 4 is reduced.


Here, if each of the optical sensors 3 also detects an optical signal exiting from the inside of the optical path control device 1, it is difficult to know which of the optical paths 2 a signal has passed through. Therefore, each of the optical sensors 3 needs to detect an optical signal entering the optical path control device 1 from the outside. Therefore, in a case where the optical path control device 1 is a coupler or a splitter, it is preferable to use an optical splitter of the present embodiment as each of the optical sensors 3 rather than a light receiving element of the first embodiment. In a case where the optical path control device 1 is a device having no branch, such as a patch panel, a light receiving element may be used as each of the optical sensors 3.


Note that, in the first and second embodiments, the optical path control device 1 has been described by taking a coupler as an example, but the branching ratio of the coupler is not limited. In addition, even in a case where the optical path control device 1 is not a coupler but an optical switch, the optical communication monitoring device has a configuration similar to that described above. Furthermore, the transmitter 4 is detachable from the optical path control device 1. Even if the transmitter 4 fails or the electric power supply to the transmitter 4 is stopped, a main signal of an optical signal is not affected.


REFERENCE SIGNS LIST






    • 1 Optical path control device


    • 2 Optical path


    • 3 Optical sensor


    • 4 Transmitter


    • 5 Communication state determination unit


    • 6 Information arrangement unit


    • 7 Transmission unit


    • 8 Reception device


    • 9 Management unit


    • 100 Master station device


    • 200
      a to 200x Slave station device




Claims
  • 1. An optical communication monitoring device comprising: a plurality of optical sensors that are installed in an optical path control device configured to control a plurality of optical paths without using an electrical element and detect optical signals each passing through at least one of the plurality of optical paths; anda transmitter that simultaneously determines communication states of the plurality of optical paths based on detection of the optical signals by the plurality of optical sensors and transmits information on the determined communication states.
  • 2. The optical communication monitoring device according to claim 1, wherein the transmitter includes:a plurality of communication state determination units each of which determines a communication state of a corresponding one of the plurality of optical paths based on detection of a corresponding one of the optical signals by a corresponding one of the plurality of optical sensors;an information arrangement unit that collectively converts determination results of the plurality of communication state determination units into the information; anda transmission unit that transmits the information.
  • 3. The optical communication monitoring device according to claim 1, wherein the transmitter periodically determines the communication states of the plurality of optical paths.
  • 4. The optical communication monitoring device according to claim 1, wherein the optical path control device concentrates a plurality of optical paths each connected to a corresponding one of a plurality of slave station devices on an optical path connected to a master station device in a passive optical network (PON) system, andthe transmitter simultaneously determines communication states of the plurality of optical paths each connected to the corresponding one of the plurality of slave station devices, and transmits the information.
  • 5. The optical communication monitoring device according to claim 4, further comprising: a reception device that receives the information transmitted from the transmitter; anda management unit that specifies a slave station device abnormally emitting light among the slave station devices based on the information received by the reception device.
  • 6. The optical communication monitoring device according to claim 1, further comprising: a reception device that receives the information transmitted from the transmitter; anda management unit that specifies a failed one of the optical paths based on the information received by the reception device.
  • 7. The optical communication monitoring device according to claim 1, wherein each of the optical sensors is a light receiving element that converts an optical signal passing through at least one of the optical paths into an electrical signal and provides the electrical signal to the transmitter.
  • 8. The optical communication monitoring device according to claim 1, wherein each of the optical sensors is an optical splitter that branches a part of an optical signal passing through at least one of the optical paths and provides the part of the optical signal to the transmitter.
PCT Information
Filing Document Filing Date Country Kind
PCT/JP2020/034482 9/11/2020 WO