The present disclosure relates to an optical communication monitoring device that monitors a communication state of an optical path control device having no electrical element.
In an optical communication system such as a passive optical network (PON) system, a device has been proposed that specifies a failure section in case where a communication failure occurs in an optical path (see, for example, Patent Literature 1).
The optical communication system uses an optical path control device such as an optical splitter that branches an optical path, a coupler that concentrates optical paths, or a patch panel that switches optical paths. The optical path control device controls an optical path without using an electrical element, and thus cannot monitor a communication state of the optical path. Therefore, it is difficult to specify a failed optical path in a case where a communication failure occurs, and it takes time to specify the failed optical path. This difficulty is a larger problem in a case where there are many failures or in a case where the failures are scattered in various places.
In addition, in the PON system, there is a case where one slave station device fails, ignores control of a master station device, and continuously transmits light at all times. In this case, the transmitted light overlaps with an uplink signal from another slave station device, and thus the master station device cannot identify each slave station device. For this reason, a problem of uplink error rate degradation or service interruption occurs.
The present disclosure has been made to solve the above-described problems, and an object thereof is to obtain an optical communication monitoring device capable of monitoring a communication state of an optical path control device having no electrical element.
An optical communication monitoring device according to the present disclosure includes: a plurality of optical sensors that are installed in an optical path control device configured to control a plurality of optical paths without using an electrical element and detect optical signals each passing through at least one of the plurality of optical paths; and a transmitter that simultaneously determines communication states of the plurality of optical paths based on detection of the optical signals by the plurality of optical sensors and transmits information on the determined communication states.
In the present disclosure, optical signals passing through a plurality of optical paths are each detected, communication states of the plurality of optical paths are simultaneously determined based on detection of the optical signals, and information on the determined communication states is transmitted. With this configuration, it is possible to monitor a communication state of an optical path control device having no electrical element. Furthermore, simultaneously determining communication states of a plurality of optical paths each connected to a corresponding one of a plurality of slave station devices makes it possible to specify a slave station device abnormally emitting light.
An optical communication monitoring device according to each embodiment will be described with reference to the drawings. The same or corresponding components are denoted by the same reference signs, and repetition of the description may be omitted.
A plurality of optical sensors 3 are each installed in a corresponding one of the plurality of optical paths 2 of the optical path control device 1. Each of the plurality of optical sensors 3 detects an optical signal passing through the corresponding one of the plurality of optical paths 2. Here, each of the optical sensors 3 is a light receiving element such as a photodiode that converts leakage light of the optical signal passing through the corresponding one of the optical paths 2 into an electrical signal and provides the electrical signal to a transmitter 4 outside the optical path control device 1. The electrical signal does not have to be provided constantly, and may be provided once every certain period in accordance with the transmission frequency of the optical signal. Detection of the optical signal is, for example, detection of the presence or absence or intensity of the optical signal.
The transmitter 4 is a device related to Internet of things (IoT), and includes a plurality of communication state determination units 5, an information arrangement unit 6, and a transmission unit 7. Each of the plurality of communication state determination units 5 is provided for a corresponding one of the plurality of optical sensors 3, and simultaneously determines a communication state of a corresponding one of the plurality of optical paths 2 based on detection of an optical signal by the corresponding one of the plurality of optical sensors 3. The communication state is determined periodically, for example, every several milliseconds. The information arrangement unit 6 collectively converts the determination results of the plurality of communication state determination units 5 into information with which the communication state (port state) of each optical path can be grasped. The transmission unit 7 transmits the information to the outside of the transmitter 4.
A reception device 8 is a device related to IoT, and receives the information transmitted from the transmitter 4 through a communication network such as the Internet. A management unit 9 is a general term for functional units that manage a network. The management unit 9 specifies a failed one of the optical paths 2 based on the information received by the reception device 8. With this configuration, it is possible to monitor a communication state of the optical path control device 1 having no electrical element.
In addition, in the PON system, there is a case where one slave station device 200x fails, ignores control of the master station device 100, and continuously transmits light at all times. In this case, the transmitted light overlaps with an uplink signal from another slave station device. Therefore, the master station device 100 cannot identify each of the slave station devices 200a to 200x, and a problem of uplink error rate degradation or service interruption occurs.
Meanwhile, in the present embodiment, the optical path control device 1 is provided with the optical communication monitoring device. The transmitter 4 simultaneously determines the communication states of the plurality of optical paths 2 each connected to a corresponding one of the plurality of slave station devices 200a to 200x, and transmits information on the communication states. The management unit 9 specifies the slave station device 200x abnormally emitting light based on the information. This configuration eliminates need for an operation of sequentially investigating the plurality of optical paths 2 branched in the optical path control device 1 and specifying the slave station device 200x abnormally emitting light.
Note that, if the communication state determination units 5 of the transmitter 4 continuously determine the communication states of the plurality of optical paths all day, abnormal light emission can be recognized in real time. However, abnormal light emission does not occur frequently and is less likely to occur. Therefore, from the viewpoint of energy saving, the communication state determination units 5 may determine the communication states of the plurality of optical paths only for a certain period of time.
Here, if each of the optical sensors 3 also detects an optical signal exiting from the inside of the optical path control device 1, it is difficult to know which of the optical paths 2 a signal has passed through. Therefore, each of the optical sensors 3 needs to detect an optical signal entering the optical path control device 1 from the outside. Therefore, in a case where the optical path control device 1 is a coupler or a splitter, it is preferable to use an optical splitter of the present embodiment as each of the optical sensors 3 rather than a light receiving element of the first embodiment. In a case where the optical path control device 1 is a device having no branch, such as a patch panel, a light receiving element may be used as each of the optical sensors 3.
Note that, in the first and second embodiments, the optical path control device 1 has been described by taking a coupler as an example, but the branching ratio of the coupler is not limited. In addition, even in a case where the optical path control device 1 is not a coupler but an optical switch, the optical communication monitoring device has a configuration similar to that described above. Furthermore, the transmitter 4 is detachable from the optical path control device 1. Even if the transmitter 4 fails or the electric power supply to the transmitter 4 is stopped, a main signal of an optical signal is not affected.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/JP2020/034482 | 9/11/2020 | WO |