1. Field of the Invention
The present invention relates to an optical communication system in which an optical beam is modulated in accordance with data in a transmitter, and the modulated optical beam is then transmitted to a remote receiver which recovers the data. The invention has particular, but not exclusive, application to a so-called 40G optical communication network at which data is communicated along a data pipe at a rate of 40 Gigabits per second (Gbps) or more.
2. The Background Art
In recent years, the need to increase data rates in optical communication to the benchmark figures of 40 Gbps and 100 Gbps has prompted much research. One problem with increasing data rates is the consequent increase in frequency bandwidth, which is problematic due to increased dispersion in optical fibers and also because an increase in frequency bandwidth requires a greater frequency spacing of data channels in a wavelength division multiplexing (WDM) system.
The use of optical duobinary modulation, in which a data signal is added to a one-bit delayed version of itself to generate a three level signal, has attracted attention due to its narrow bandwidth in comparison with a binary non-return-to-zero (NRZ) modulated signal. In practice, optical duobinary modulation typically employs a precoder to perform differential encoding in order to prevent error propagation. In order to maintain the bandwidth advantage when using such a precoder, one binary logic level output by the precoder is converted to a low amplitude state of the optical signal while the other binary logic level output by the precoder is converted to high amplitude states of the optical signal having opposite phases. At the receiver, conveniently the low amplitude state is converted to one binary logic value while both the high amplitude states are converted to the other binary logic value to recover the original data signal.
Other modulation techniques deployed include phase-shift keying (DPSK) and quadrature phase shift keying (QPSK), particularly in differential format. In addition, polarization division multiplexing has been used to further increase the data rates by employing two optical signals at the same frequency but with orthogonal polarizations. Polarization division multiplexing typically requires, however, a complex receiver due to the difficulty in separating the two optical signals at the receiver with acceptable levels of crosstalk.
One aspect of the present invention provides for a transmitter in which a pair of optical signals having different frequencies are modulated using a duobinary encoding scheme, and then multiplexed using polarization division multiplexing. Advantageously, the frequency difference between the two signals can be less than the data rate conveyed by each signal, resulting in a narrow spectral bandwidth, while still allowing demultiplexing at a receiver using simple bandpass filters and without the need of any form of polarization tracking.
Another aspect of the invention provides for a receiver having a wavelength-dependent beam splitter arrangement for splitting a received optical signal into two portions which are each directed to respective detectors. A first spectral component at a first frequency is preferentially split into the first portion, and a second spectral component at a second frequency is preferentially split into the second portion. Advantageously, the frequency difference between the first and second frequencies can be less than the data rate of a detected signal. The receiver does not require any polarization tracking or balancing, and accordingly is straightforward to implement.
A further aspect of the invention provides a Dense Wavelength Division Multiplexing (DWDM) optical communication system in which a plurality of transmitters generate a modulated optical signal by using polarization division modulation to combine two optical signals at slightly different frequencies, modulated in accordance with a duobinary encoding scheme, to generate respective optical data signals. The optical data signals are combined using wavelength division multiplexing, and transmitted over an optical fibre to a demultiplexer which demultiplexes the optical data signals. Each optical data signal is then split into two portions, and each portion is directed via a respective bandpass filter to a respective detector.
Details of the present invention will now be described, including exemplary aspects and embodiments thereof. Referring to the drawings and the following description, like reference numbers are used to identify like or functionally similar elements, and are intended to illustrate major features of exemplary embodiments in a highly simplified diagrammatic manner. Moreover, the drawings are not intended to depict every feature of actual embodiments nor the relative dimensions of the depicted elements, and are not drawn to scale.
As shown in
Each of the precoders 7 performs differential encoding. In particular, in each precoder the input data signal is inverted and then input into one input of an exclusive-OR gate, and the output of the exclusive-OR gate for each clock cycle is input into the other input of the exclusive-OR gate for the following clock cycle. The output of the exclusive-OR gate also forms the output of the precoder 7.
The output of each precoder 7a, 7b is input to a respective 2Vπ drive circuit 9a, 9b, with each 2Vπ drive circuit 9 applying control voltages to a corresponding Mach-Zehnder modulator 13. As those skilled in the art will appreciate, a Mach-Zehnder modulator splits a received coherent optical signal into two light beams which are directed through respective arms of the Mach-Zehnder modulator and then recombined. A variable optical path difference is introduced into one or both of the light paths in order to vary the amplitude of the recombined optical signal.
In this embodiment, each 2Vπ, drive circuit 9 has a pair of Vπ drive circuits, with the output of each Vπ drive circuit being input, via a respective low-pass filter 11, to an electrode associated with a respective arm of corresponding Mach-Zehnder modulator (MZM) 13. One of the Vπ drive circuits is driven by the output of the corresponding precoder 7 while the other of the Vπ drive circuits is driven by the inverse of the output of the corresponding precoder 7 so that differential driving is performed. Each Mach-Zehnder modulator 13 is biased at a level where the optical path difference between the two paths is 180°, resulting in a null output as the light travelling down one path destructively interferes with the light travelling down the other path. The 2Vπ drive circuits 9 are configured such that a potential difference of amplitude V is applied across the electrodes associated with the arms of the MZM 13, with the polarity of the applied voltage dependent on the binary logic level output by the corresponding precoder 7. The application of the potential difference V with one polarity results in a maximum amplitude of the recombined optical signal output by the MZM 13 with a first phase while the application of the potential difference V with the other polarity results in a maximum amplitude of the recombined optical signal output by the MZM 13 at a second phase which is 180° out of phase with the first phase. In other words, as illustrated in
The low-pass filters 11 are configured such that the output of each low-pass filter 11 substantially corresponds to the average of the voltage levels output by the corresponding 2Vπ drive circuit 9 for the last two data bits. Accordingly, if the output of a Vπ drive circuit 9 corresponds to a sequence of two different bits, then the voltage output by the low-pass filter is effectively zero, whereas if the two bits are the same then the voltage output by the low pass filter corresponds to the input voltage. This is a conventional way of implementing a duobinary encoding scheme.
In this embodiment, the low-pass filters 11 are 5th order Bessel filters which provide a substantially flat group delay up to 13.4 GHz.
First and second lasers 15a, 15b output coherent light beams which are input to respective ones of the modulators 13a, 13b. In this embodiment, the first laser 15a outputs a coherent optical beam at a first wavelength λ1 and the second laser 15b outputs a coherent light beam at a second wavelength λ2, with the frequency difference between the two laser equal to 16 GHz. This frequency difference is therefore less than the data rate of one of the data signals. Further, the outputs of the first and second lasers 15a, 15b have linear polarizations which are mutually orthogonal to each other. A polarization beam combiner 17 combines the two outputs of the MZMs to form the output signal of the transmitter 1, and this output signal is coupled into the optical fibre 3. The different polarization states of the outputs of the MZMs reduces interference between the data of the first and second data signals.
Table 1 illustrates states of the transmitter 1 for an exemplary data string.
In table 1 it will be seem that the output of the MZM 13 corresponds to a duobinary encoded version of the data signal in which the binary logic state “1” is represented by an electric field amplitude E at two phases which are 180° out of phase with each other. Accordingly, a spectral component at wavelength λ1 is modulated in accordance with the first data signal and a spectral component at wavelength λ2 is modulated in accordance with the second data signal. At the receiver, a data signal can be recovered simply by detecting the amplitude of the electric field strength at the corresponding wavelength.
Returning to
The light transmitted by the first bandpass filter 21a is detected by a first detector 23a to recover the first data signal and the light transmitted by the second bandpass filter 21b is detected by a second detector 23b to recover the second data signal.
It will be appreciated that the light output from each bandpass filter 21 could be amplified using an optical amplifier prior to detection.
In an embodiment, the components of the transmitter 1 are formed in an integrated optical circuit, and similarly the components of the detector 5 are formed in an integrated optical circuit.
In the receiver 5 discussed above, the beam splitter 19 and the first and second bandpass filters 21a,21b form a wavelength-dependent beam splitting arrangement. Other forms of wavelength-dependent beam splitting arrangements are possible. For example, as shown in
Due to the narrow bandwidths of the transmitted optical signals, transmitters and receivers according to the present invention are well suited to a DWDM optical communication system. In a DWDM, multiple channels at different wavelength are multiplexed into a single fiber communications window, usually the window around 1550 nm to take advantage of the devices available at that wavelength. As shown in
In the embodiment illustrated in