The present invention relates to optical communication, in particular optical communication involving spectral filtering.
Spectral slicing of a broadband source to provide individual wavelength channels which can be subsequently modulated is an alternative to using stable single frequency lasers or tunable lasers within wavelength division multiplexed (WDM) systems, for example in a WDM passive optical network (PON). In such a system, it is known to use each wavelength channel as a respective feeder signal in order to receive data at a central receiver station from one or more of a plurality of remote transmitter stations. A respective feeder signal is transmitted to each transmitter station (each feeder signal having a different wavelength), where data is modulated onto the feeder signal. The modulated feeder signal with the data thereon is then returned to the receiver station from each central station.
Spectral slicing is a known technique for generating the feeder signals, but suffers from the problems of excess noise generated by the slicing process. It is known to reduce the effect of excess intensity noise within a spectrally sliced WDM PON by using a reflective SOA to modulate each return channel of the PON. However, this approach requires the use of a reflective SOA as a modulator at each customers terminal, whereas this may not always be convenient.
According to the present invention, there is provided a method of communicating over an optical link, including the steps of:
(i) performing a first spectral filtering function on a source signal having a spectral width so as to generate a plurality of feeder signals that are spectrally spaced apart from one another, each feeder signal having a reduced spectral width relative to the source signal;
(ii) performing a respective noise reduction function on the feeder signals;
(iii) subsequently to step (ii), combining the feeder signals such that the combined feeder signals can be carried over a common waveguide of the optical link;
(iv) receiving the feeder signals carried over optical link and modulating the received feeder signals so as to impose data thereon; and,
(v) returning the modulated feeder signals over the optical link so as to communicate the imposed data.
Because a noise reduction function is performed on the feeder signals before the feeder signals are modulated, a greater design freedom is provided over the type of modulator which can be employed to modulate signals. Furthermore, because the feeder signals are subject to noise reduction before being combined for transmission over a common waveguide, the risk is reduced that excessive noise will be introduced if the feeder signals are subsequently separated again (using a spectral filtering or slicing technique for example).
Preferably, the noise reduction function on the feeder signals will be performed by passing each feeder signal through a respective noise reduction element having a non-linear characteristic. The noise reduction element will preferably have an input and an output, the relationship between the input and output optical intensity, also known as the transfer function, being non non-linear in a region where the intensity of the feeder signals varies due to the noise thereon.
Each noise reduction elements will preferably be arranged to carry a respective feeder signal such that the feeder signals are spatially separated from one another. This may be achieved by arranging each noise reduction element such that each has a waveguiding region, through which the feeder signals are guided. The waveguiding regions of each noise reduction element will preferably be sufficiently separated from one another so as to reduce the risk of significant leakage form one noise reduction element to another. In a preferred embodiment, the each noise reduction element is formed by a respective semiconductor optical amplifier.
Preferably, the feeder signals received over the optical link will have been carried over a common waveguide in a combined fashion, in which case a second spectral filter function will preferably be performed on the combined feeder signals, such that the feeder signals can be individually modulated. Preferably, each of the first and second spectral filter functions will have a filter width associated therewith which determined the spectral width of each feeder signal, the filter width being such that for a given feeder signal, the spectral width of the first filter function is greater than that of the second filter function. This will reduce the likelihood that significant additional noise will be generated when the second filter function is performed.
In a preferred embodiment, a modulated feeder signals are returned over the same waveguide as that used to carry the signals to the point of modulation. However, the modulated feeder signals may be returned along an additional waveguide, either following the same path or a divergent path to that of the waveguide carrying unmodulated feeder signals. In such as situation, the optical link may include the divergent paths.
The feeder signals upon which a noise reduction function is performed may each be a continuous wave signal rather than a signal having data modulated thereon. However, the feeder signals may include some data, such as timing data or other network-maintenance data.
A modulator that functions according to an electro absorption principle will preferably be used to modulate feeder signals, as such a modulator will normally have a low electrical power consumption. Each modulator may then receive data signals over electrical connections know as “twisted pairs” which are provided in existing telephony networks between a street cabinet customer terminals, the data signals being of sufficient power to drive the modulators, thereby reducing the need for an additional power supply. The data signals themselves are not necessarily powerful enough to drive the modulator directly. DC power can be fed from the customer terminal to allow the powering of some low-power electronics in the street cabinet.
According to a further aspect of the invention, there is provided apparatus for optical communication which includes: (i) filter means for performing a first spectral filtering function on a source signal having a spectral width so as to generate a plurality of feeder signals that are spectrally spaced apart from one another, each feeder signal having a reduced spectral width relative to the source signal; (ii) noise reduction means for performing a respective noise reduction function on the feeder signals; (iii) combiner means for combining the feeder signals such that the combined feeder signals can be carried over a common waveguide of the optical link
The combined feeder signal may be modulated locally before being transmitted, or the combined feeder signal may be received from a remote location. Modulated signals may then be returned to the remote location. Alternatively the modulated feeder signals may be transmitted to a further location.
At least one further aspects of the invention is provided in the claims. The present invention will now be described in further details below, by way of example, with reference to the following drawing in which:
Each output port 24 of the spectral filtering element is connected to a respective non-linear element 28 by a respective one of the waveguides 26. The non-linear elements 28 are each formed by a respective semiconductor optical amplifier (although another suitable travelling wave amplifier or other amplifier having suitable non-linear characteristics). Each amplifier has an (active) waveguiding region extending between an input and an output, which output is connected to a respective output waveguide 34. Thus, the radiation of each wavelength channel passes through a respective non-linear element 28 in a spatially separated manner (although there may be some leakage between adjacent non linear elements) before being recombined at a combiner element 36, here an arrayed waveguide (of similar design to the spectral filtering element 20). The combiner element 36 has a plurality of inputs 38 for receiving the different wavelength channels, and an output 40 for the output of a combined channel formed from the super position of the different channels. In this way, the combiner acts as a WDM multiplexer (WDM MUX). The combined channels will be of comparable spectral breadth to that of the broadband light source.
Light from the combined channel (carried over a common waveguide such as optical fibre) optionally passes through a power (intensity) splitter 38 so as to provide a plurality of duplicate combined channels, each having a reduced intensity relative to that incident at the splitter. The path of only one of the (duplicate) combined channels from the power splitter 38 is shown for clarity. The combined channel shown is carried along a waveguide path 40 to a circulator element 44, from where it is channeled along the transmission link 16 (each channel travelling on a common waveguide of the link) to a further spectral filtering 44 element (again an arrayed WDM deMUX waveguide with 32 output channels) at the transmitter station.
The spectral distribution of the spectral filtering elements 44,20 at the transmitter station 14 will be substantially matched, to the extent that the wavelength channels created at the receiver station 12 can be demultiplexed or otherwise recovered at the transmitter station 14. The spectral filtering element 44 at the transmitter station 14 includes a plurality of coupling waveguides 47, each of which carries a respective one of the recovered wavelength channels.
A respective modulator device 46 is coupled at a respective port 49 to each output waveguide. Each modulator device is driven by a respective electrical driver circuit 50 such that data can be independently modulated on each wavelength channel. Each modulator device 46 is a reflective modulator, having a reflector surface (normally on a back facet) such that light entering a modulator device at the port thereof performs a double path through a modulating medium of the modulator before exiting the modulator at the port 46. In this way, modulated light from each channel is returned over a respective coupling waveguide 47 to the spectral filtering element 44. In the return direction, the spectral filtering element 44 acts as a combiner, such that the modulated wavelength channels are combined to form a return combination channel. The return combination channel is carried over the optical link 16 towards the circulator element 42, where the circulator element 42 directs the light forming the return combination channel towards a receiver spectral filtering element 52. The receiver spectral filtering element 52 is configured to recover the modulation channels at a plurality of outputs 54 (one for each channel) in a similar fashion to the way in which the spectral filtering element 44 of the transmitter station 14 recovers the unmodulated channels from the (unmodulated) combined signal. An array of receivers 55 is provided (such as an array of photo-diodes) for converting the modulation signal (here an amplitude or intensity modulation) imposed on each of the wavelength channels into a respective electrical signal for each channel. In this way, information can be communicated from the transmitter station 14 to the receiver station 12 over the optical link 16.
Because the wavelength channels are transmitted between the transmitter and receiver station as a combined signal, the signals can be transmitted over an optical fibre, allowing existing installed fibre to be used to extend the reach of the communications system 10.
Each of the spectral filtering elements 20,44,52 will have a line width associated therewith which determined the spectral spread of the wavelength channels. Clearly, since noise due to the spectral filtering (that is, the restriction on the spectral spread of each wavelength channel) is reduced after the initial filtering at the receiver station, it is desirable to limit the additional noise, if any, introduced through the action of the filtering element 44 at the transmission station, as well as that of the receiver filtering element 52. It is therefore desirable to choose the line width of each filtering element such that as a wavelength channel progresses through the communication system after the initial filtering at the filter element 20 at the receiver station, the line width of the channels is not further reduced: that is, the line width of the initial filter 20 is less than that of the filter at the transmitter station, which in turn will be less than the line width of the receiver filter 55.
The system shown in
Because the optical power splitter 38 is provided at the central office, the feeder signal or wavelength channels from the sliced and squeezed source 210 (with reference to FIG. 1, this is equivalent to the signal from the combiner element 36) can be used as a feeder signal to drive further PONs. In such a situation, the components within the dashed line of
The modulators will preferably each be an electro absorption modulator, also know an EAM, since such modulators require a particularly low electrical power to operate. However, other types of modulators may be used.
The role of a semiconductor optical amplifier (also know as an SOA) for each non linear element can be understood with reference to
An SOA has a quasi linear or almost linear region, and a non linear region where gain saturation occurs. Typically, onset of the non region is taken to be at about the 3 dB compression point, that is, the point in the gain curve (against input power) where the gain is reduced by 3 dB relative to its maximum value. With reference to
The following additional comments are provided
It is recognised for certain applications where electrical power is limited, for example the remote powering of equipment within a cabinet or distribution point, it would be preferential to use optoelectronic devices with very low power consumption such as electro-absorption modulators or other types of optical modulator using electrooptic effects for operation.
In the proposed new architecture the noise from a spectrally sliced broadband source is squeeze or otherwise reduced at the head-end (i.e. within the local exchange) using semiconductor optical amplifiers or by some other suitable non-linear element or optoelectronic process. This allows the remote reflective modulators to be of much lower power design, such as EAM, to be used without suffering noise penalties from the spectral slicing process. The intensity fluctuations for each wavelength of the sliced source has to individually squeezed using a non-linear SOA requiring N SOA's for N wavelengths. However, if a star coupler architecture is used within the headend of the WDM PON it is possible for N SOA's to be used to serve >N2 remote terminations. Likely to be less sensitive to backscatter than narrowline coherent source.
Other Design Consideration: the use of a single polarisation SOA for performing squeezing may be useful if the transmission path between head end and remote terminal has significant polarisation dependency, and the remote modulator is substantially polarisation independent (the ability to squeeze each polarisation separately then combine the signals may be desirable)
The above embodiments provide a simple centralised noise reduction system.
Number | Date | Country | Kind |
---|---|---|---|
0602751.0 | Feb 2006 | GB | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/GB07/00082 | 1/11/2007 | WO | 00 | 8/5/2008 |