Hill, Paul M., et al., “Multigigabit Subcarrier Multiplexed Coherent Lightwave System,” Journal of Lightwave Technology, vol. 10, No. 11, Nov. 1992, pp. 1656-1664. |
Schlump, Dieter et al.: “Electronic equalization of PMD and chromatic dispersion induced distortion after 100 km standard fibre at 10 Gbit/s” Proceedings Of The European Conference On Optical Communication, Sep. 20, 1998, pp. 535-536. |
Alcatel, “Alcatel 1680 SM 10 Gbps (STM-64) Add Drop Multiplexer,” copyright 1997 (printed from http://www.alcatel.com/telecom/mbd/products/products/1680sm.htm on May 24, 1999), pp. 1-4. |
Alcatel, “Alcatel 1692 SM 10 Gbps (OC-192) Sonet Transport System,” copyright 1997 (printed from http://www.alcatel.com/telecom/mbd/products/products/1692.htm on May 24, 1999), pp. 1-2. |
Alcatel, “The Optinex Family of Network Elements,” copyright 1997 (printed from http://www.alcatel.com/telecom/tsd/products/family.htm on May 24, 1999), pp. 1-7. |
Business Wire, “Harmonic Lightwaves Announces Availability of First MCNS-Compliant QAM Modulator; TRANsend QAM is a Vital Component for Delivering Digital Services,” Nov. 18, 1997. |
C. Tai, Pi-Yang Chiang, W. Way, “Eight-Way, 70-km Transmission of 33-Channel 64-QAM Signals Utilizing a 1.3-μm External Modulation System and Semiconductor Optical Amplifier,” IEEE Photonics Technology Letters, vol. 8, No. 9, Sep. 1996, pp. 1244-1248. |
Cambrian Systems Corporation, “OPTera Metro Optical Networking Platform Product Information,” copyright 1997 (printed from http://www.cambriansys.com/productinfo.htm on May 24, 1999), pp. 1-4. |
D. Tang, “Multi-Gigabit Fiber-Optic Video Distribution Network Using BPSK Microwave Subcarriers,” IEEE 1989 MTT-S Intl. Microwave Symp Digest, Jun. 13-15, 1989, Long Beach, CA, vol. 2, pp. 697-701. |
E. Douverne, M. Ottka, K. Ruthemann, K. Siegel, “Ein 64-QAM-Modern für SDH-Richtfunkgeräte mit integriertem Kreuzpolarisationsentkoppler,” vol. 40, No. 11, Mar. 1, 1994, pp. 89-100. |
Fujitsu Network Communications, Inc., “Flash-192 Fujitsu Lightwave Add/Drop Multiplexer,” copyright 1997 (printed from http://www.fnc.fujitsu.com/technology/falsh192.htm on May 24, 1999), pp. 1-4. |
G Wilson, “Capacity of QAM SCM systems utilising optically linearised Mach-Zehnder modulator as transmitter,” Electronic Letters, vol. 34, No. 25, Dec. 10, 1998, pp. 2372-2374. |
H. Dai, C. Lin, M. Ramachandran, “Hybrid AM/QAM Video Trunking Lightwave Sytems With Cascaded EDFAs,” Conf. Proc. LEOS, 97 Annual Meeting, IEEE Lasers & Electro Optic Society, 1997, vol. 1, pp. 319-320. |
H. Jones-Bey, “Optical switches pursue crossconnect markets,” Laser Focus World, May 1998, pp. 153-162. |
H. Ohtsuka, O. Kagami, S. Aikawa, H. Takanashi, “256-QAM Subcarrier Transmission for Broadband Distribution Networks,” NTT Radio Communications Systems Laboratories, GlobeCom '91, pp. 1817-1822. |
Hitachi Telecom (USA) Inc., “OC-192 AMN5192 Sonet Node,” Jul. 1998, pp. 1-2. |
I-Cube, “Designing a Large Crosspoint With Fast Reconfiguration,” Literature #D-22-013, Sep. 1997, pp. 1-9. |
I-Cube, “IQX Family Data Sheet,” Jan. 1999, pp. 1-58. |
I-Cube, “Optimal I/O Assignment in an IQX-based Crossbar Switch,” Literature #D-21-019, Sep. 1997, pp. 1-14. |
J. LeBer, M. LeLigne, “Digital Transmission on Electric Subcarriers in Optical Fiber Videocommunication Systems,” Optics Communications, Oct. 15, 1987, vol. 64, No. 2, pp. 120-126. |
J. Li, K. Yano, “Development of AM/QAM Hybrid Optical SCM Transmission System,” Proc Intl Conf. On Communication Technology ICCT '96, May 5-7, 1996, Beijing, China, vol. 1, pp. 575-577. |
J. Park, A. Elrefaie, K. Lau, “1550-nm Transmission of Digitally Modulated 28-GHz Subcarriers Over 77 km of Nondispersion Shifted Fiber,” IEEE Photonics Technology Letters, Feb. 1997, vol. 9, Issue 2, pp. 256-258. |
J. Ryan, “WDM: North American Deployment Trends,” IEEE Communications Magazine, Feb. 1998, pp. 40-44. |
K. Ho, H. Dai, C. Lin, “Hybrid WDM Digital Trunking System for both HFC and FTTC Access Networks,” Digest IEEE/LEOS 1996 Summer Topical Meetings (Cat. No. 96th 8164), NY, NY, pp. 37-38. |
Ken-ichi Kitayama, “Subcarrier Multiplexing Based Signaling and Access Control in Optical FDM Networks,” IEEE Global Telecomuunications Conference (Globecom'95, Singapore), Nov. 1995, pp. 1996-2002. |
M. Fuse, Y. Kudo, K. Maeda, “Development of 128 Optical Distribution System of 150 chs AM/QAM Hybrid Signals,” Electronics and Communications in Japan, Nov. 1996, vol. 79, Issue 11, Part 1, pp. 65-77. |
M. Kavehrad, E. Savov, “Fiber-Optic Transmission of Microwave 64-QAM Signals,” IEEE Journal of Selected Areas in Communications, vol. 8, No. 7, Sep. 1990, pp. 1320-1326. |
N. Kanno, K. Ito, “Fiber Optic Subcarrier Multiplexing Transport for Broadband Subscriber Distribution Network,” IEEE Intl. Conference on Communications Boston ICC/89 World Prosperity Through Communications, Jun. 11-14, 1989, Boston, MA, vol. 2, pp. 996-1003. |
Nortel, “S/DMS Transport Node OC-192 System,” Issue 1, Sep. 25, 1995, pp. 1-25. |
P. Green, “Fiber Optic Networks,” 1993, Prentice-Hall, Inc., Englewood Cliffs, New Jersey, p. 331, line4—line 7, figure 9-1. |
V. Swaminathan, N. Froberg, L. Upadhyayula, “The end-to-end bit error performance of 64-quadrature amplitude modulated signals in a hybrid AM-vestigial sideband/QAM fiber-optic video transmission system,” Proceedings of SPIE-International Society for Optical Engineering, vol. 2917, pp. 274-282. |
X. Lu, G.E. Bodeep, T.E. Darcie, “Broad-Band AM-VSB/64 QAM Cable TV System Over Hybrid Fiber/Coax Network,” IEEE Photonics Technology Letters, vol. 7, No. 4, Apr. 1995, pp. 330-332. |
Y. Nakamura, H. Ohtsuka, S. Aikawa, H. Takanashi, “Advanced Techniques for Super Multi-Carrier Digital Microwave Radio With Trellis-Coded 256 QAM Modulation,” NTT Radio Communication Systems Laboratories, pp. 389-394. |