Optical components can be used in optical systems to alter the state of visible light in a predictable and desired manner, for example in display systems to make a desired image visible to a user. Optical components can interact with light by way of reflection, refractions, diffraction etc. Diffraction occurs when a propagating wave interacts with a structure, such as an obstacle or slit. Diffraction can be described as the interference of waves and is most pronounced when that structure is comparable in size to the wavelength of the wave. Optical diffraction of visible light is due to the wave nature of light and can be described as the interference of light waves. Visible light has wavelengths between approximately 390 and 700 nanometers (nm) and diffraction of visible light is most pronounced when propagating light encounters structures similar scale e.g. of order 100 or 1000 nm in scale.
One example of a diffractive structure is a periodic structure. Periodic structures can cause diffraction of light which is typically most pronounced when the periodic structure has a spatial period of similar size to the wavelength of the light. Types of periodic structures include, for instance, surface modulations on a surface of an optical component, refractive index modulations, holograms etc. When propagating light encounters the periodic structure, diffraction causes the light to be split into multiple beams in different directions. These directions depend on the wavelength of the light thus diffractions gratings cause dispersion of polychromatic (e.g. white) light, whereby the polychromatic light is split into different coloured beams travelling in different directions.
When the period structure is on a surface of an optical component, it is referred to a surface grating. When the periodic structure is due to modulation of the surface itself, it is referred to as a surface relief grating (SRG). An example of a SRG is uniform straight grooves in a surface of an optical component that are separated by uniform straight groove spacing regions. Groove spacing regions are referred to herein as “lines”, “grating lines” and “filling regions”. The nature of the diffraction by a SRG depends both on the wavelength of light incident on the grating and various optical characteristics of the SRG, such as line spacing, groove depth and groove slant angle. SRGs have many useful applications. One example is an SRG light guide application. A light guide (also referred to herein as a “waveguide”) is an optical component used to transport light by way of internal reflection e.g. total internal reflection (TIR) within the light guide. A light guide may be used, for instance, in a light guide-based display system for transporting light of a desired image from a light engine to a human eye to make the image visible to the eye. Incoupling and outcoupling SRGs on surface(s) of the light guide can be used for inputting light to and outputting light from the waveguide respectively.
Surface gratings can be fabricated by way of a suitable microfabrication process to create appropriate surface modulations on a substrate. Microfabrication refers to the fabrication of desired structures of micrometer scales and smaller (such as surface gratings). Microfabrication may involve etching of and/or deposition on a substrate (and possibly etching of and/or deposition on a film deposited on the substrate) to create the desired microstructure on the substrate (or film on the substrate). As used herein, the term “patterning a substrate” or similar encompasses all such etching of/deposition on a substrate or substrate film. Whilst a substrate patterned with a surface grating may be suitable for use as an optical component in an optical system itself, a patterned substrate can also be used as a production masters for manufacturing such optical components. For example, a fused silica substrate (or similar), once patterned with a surface grating, can then be used as part of a moulding component for moulding optical components from polymer e.g. the moulding component may be arranged to provide a moulding cavity with the surface grating on the surface of the cavity. When liquid polymer is forced into the moulding cavity, it is forced into contact with the surface grating so as to imprint the surface grating in the polymer, which then sets to form a solid polymer optical component with the surface grating imprinted on its surface. Thus, large numbers of polymer optical components can be mass-manufactured using the same patterned substrate in an inexpensive, quick and straightforward manner.
This Summary is provided to introduce a selection of concepts in a simplified form that are further described below in the Detailed Description. This Summary is not intended to identify key features or essential features of the claimed subject matter, nor is it intended to be used to limit the scope of the claimed subject matter. Nor is the claimed subject matter limited to implementations that solve any or all of the disadvantages noted in the Background section.
A first aspect is directed to a moulding process for making a substantially transparent optical component which comprises polymer. The optical component has substantially matching grating imprints on respective portions of its surface. The grating imprints have a substantially zero relative orientation angle. The process comprises the following steps. Substantially transparent molten polymer is forced between two surfaces of a moulding component. The surfaces have surface modulations which form two substantially matching gratings. The molten polymer is forced into contact with the surface modulations so as to imprint the gratings in the polymer. The moulding component is configurable to change the relative orientation angle of the gratings. At least an alignment portion of the moulding component is substantially transparent. The alignment portion is located so that light which has interacted with both gratings is observable from the alignment portion when the substantially transparent polymer is between the surfaces, whereby an observable fringe pattern is formed as the relative orientation angle of the gratings is changed towards zero. The fringe pattern exhibits a fringe spacing which increases as the relative orientation angle decreases. Whilst the polymer is still liquid, the moulding component is reconfigured from a current configuration to a new configuration in which the fringe spacing of the fringe pattern is substantially maximal, thus aligning the gratings to have a substantially zero relative orientation angle. The new configuration is maintained whilst the polymer sets.
A second aspect is directed to a moulding apparatus for moulding a substantially transparent optical component which comprises polymer. The optical component has substantially matching grating imprints on opposing portions of its surface. The grating imprints have a substantially zero relative orientation angle. The apparatus comprises a moulding component, a drive mechanism, a light sensor and a controller. The moulding component has two surfaces, the surfaces having surface modulations which form two substantially matching gratings. The moulding component is configurable to change the relative orientation angle of the gratings. The drive mechanism is coupled to the moulding component and is controllable to configure the moulding component. At least an alignment portion of the moulding component is substantially transparent, the alignment portion located so that light which has interacted with both gratings is observable from the alignment portion when the substantially transparent polymer is between the surfaces, whereby an observable fringe pattern is formed as the relative orientation angle of the gratings is changed towards zero. The fringe pattern exhibits a fringe spacing which increases as the relative orientation angle decreases. The light sensor is configured to receive at least some of the light which has interacted with both gratings. The controller is configured, whilst the polymer is still liquid, to control the drive mechanism based on sensed data received from the image sensor to reconfigure the moulding component from a current configuration to a new configuration in which the fringe spacing of the fringe pattern is substantially maximal, thus aligning the gratings to have a substantially zero relative orientation angle. The new configuration is maintained whilst the polymer sets.
Products obtained by any of the processes disclosed herein are also provided. Such products include an optical component for use in an optical system, which optical component is substantially transparent, formed of polymer, and has substantially matching gratings on opposing portions of its surface, the gratings having a relative orientation angle that is zero to within one thousandth of a degree.
To aid understanding of the subject matter, reference will now be made by way of example only to the following drawings in which:
For a straight binary grating, the walls are substantially perpendicular to the surface S. For this reason, the grating 4a causes symmetric diffraction of incident light I that is entering perpendicularly to the surface, in that each +n-order mode beam (e.g. T1) created by the grating 4a has substantially the same intensity as the corresponding −n-order mode beam (e.g. T-1), typically less than about one fifth (0.2) of the intensity of the incident beam I.
The binary gratings 4a and 4b can be viewed as spatial waveforms embedded in the surface S that have a substantially square wave shape (with period d). In the case of the grating 4b, the shape is a skewed square wave shape skewed by α.
The grooves and spacing regions that form the gratings 4a-4c constitute surface modulations.
Other type of grating are also possible, for example other types of trapezoidal grating patterns (which may not narrow in width all the way to zero), sinusoidal grating patterns etc. and have a modulation width that can be readily defined in a suitable manner. Such other patterns also exhibit depth h, linewidth w, slant angle α and wall angles γ which can be defined in a similar manner to
A grating 4 has a grating vector (generally denoted as d), whose size (magnitude) is the grating period d, and which is in a direction perpendicular to the grating lines which form that grating—see
In light guide-based display applications (e.g. where SRGs are used for coupling of light into and out of a light guide of the display system, and/or for providing beam expansion of beams coupled into the waveguide), d is typically between about 250 and 500 nm, and h between about 30 and 400 nm. The slant angle α is typically between about −45 and 45 degrees and is measured in the direction of the grating vector.
The gratings 4F and 4B have respective grating vectors dF, dB (front and back grating vectors) which run parallel to their respective grating lines. A plane 3 is shown, which has a normal {circumflex over (n)}(3) (unit vector perpendicular to the plane 3) shown as a dotted arrow. In the example of
Vectors 15F, 15B (shown as dashed arrows) lie in the plane 3, which are geometric projections of the front and back grating vectors dF, dB onto the plane 3. The projections 15F, 15B have an angular separation Δφ, which is an angle in the plane 3 (azimuth), and which is the angular separation of dF, dB when viewed along the normal {circumflex over (n)}(3). The angular separation Δφ is a measure of the relative orientation of the gratings 4F, 4B and is referred to herein as the relative orientation angle of the gratings 4F, 4B. When Δφ=0, the grating lines of the gratings 4F, 4B are aligned, at least when viewed along the normal 3′, and the gratings 4F, 4B are said to be aligned. In the example of
As will be apparent, the value of Δφ affects the optical characteristics of the optical component 2. In waveguide-based display applications, in which the optical component 2 forms part of a waveguide-based display system, misalignment of the gratings (that is deviation from zero in Δφ) can—depending on the function of the gratings—cause unwanted distortion of the image.
A moulding process for moulding optical components of the type shown in
Portions of the front and back blocks' inner surface regions are modulated to form respective gratings 4′F, 4′B (front and rear cavity gratings) on each of those inner surface portions, which have structures corresponding to the gratings 4F, 4B of the optical component 2 shown in
The cavity gratings 4′F, 4′B can be patterned on the front and rear blocks 5F, 5B, for instance, by way of a suitable microfabrication process, or they may themselves be moulded from a suitably patterned substrate.
An injection component 10 forces polymer 8 into the moulding cavity 11 (from the right as viewed in
In
The arrangement of the rigid blocks 5 is not fixed: at least one of the front and back blocks 5B, 4F (the back block 5B in this example) is susceptible to xy-rotation whilst still maintaining the integrity of the moulding cavity 11 so that it can be rotated whilst continuing to hold the liquid polymer in the cavity 11. Controlled xy-rotation of the back block 5B is effected by controlling a suitable drive mechanism coupled to the back block 5B. Using commercially available drive mechanisms, it is possible to controller xy-rotation of the back block 5B to effect controlled rotation of the back block 5B by miniscule amounts (fractions of a thousandth of a degree, or less) in a regulated manner.
By adjusting the xy-orientation angle of the front and back blocks 5B, 5F relative to one another so as to adjust the relative orientation angle Δφ′ of the cavity gratings 4′F, 4′B, it is possible to precisely align the cavity gratings 4′F, 4′B (that is, to have a substantially zero Δφ′) before the polymer 8 sets. By maintaining a substantially zero Δφ′ whilst the polymer sets, the imprint gratings 4F, 4B on the optical component 2—as formed when the polymer 8 finished setting—are as aligned with equal precision as (i.e. with substantially zero Δφ=Δφ′). The mechanism by which this precise alignment is achieved will now be described with reference to
The disclosure recognizes that, when the cavity gratings 4′F, 4′B are in near alignment, an observable fringe pattern is formed that is observable along the LOS. A “fringe pattern” means a pattern created when light interacts with two substantially matching gratings (in this cast, the patterns of the cavity gratings 4′F, 4′B, which are perceived to overlap when viewed along the LOS) to create a pattern with fringes, the fringe spacing of which depends on the relative orientation angle of the gratings. The fringe pattern is formed of a series of alternating light and dark fringes, whose spacing increases as the relative orientation angle of the cavity gratings 4′F, 4′B is changed towards zero, at which the fringe spacing become maximal (theoretically infinite were the patterns to be exactly aligned with a relative orientation angle of exactly zero). “Near alignment” means that Δφ′ is within a range near zero that the fringe spacing is detectable (i.e. not so close to zero that the fringe spacing is too large to be detectable, but not so far from zero that the fringe spacing is too small to be detectable).
In practice, the Fringe pattern is best observed using diffracted light from the gratings. The diffracted light will generally propagate along almost the same path as the incident light but in the opposite direction. The path along which incident/diffracted light propagates is labelled I/D in
When the relative orientation angle Δφ′≈(5/1000)°, the fringe pattern will typically have a fringe spacing around 2 mm, which is readily observable. As this angle Δφ′ is decreased, the fringe spacing increases to the point at which it becomes substantially maximal—this is the point at the fringe spacing is so large that the pattern is no longer observable because the fringes are larger than the cavity gratings, or at least larger than a portion of the grating being if only that portion is being observed. At this point of substantially maximal fringe spacing, Δφ′ is substantially zero—in practice, when Δφ′ is no more than about (0.5*1/1000)° to (1/1000)°.
This is exploited present moulding process as follows. Whilst the polymer 8 in the moulding cavity 11 is still liquid, the front and back blocks 5B, 5F are brought into near alignment if they are not already in near alignment, so that the fringe pattern is observable along the LOS (current cavity configuration). Their relative orientation angle Δφ′ is then fine-tuned until the fringe spacing becomes substantially maximal, at which point Δφ′ is substantially zero (new and final cavity configuration). That new configuration (with the substantially zero Δφ′) is maintained whilst the polymer 8 sets to form the optical component 2, with the relative orientation angle Δφ of the imprint gratings 4F, 4B being substantially zero (equal to Δφ′ as reached in the new and final configuration) in the final component 2.
In practice, visibility of the fringe pattern can be increased by suitable illumination of the apparatus. For instance, to enhance the visibility of the fringe pattern, a laser (not shown) may be used to provide a beam that is directed towards the alignment portion 7. The beam is reflectively diffracted back of the back grating 4′B and the diffracted beam then passes thought the front grating 4′F towards the sensor 6. A beam expander (not shown) may be used to expand the beam before reaching the alignment portion 7, so as to increase the area over which the visibility is enhanced. For example, the beam may be expanded to encompass the cavity gratings 4′F, 4′B to provide the enhanced visibility of the fringe patterns over the full extent of the cavity gratings 4′F, 4′B. Curved components can be made using a curved mould i.e. the surfaces of the moulding component on which the gratings 4′F and 4′B care formed can be curved, whereby the curvature is imparted to the polymer as well as the structure of the gratings 4′f, 4′B.
The controller 20 receives the sensed data from the sensor 6, and adjusts the relative orientation angle Δφ′ of the front and back cavity gratings 4′B, 4′F based on the sensed data until Δφ′ is substantially zero by effecting the procedure outlined above. The controller may be implemented by code executed on a processor.
In a first embodiment, the sensor 6 comprises an image sensing component in the form of a camera, which supplies images of the alignment portion 7, taken along the LOS, to the controller 20 (such images capturing the views shown in
When illuminated with the laser beam, the fringe pattern is formed by light of the laser beam which has interacted with both gratings. The fringe pattern may not, and need not, be visible on any surface of either mould as the fringe pattern obtained with expanded laser beam can be recorded directly to a pixelated detector (for example, an array of individual pixel detectors), i.e. light reflected back from both alignment gratings interferes and creates the fringe patters on a detection surface of detector. The detector for example may part of the camera. In this manner, the pattern is observed on the surface of a detector instead on the surface of the moulds. The detector is used to detect the fringe spacing as created on the detector, and the moulding process is controlled based on the detected fringe spacing to align the gratings to the maximal fringe spacing.
In a second embodiment, the sensor 6 comprises a photodiode, which is shielded from surrounding light but for a small pinhole—e.g. having a diameter ˜1 mm (order of magnitude)—through which only a small portion of the fringe pattern is observable. That is, such that the only light received by the photodiode is from a small portion of the fringe pattern the size of the pinhole, so that once the cavity gratings are in near alignment, the fringes are larger than the pinhole. The controller 20 then changes Δφ′, e.g. at a uniform rate. As the cavity gratings 4′F, 4′B are brought into alignment, the fringe spacing increases, which effectively results in movement of the fringes (this is evident in
In some optical components, it may be desirable to have additional surface gratings that have a relative orientation angle, which does not deviate from a non-zero amount Φ by more than an amount which is substantially zero (i.e. which is Φ+Δφ, where Δφ is substantially zero). In this case, the gratings 4′F, 4′D as shown in
Note that, in this case, the area in which the polymer is imprinted does not necessarily have to be sealed, and the alignment portion could alternatively be an uncovered gap between the components 5F and 5B (e.g. the sensor 6 could be located below the apparatus 1′ to receive light reflected of both gratings 4′F, 4′B, the alignment portion being the gap between 5F and 5B at the bottom of the apparatus 1′).
As will be apparent, the alternative apparatus 1′ does not need an injection component, but otherwise has a similar configuration to that shown in
Whilst in the above, the exemplary gratings 4F,4B (equivalently 4′F, 4′B) match due to the fact that they are both formed of substantially straight grating lines, in general gratings which are considered to “substantially match” do not necessarily have to be formed of straight grating lines, nor do they have to be formed of identically shaped curved grating lines. In general, two gratings “substantially match” provided some parts of their respective structures are similar enough for it to be possible to create an observable fringe pattern that exhibits a discernible fringe spacing by overlaying those parts (even though other parts of their structure may be markedly different).
Note that the alignment gratings need not overlap, provided it is possible to receive light which has interacted with (e.g. been reflected from) both at a location in space (e.g. at a detector) so that a fringe pattern is formed at that location.
Whilst in the above, gratings are formed on opposing, substantially parallel surfaces, in general the terminology “opposing surfaces portions” (or similar) encompasses surface portions which are not parallel. Note that the definition of the relative orientation angle (azimuth) between two gratings as set out above with reference to
Whilst the above has been described with reference to opposing gratings, the techniques can be applied to non-opposing gratings, whereby the fringe pattern is formed for instance by a beam which has been guided by reflection onto both gratings, and which thus interacts with both.
The cavity gratings 4′F, 4′B (and thus the imprint gratings 4F, 4B) can be binary (slanted/non-slanted), sinusoidal, trapezoidal (e.g. triangular) in shape (among others) and need not have the same shape, slant α, width w, depth h etc. as one another (though this is not excluded).
Whilst the above considers a substantially software-implemented controller 20, the functionality of the controller can be implemented using software, firmware, hardware (e.g., fixed logic circuitry), or a combination of these implementations. The terms “module,” “functionality,” “component” and “logic” as used herein generally represent, where applicable, software, firmware, hardware, or a combination thereof. In the case of a software implementation, the module, functionality, or logic represents program code that performs specified tasks when executed on a processor (e.g. CPU or CPUs). The program code can be stored in one or more computer readable memory devices. The features of the techniques described below are platform-independent, meaning that the techniques may be implemented on a variety of commercial computing platforms having a variety of processors.
For example, the apparatus may also include an entity (e.g. software) that causes hardware of a computer of the apparatus to perform operations, e.g., processors functional blocks, and so on. For example, the computer may include a computer-readable medium that may be configured to maintain instructions that cause the computer, and more particularly the operating system and associated hardware of the computer to perform operations. Thus, the instructions function to configure the operating system and associated hardware to perform the operations and in this way result in transformation of the operating system and associated hardware to perform functions. The instructions may be provided by the computer-readable medium to the computer through a variety of different configurations.
One such configuration of a computer-readable medium is signal bearing medium and thus is configured to transmit the instructions (e.g. as a carrier wave) to the computing device, such as via a network. The computer-readable medium may also be configured as a computer-readable storage medium and thus is not a signal bearing medium. Examples of a computer-readable storage medium include a random-access memory (RAM), read-only memory (ROM), an optical disc, flash memory, hard disk memory, and other memory devices that may us magnetic, optical, and other techniques to store instructions and other data.
Moreover, whilst the above alignment process is automated, manual or partially manual processes are not excluded.
In embodiments of the various aspects set out above, images of the fringe pattern may be captured as the cavity is reconfigured and an automatic image recognition procedure may be performed to detect the fringe pattern in the images, the step of reconfiguring being based on the results of the image recognition procedure.
Light of only a small portion of the fringe pattern may be sensed as the cavity is reconfigured, the step of reconfiguring being based on the rate at which the intensity of that light changes.
Each of the gratings may lie substantially parallel to a plane, and the gratings may not overlap or may only partially overlap with one another when viewed along a direction normal to the plane.
The gratings may be illuminated with an expanded laser beam, the fringe pattern being formed by light of the laser beam which has interacted with both gratings. The light of the laser beam may for instance be received at a detector, part of the received light having been reflected from one of the gratings and another part of the light having been reflected from the other of the gratings, whereby the part and the other part interfere at the detector to form the fringe pattern on a detection surface of the detector. An output of the detector may be used to control the reconfiguring step.
The opposing portions of the cavity's surface may be substantially parallel, so that the opposing portions of the moulded optical component's surface are substantially parallel.
A first and a second further grating may be formed on other opposing portions of the cavity's surface, the first further grating having a first orientation angle Φ1 relative to the one of the gratings and the second further grating having a second orientation angle Φ2 relative to the other of the gratings, so that the first and second further gratings are imprinted in the polymer having a relative orientation angle that is substantially |Φ2−Φ1| in the new configuration.
At least one of the surfaces of the moulding component may be curved so that the polymer sets in a curved configuration.
The moulding component may be arranged to provide a moulding cavity, the surfaces being of the moulding cavity, and the polymer may be forced into the moulding cavity to force the polymer into contact with the surface modulations, the moulding component reconfigured to the new configuration whilst the polymer in the cavity is still liquid.
The polymer may be arranged in layers on the surface of a substantially transparent substrate, whereby the gratings are imprinted in the layers, the moulding component reconfigured to the new configuration whilst the layers are still liquid, the optical component comprising the substrate and the layers once set.
The light sensor may comprise a camera which captures images of the fringe pattern as the cavity is reconfigured, the controller may comprise an image recognition module which performs an automatic image recognition procedure to detect the fringe pattern in the images, and the controller may reconfigure the cavity based on the results of the image recognition procedure.
The light sensor may sense light of only a small portion of the fringe pattern as the cavity is reconfigured, and the controller may be reconfigured based on the rate at which the intensity of that light changes.
According to a third aspect an optical component for use in an optical system is substantially transparent and has two opposing outer surfaces. At least a respective portion of each of the opposing surfaces is formed of polymer in which a respective grating is imprinted. The gratings substantially match one another and have a relative orientation angle that is zero to within one thousandth of a degree.
The relative orientation angle may for instance be zero to within one half of one thousandth of a degree.
The opposing surface portions may be substantially parallel.
The optical component may be used as a waveguide in a display system to transport light of an image to a user's eye, for example a wearable display system that is wearable by the user.
The gratings may be binary, trapezoidal or sinusoidal in shape.
Another aspect of the subject matter is directed to a moulding apparatus for moulding a substantially transparent optical component which comprises polymer, the optical component having substantially matching grating imprints on opposing portions of its surface, wherein the grating imprints have a substantially zero relative orientation angle, the apparatus comprising: a moulding component having two surfaces, the surfaces having surface modulations which form two substantially matching gratings, wherein the moulding component is configurable to change the relative orientation angle of the gratings; a drive mechanism coupled to the moulding component controllable to configure the moulding component; wherein at least an alignment portion of the moulding component is substantially transparent, the alignment portion located so that light which has interacted with both gratings is observable from the alignment portion when the substantially transparent polymer is between the surfaces, whereby an observable fringe pattern is formed as the relative orientation angle of the gratings is changed towards zero, the fringe pattern exhibiting a fringe spacing which increases as the relative orientation angle decreases, the apparatus further comprising: a light sensor configured to receive at least some of the light which has interacted with both gratings; and a controller configured, whilst the polymer is still liquid, to control the drive mechanism based on sensed data received from the image sensor to reconfigure the moulding component from a current configuration to a new configuration in which the fringe spacing of the fringe pattern is substantially maximal, thus aligning the gratings to have a substantially zero relative orientation angle, wherein the new configuration is maintained whilst the polymer sets.
Yet another aspect is directed to a moulding process for moulding a substantially transparent optical component from polymer, the optical component having substantially matching grating imprints on opposing portions of its surface, wherein the grating imprints have a substantially zero relative orientation angle, the process comprising: forcing substantially transparent molten polymer into a moulding cavity provided by a moulding component, the cavity's surface having surface modulations which form two substantially matching gratings on opposing portions of the cavity's surface, the molten polymer forced into contact with the surface modulations so as to imprint the gratings in the polymer, wherein the cavity is configurable to change the relative orientation angle of the gratings; wherein at least an alignment portion of the moulding component is substantially transparent along a line of sight that intersects both gratings so that light which has interacted with both gratings is observable along the line of sight when the substantially transparent polymer is in the cavity, whereby an observable fringe pattern is formed as the relative orientation angle of the gratings is changed towards zero, the fringe pattern exhibiting a fringe spacing which increases as the relative orientation angle decreases, the process further comprising: whilst the polymer in the cavity is still liquid, reconfiguring the cavity from a current configuration to a new configuration in which the fringe spacing of the fringe pattern is substantially maximal, thus aligning the gratings to have a substantially zero relative orientation angle, wherein the new configuration is maintained whilst the polymer sets.
Although the subject matter has been described in language specific to structural features and/or methodological acts, it is to be understood that the subject matter defined in the appended claims is not necessarily limited to the specific features or acts described above. Rather, the specific features and acts described above are disclosed as example forms of implementing the claims.
Number | Name | Date | Kind |
---|---|---|---|
3227888 | Turnbull et al. | Jan 1966 | A |
3542453 | Kantor | Nov 1970 | A |
3836258 | Courten et al. | Sep 1974 | A |
3906528 | Johnson | Sep 1975 | A |
3971065 | Bayer | Jul 1976 | A |
4200395 | Smith et al. | Apr 1980 | A |
4294507 | Johnson | Oct 1981 | A |
4402610 | Lacombat | Sep 1983 | A |
4664524 | Hattori et al. | May 1987 | A |
4711512 | Upatnieks | Dec 1987 | A |
4758087 | Hicks, Jr. | Jul 1988 | A |
4799752 | Carome | Jan 1989 | A |
4822145 | Staelin | Apr 1989 | A |
4860361 | Sato et al. | Aug 1989 | A |
4900129 | Vanderwerf | Feb 1990 | A |
4957351 | Shioji | Sep 1990 | A |
5004673 | Vlannes | Apr 1991 | A |
5019808 | Prince et al. | May 1991 | A |
5019898 | Chao et al. | May 1991 | A |
5106181 | Rockwell, III | Apr 1992 | A |
5114236 | Matsugu et al. | May 1992 | A |
5146355 | Prince et al. | Sep 1992 | A |
5162656 | Matsugu et al. | Nov 1992 | A |
5309169 | Lippert | May 1994 | A |
5313535 | Williams | May 1994 | A |
5359444 | Piosenka et al. | Oct 1994 | A |
5413884 | Koch et al. | May 1995 | A |
5453877 | Gerbe et al. | Sep 1995 | A |
5455458 | Quon et al. | Oct 1995 | A |
5459611 | Bohn et al. | Oct 1995 | A |
5483307 | Anderson | Jan 1996 | A |
5543588 | Bisset et al. | Aug 1996 | A |
5549212 | Kanoh et al. | Aug 1996 | A |
5574473 | Sekiguchi | Nov 1996 | A |
5579830 | Giammaruti | Dec 1996 | A |
5583609 | Mizutani et al. | Dec 1996 | A |
5606455 | Eichenlaub | Feb 1997 | A |
5614941 | Hines | Mar 1997 | A |
5630902 | Galarneau | May 1997 | A |
5648643 | Knowles et al. | Jul 1997 | A |
5651414 | Suzuki et al. | Jul 1997 | A |
5673146 | Kelly | Sep 1997 | A |
5708449 | Heacock et al. | Jan 1998 | A |
5712995 | Cohn | Jan 1998 | A |
5714967 | Okamura et al. | Feb 1998 | A |
5737171 | Buller et al. | Apr 1998 | A |
5751476 | Matsui et al. | May 1998 | A |
5771042 | Santos-Gomez | Jun 1998 | A |
5771320 | Stone | Jun 1998 | A |
5772903 | Hirsch | Jun 1998 | A |
5856842 | Tedesco | Jan 1999 | A |
5861931 | Gillian et al. | Jan 1999 | A |
5880725 | Southgate | Mar 1999 | A |
5886822 | Spitzer | Mar 1999 | A |
5940149 | Vanderwerf | Aug 1999 | A |
5959664 | Woodgate | Sep 1999 | A |
5982553 | Bloom et al. | Nov 1999 | A |
5991087 | Rallison | Nov 1999 | A |
6101008 | Popovich | Aug 2000 | A |
6144439 | Carollo | Nov 2000 | A |
6160667 | Smoot | Dec 2000 | A |
6169829 | Laming et al. | Jan 2001 | B1 |
6181852 | Adams et al. | Jan 2001 | B1 |
6226178 | Broder et al. | May 2001 | B1 |
6239502 | Grewe et al. | May 2001 | B1 |
6271808 | Corbin | Aug 2001 | B1 |
6307142 | Allen et al. | Oct 2001 | B1 |
6323949 | Lading et al. | Nov 2001 | B1 |
6323970 | Popovich | Nov 2001 | B1 |
6377401 | Bartlett | Apr 2002 | B1 |
6411512 | Mankaruse et al. | Jun 2002 | B1 |
6417892 | Sharp et al. | Jul 2002 | B1 |
6446442 | Batchelor et al. | Sep 2002 | B1 |
6466198 | Feinstein | Oct 2002 | B1 |
6470289 | Peters et al. | Oct 2002 | B1 |
6481851 | McNelley et al. | Nov 2002 | B1 |
6483580 | Xu et al. | Nov 2002 | B1 |
6496218 | Takigawa et al. | Dec 2002 | B2 |
6529331 | Massof et al. | Mar 2003 | B2 |
6542307 | Gleckman et al. | Apr 2003 | B2 |
6545650 | Yamada et al. | Apr 2003 | B1 |
6553165 | Temkin et al. | Apr 2003 | B1 |
6554428 | Fergason et al. | Apr 2003 | B2 |
6577411 | David | Jun 2003 | B1 |
6580529 | Amitai et al. | Jun 2003 | B1 |
6606152 | Littau et al. | Aug 2003 | B2 |
6621702 | Elias et al. | Sep 2003 | B2 |
6631755 | Kung et al. | Oct 2003 | B1 |
6635999 | Belliveau | Oct 2003 | B2 |
6639201 | Almogy et al. | Oct 2003 | B2 |
6661436 | Barksdale et al. | Dec 2003 | B2 |
6735499 | Ohki et al. | May 2004 | B2 |
6753828 | Tuceryan et al. | Jun 2004 | B2 |
6775460 | Steiner et al. | Aug 2004 | B2 |
6792328 | Laughery et al. | Sep 2004 | B2 |
6804115 | Lai | Oct 2004 | B2 |
6809925 | Belady et al. | Oct 2004 | B2 |
6819426 | Sezginer et al. | Nov 2004 | B2 |
6825987 | Repetto et al. | Nov 2004 | B2 |
6829095 | Amitai | Dec 2004 | B2 |
6867753 | Chinthammit et al. | Mar 2005 | B2 |
6888613 | Robins et al. | May 2005 | B2 |
6889755 | Zuo et al. | May 2005 | B2 |
6906901 | Liu | Jun 2005 | B1 |
6916584 | Sreenivasan et al. | Jul 2005 | B2 |
6919867 | Sauer | Jul 2005 | B2 |
6947020 | Kiser et al. | Sep 2005 | B2 |
6964731 | Krisko et al. | Nov 2005 | B1 |
6971443 | Kung et al. | Dec 2005 | B2 |
6992738 | Ishihara et al. | Jan 2006 | B2 |
6997241 | Chou et al. | Feb 2006 | B2 |
7006215 | Hoff et al. | Feb 2006 | B2 |
7015876 | Miller | Mar 2006 | B1 |
7031894 | Niu et al. | Apr 2006 | B2 |
7048385 | Beeson et al. | May 2006 | B2 |
7061624 | Ishizuka | Jun 2006 | B2 |
7069975 | Haws et al. | Jul 2006 | B1 |
7099005 | Fabrikant et al. | Aug 2006 | B1 |
7113605 | Rui et al. | Sep 2006 | B2 |
7116555 | Kamath et al. | Oct 2006 | B2 |
7151635 | Bidnyk et al. | Dec 2006 | B2 |
7181699 | Morrow et al. | Feb 2007 | B2 |
7184615 | Levola | Feb 2007 | B2 |
7189362 | Nordin et al. | Mar 2007 | B2 |
7191820 | Chou et al. | Mar 2007 | B2 |
7193584 | Lee et al. | Mar 2007 | B2 |
7196758 | Crawford et al. | Mar 2007 | B2 |
7206107 | Levola | Apr 2007 | B2 |
7212709 | Hosoi | May 2007 | B2 |
7212723 | McLeod et al. | May 2007 | B2 |
7250930 | Hoffman et al. | Jul 2007 | B2 |
7261453 | Morejon et al. | Aug 2007 | B2 |
7261827 | Ootsu et al. | Aug 2007 | B2 |
7271795 | Bradski | Sep 2007 | B2 |
7277282 | Tate | Oct 2007 | B2 |
7301587 | Uehara et al. | Nov 2007 | B2 |
7333690 | Peale et al. | Feb 2008 | B1 |
7337018 | Espinoza-Ibarra et al. | Feb 2008 | B2 |
7359420 | Shchegrov et al. | Apr 2008 | B2 |
7365734 | Fateh et al. | Apr 2008 | B2 |
7369101 | Sauer et al. | May 2008 | B2 |
7372565 | Holden et al. | May 2008 | B1 |
7376852 | Edwards | May 2008 | B2 |
7396133 | Burnett et al. | Jul 2008 | B2 |
7412306 | Katoh et al. | Aug 2008 | B2 |
7416017 | Haws et al. | Aug 2008 | B2 |
7417617 | Eichenlaub | Aug 2008 | B2 |
7418170 | Mukawa et al. | Aug 2008 | B2 |
7428001 | Schowengerdt et al. | Sep 2008 | B2 |
7430349 | Jones | Sep 2008 | B2 |
7430355 | Heikenfeld et al. | Sep 2008 | B2 |
7437678 | Awada et al. | Oct 2008 | B2 |
7455102 | Cheng | Nov 2008 | B2 |
7505269 | Cosley et al. | Mar 2009 | B1 |
7513627 | Larson et al. | Apr 2009 | B2 |
7515143 | Keam et al. | Apr 2009 | B2 |
7532227 | Nakajima et al. | May 2009 | B2 |
7542665 | Lei | Jun 2009 | B2 |
7551814 | Smits | Jun 2009 | B1 |
7576916 | Amitai | Aug 2009 | B2 |
7583327 | Takatani | Sep 2009 | B2 |
7607111 | Vaananen et al. | Oct 2009 | B2 |
7612882 | Wu et al. | Nov 2009 | B2 |
7619895 | Wertz et al. | Nov 2009 | B1 |
7631687 | Yang | Dec 2009 | B2 |
7646606 | Rytka et al. | Jan 2010 | B2 |
7649594 | Kim et al. | Jan 2010 | B2 |
7656912 | Brueck et al. | Feb 2010 | B2 |
7660500 | Konttinen et al. | Feb 2010 | B2 |
7679641 | Lipton et al. | Mar 2010 | B2 |
7693292 | Gross et al. | Apr 2010 | B1 |
7701716 | Blanco, Jr. et al. | Apr 2010 | B2 |
7706785 | Lei et al. | Apr 2010 | B2 |
7716003 | Wack et al. | May 2010 | B1 |
7719769 | Sugihara et al. | May 2010 | B2 |
7728933 | Kim et al. | Jun 2010 | B2 |
7764413 | Levola | Jul 2010 | B2 |
7768534 | Pentenrieder et al. | Aug 2010 | B2 |
7777944 | Ho et al. | Aug 2010 | B2 |
7788474 | Switzer et al. | Aug 2010 | B2 |
7817104 | Ryu et al. | Oct 2010 | B2 |
7826508 | Reid et al. | Nov 2010 | B2 |
7832885 | Hsiao et al. | Nov 2010 | B2 |
7843691 | Reichert et al. | Nov 2010 | B2 |
7871811 | Fang et al. | Jan 2011 | B2 |
7890882 | Nelson | Feb 2011 | B1 |
7894613 | Ong et al. | Feb 2011 | B1 |
7903409 | Patel et al. | Mar 2011 | B2 |
7904832 | Ubillos | Mar 2011 | B2 |
7909958 | Washburn et al. | Mar 2011 | B2 |
7941231 | Dunn | May 2011 | B1 |
7949214 | DeJong | May 2011 | B2 |
7986462 | Kobayashi et al. | Jul 2011 | B2 |
8004621 | Woodgate et al. | Aug 2011 | B2 |
8014644 | Morimoto et al. | Sep 2011 | B2 |
8033709 | Kao et al. | Oct 2011 | B2 |
8046616 | Edwards | Oct 2011 | B2 |
8061411 | Xu et al. | Nov 2011 | B2 |
8085948 | Thomas et al. | Dec 2011 | B2 |
8092064 | Erchak et al. | Jan 2012 | B2 |
8125579 | Khan et al. | Feb 2012 | B2 |
8128800 | Seo et al. | Mar 2012 | B2 |
8139504 | Mankins et al. | Mar 2012 | B2 |
8150893 | Bohannon et al. | Apr 2012 | B2 |
8160411 | Levola et al. | Apr 2012 | B2 |
8162524 | Van Ostrand et al. | Apr 2012 | B2 |
8165988 | Shau et al. | Apr 2012 | B2 |
8176436 | Arend et al. | May 2012 | B2 |
8189263 | Wang et al. | May 2012 | B1 |
8195220 | Kim et al. | Jun 2012 | B2 |
8233204 | Robbins et al. | Jul 2012 | B1 |
8233273 | Chen et al. | Jul 2012 | B2 |
8244667 | Weinberger et al. | Aug 2012 | B1 |
8246170 | Yamamoto et al. | Aug 2012 | B2 |
8274614 | Yokote et al. | Sep 2012 | B2 |
8300614 | Ankaiah et al. | Oct 2012 | B2 |
8320032 | Levola | Nov 2012 | B2 |
8332402 | Forstall et al. | Dec 2012 | B2 |
8358400 | Escuti | Jan 2013 | B2 |
8384999 | Crosby et al. | Feb 2013 | B1 |
8392035 | Patel et al. | Mar 2013 | B2 |
8395898 | Chamseddine et al. | Mar 2013 | B1 |
8418083 | Lundy et al. | Apr 2013 | B1 |
8434019 | Nelson | Apr 2013 | B2 |
8446340 | Aharoni | May 2013 | B2 |
8466953 | Levola | Jun 2013 | B2 |
8472119 | Kelly | Jun 2013 | B1 |
8482920 | Tissot et al. | Jul 2013 | B2 |
8571539 | Ranganathan et al. | Oct 2013 | B1 |
8576143 | Kelly | Nov 2013 | B1 |
8589341 | Golde et al. | Nov 2013 | B2 |
8593734 | Laakkonen | Nov 2013 | B2 |
8594702 | Naaman et al. | Nov 2013 | B2 |
8605700 | Gurin | Dec 2013 | B2 |
8611014 | Valera et al. | Dec 2013 | B2 |
8627228 | Yosef et al. | Jan 2014 | B2 |
8629815 | Brin et al. | Jan 2014 | B2 |
8634139 | Brown et al. | Jan 2014 | B1 |
8638498 | Bohn et al. | Jan 2014 | B2 |
8645871 | Fong et al. | Feb 2014 | B2 |
8666212 | Amirparviz | Mar 2014 | B1 |
8693500 | Ludwig et al. | Apr 2014 | B2 |
8698845 | Lemay | Apr 2014 | B2 |
8700931 | Gudlavenkatasiva et al. | Apr 2014 | B2 |
8712598 | Dighde et al. | Apr 2014 | B2 |
8717676 | Rinko | May 2014 | B2 |
8754831 | Kollin et al. | Jun 2014 | B2 |
8810600 | Bohn et al. | Aug 2014 | B2 |
8817350 | Robbins et al. | Aug 2014 | B1 |
8823531 | McCleary et al. | Sep 2014 | B1 |
8885997 | Nguyen et al. | Nov 2014 | B2 |
8909384 | Beitelmal et al. | Dec 2014 | B1 |
8917453 | Bohn | Dec 2014 | B2 |
8934235 | Rubenstein et al. | Jan 2015 | B2 |
8941683 | Son et al. | Jan 2015 | B2 |
8989535 | Robbins | Mar 2015 | B2 |
9304235 | Sainiemi et al. | Apr 2016 | B2 |
9372347 | Levola et al. | Jun 2016 | B1 |
20010043208 | Furness, III et al. | Nov 2001 | A1 |
20020035455 | Niu et al. | Mar 2002 | A1 |
20020038196 | Johnson et al. | Mar 2002 | A1 |
20020041735 | Cai et al. | Apr 2002 | A1 |
20020044152 | Abbott et al. | Apr 2002 | A1 |
20020044162 | Sawatari | Apr 2002 | A1 |
20020063820 | Broer et al. | May 2002 | A1 |
20020097558 | Stone et al. | Jul 2002 | A1 |
20020138772 | Crawford et al. | Sep 2002 | A1 |
20020171939 | Song | Nov 2002 | A1 |
20020180659 | Takahashi | Dec 2002 | A1 |
20030006364 | Katzir et al. | Jan 2003 | A1 |
20030023889 | Hofstee et al. | Jan 2003 | A1 |
20030137706 | Rmanujam et al. | Jul 2003 | A1 |
20030179453 | Mori et al. | Sep 2003 | A1 |
20030214728 | Olczak | Nov 2003 | A1 |
20040011503 | Kung et al. | Jan 2004 | A1 |
20040042724 | Gombert et al. | Mar 2004 | A1 |
20040085649 | Repetto et al. | May 2004 | A1 |
20040108971 | Waldern et al. | Jun 2004 | A1 |
20040109234 | Levola | Jun 2004 | A1 |
20040135209 | Hsieh et al. | Jul 2004 | A1 |
20040151466 | Crossman-Bosworth et al. | Aug 2004 | A1 |
20040176928 | Johnson | Sep 2004 | A1 |
20040267990 | Lin | Dec 2004 | A1 |
20050100272 | Gilman | May 2005 | A1 |
20050174737 | Meir | Aug 2005 | A1 |
20050207120 | Tseng et al. | Sep 2005 | A1 |
20050243107 | Haim et al. | Nov 2005 | A1 |
20050248705 | Smith et al. | Nov 2005 | A1 |
20050285878 | Singh et al. | Dec 2005 | A1 |
20060018025 | Sharon et al. | Jan 2006 | A1 |
20060032616 | Yang | Feb 2006 | A1 |
20060038881 | Starkweather et al. | Feb 2006 | A1 |
20060054787 | Olsen et al. | Mar 2006 | A1 |
20060072206 | Tsuyuki et al. | Apr 2006 | A1 |
20060118280 | Liu | Jun 2006 | A1 |
20060126181 | Levola | Jun 2006 | A1 |
20060129951 | Vaananen et al. | Jun 2006 | A1 |
20060132806 | Shchegrov et al. | Jun 2006 | A1 |
20060132914 | Weiss et al. | Jun 2006 | A1 |
20060139447 | Unkrich | Jun 2006 | A1 |
20060152646 | Schrader | Jul 2006 | A1 |
20060164382 | Kulas et al. | Jul 2006 | A1 |
20060183331 | Hofmann | Aug 2006 | A1 |
20060196643 | Hata et al. | Sep 2006 | A1 |
20060221448 | Nivon et al. | Oct 2006 | A1 |
20060228073 | Mukawa et al. | Oct 2006 | A1 |
20060249765 | Hsieh | Nov 2006 | A1 |
20060250541 | Huck | Nov 2006 | A1 |
20070002412 | Aihara | Jan 2007 | A1 |
20070008456 | Lesage et al. | Jan 2007 | A1 |
20070023703 | Sunaoshi et al. | Feb 2007 | A1 |
20070027591 | Goldenberg et al. | Feb 2007 | A1 |
20070041684 | Popovich et al. | Feb 2007 | A1 |
20070097019 | Wynne-Powell et al. | May 2007 | A1 |
20070147673 | Crandall | Jun 2007 | A1 |
20070153395 | Repetto et al. | Jul 2007 | A1 |
20070171328 | Freeman et al. | Jul 2007 | A1 |
20070177260 | Kuppenheimer et al. | Aug 2007 | A1 |
20070214180 | Crawford | Sep 2007 | A1 |
20070236959 | Tolbert et al. | Oct 2007 | A1 |
20070284093 | Bhatti et al. | Dec 2007 | A1 |
20080008076 | Raguin et al. | Jan 2008 | A1 |
20080014534 | Barwicz et al. | Jan 2008 | A1 |
20080025350 | Arbore et al. | Jan 2008 | A1 |
20080043100 | Sobel et al. | Feb 2008 | A1 |
20080043425 | Hebert et al. | Feb 2008 | A1 |
20080088603 | Eliasson et al. | Apr 2008 | A1 |
20080088624 | Long et al. | Apr 2008 | A1 |
20080106677 | Kuan et al. | May 2008 | A1 |
20080117341 | McGrew | May 2008 | A1 |
20080141681 | Arnold | Jun 2008 | A1 |
20080150913 | Bell et al. | Jun 2008 | A1 |
20080174735 | Quach et al. | Jul 2008 | A1 |
20080232680 | Berestov et al. | Sep 2008 | A1 |
20080248852 | Rasmussen | Oct 2008 | A1 |
20080285140 | Amitai | Nov 2008 | A1 |
20080297535 | Reinig | Dec 2008 | A1 |
20080303918 | Keithley | Dec 2008 | A1 |
20080311386 | Wendt | Dec 2008 | A1 |
20090002939 | Baugh et al. | Jan 2009 | A1 |
20090015742 | Liao et al. | Jan 2009 | A1 |
20090021908 | Patel et al. | Jan 2009 | A1 |
20090051283 | Cok et al. | Feb 2009 | A1 |
20090059376 | Hayakawa | Mar 2009 | A1 |
20090084525 | Satou et al. | Apr 2009 | A1 |
20090092261 | Bard | Apr 2009 | A1 |
20090097127 | Amitai | Apr 2009 | A1 |
20090128449 | Brown et al. | May 2009 | A1 |
20090128901 | Tilleman et al. | May 2009 | A1 |
20090180250 | Holling et al. | Jul 2009 | A1 |
20090189974 | Deering | Jul 2009 | A1 |
20090190003 | Park et al. | Jul 2009 | A1 |
20090195756 | Li et al. | Aug 2009 | A1 |
20090199128 | Matthews et al. | Aug 2009 | A1 |
20090222147 | Nakashima et al. | Sep 2009 | A1 |
20090224416 | Laakkonen et al. | Sep 2009 | A1 |
20090235203 | Iizuka | Sep 2009 | A1 |
20090244413 | Ishikawa et al. | Oct 2009 | A1 |
20090246707 | Li et al. | Oct 2009 | A1 |
20090256837 | Deb et al. | Oct 2009 | A1 |
20090262419 | Robinson et al. | Oct 2009 | A1 |
20090303599 | Levola | Dec 2009 | A1 |
20100002989 | Tokushima | Jan 2010 | A1 |
20100021108 | Kang et al. | Jan 2010 | A1 |
20100053151 | Marti et al. | Mar 2010 | A1 |
20100060551 | Sugiyama et al. | Mar 2010 | A1 |
20100061078 | Kim | Mar 2010 | A1 |
20100074291 | Nakamura | Mar 2010 | A1 |
20100079865 | Saarikko et al. | Apr 2010 | A1 |
20100084674 | Paetzold et al. | Apr 2010 | A1 |
20100096617 | Shanks | Apr 2010 | A1 |
20100103078 | Mukawa et al. | Apr 2010 | A1 |
20100134534 | Seesselberg et al. | Jun 2010 | A1 |
20100141905 | Burke | Jun 2010 | A1 |
20100149073 | Chaum et al. | Jun 2010 | A1 |
20100188353 | Yoon et al. | Jul 2010 | A1 |
20100200736 | Laycock et al. | Aug 2010 | A1 |
20100201953 | Freeman et al. | Aug 2010 | A1 |
20100202725 | Popovich et al. | Aug 2010 | A1 |
20100211575 | Collins et al. | Aug 2010 | A1 |
20100213467 | Lee et al. | Aug 2010 | A1 |
20100220439 | Qin | Sep 2010 | A1 |
20100229853 | Vandal et al. | Sep 2010 | A1 |
20100238270 | Bjelkhagen et al. | Sep 2010 | A1 |
20100245387 | Bachelder et al. | Sep 2010 | A1 |
20100259889 | Chen et al. | Oct 2010 | A1 |
20100271467 | Akeley | Oct 2010 | A1 |
20100277421 | Charlier et al. | Nov 2010 | A1 |
20100277439 | Charlier et al. | Nov 2010 | A1 |
20100277779 | Futterer et al. | Nov 2010 | A1 |
20100277803 | Pockett et al. | Nov 2010 | A1 |
20100284085 | Laakkonen | Nov 2010 | A1 |
20100300654 | Edwards | Dec 2010 | A1 |
20100309687 | Sampsell et al. | Dec 2010 | A1 |
20100315781 | Agostini | Dec 2010 | A1 |
20100317132 | Rogers et al. | Dec 2010 | A1 |
20100321609 | Qi et al. | Dec 2010 | A1 |
20100321781 | Levola | Dec 2010 | A1 |
20100328351 | Tan | Dec 2010 | A1 |
20110012814 | Tanaka | Jan 2011 | A1 |
20110021251 | Lind ën | Jan 2011 | A1 |
20110025605 | Kwitek | Feb 2011 | A1 |
20110026128 | Baker et al. | Feb 2011 | A1 |
20110032482 | Agurok | Feb 2011 | A1 |
20110038049 | Vallius et al. | Feb 2011 | A1 |
20110050547 | Mukawa | Mar 2011 | A1 |
20110050655 | Mukawa | Mar 2011 | A1 |
20110051660 | Popovich et al. | Mar 2011 | A1 |
20110063795 | Yeh et al. | Mar 2011 | A1 |
20110075442 | Chiang | Mar 2011 | A1 |
20110084893 | Lee et al. | Apr 2011 | A1 |
20110090343 | Alt et al. | Apr 2011 | A1 |
20110091156 | Laughlin | Apr 2011 | A1 |
20110096401 | Levola | Apr 2011 | A1 |
20110099512 | Jeong | Apr 2011 | A1 |
20110114823 | Katzir et al. | May 2011 | A1 |
20110115340 | Lee | May 2011 | A1 |
20110127024 | Patel et al. | Jun 2011 | A1 |
20110134017 | Burke | Jun 2011 | A1 |
20110134645 | Hitchcock et al. | Jun 2011 | A1 |
20110141388 | Park et al. | Jun 2011 | A1 |
20110148931 | Kim | Jun 2011 | A1 |
20110163986 | Lee et al. | Jul 2011 | A1 |
20110175930 | Hwang et al. | Jul 2011 | A1 |
20110194029 | Herrmann et al. | Aug 2011 | A1 |
20110205251 | Auld | Aug 2011 | A1 |
20110210946 | Goertz et al. | Sep 2011 | A1 |
20110214082 | Osterhout et al. | Sep 2011 | A1 |
20110215349 | An et al. | Sep 2011 | A1 |
20110221658 | Haddick et al. | Sep 2011 | A1 |
20110221659 | King, Iii et al. | Sep 2011 | A1 |
20110222236 | Luo et al. | Sep 2011 | A1 |
20110227820 | Haddick et al. | Sep 2011 | A1 |
20110227913 | Hyndman | Sep 2011 | A1 |
20110235179 | Simmonds | Sep 2011 | A1 |
20110242145 | Nishimura et al. | Oct 2011 | A1 |
20110242392 | Chiang | Oct 2011 | A1 |
20110242757 | Tracy et al. | Oct 2011 | A1 |
20110248904 | Miyawaki et al. | Oct 2011 | A1 |
20110248958 | Gruhlke et al. | Oct 2011 | A1 |
20110267799 | Epstein et al. | Nov 2011 | A1 |
20110283223 | Vaittinen et al. | Nov 2011 | A1 |
20110295913 | Enbutsu | Dec 2011 | A1 |
20110299044 | Yeh et al. | Dec 2011 | A1 |
20110304640 | Noge | Dec 2011 | A1 |
20110309378 | Lau et al. | Dec 2011 | A1 |
20110310232 | Wilson et al. | Dec 2011 | A1 |
20110310312 | Yokote et al. | Dec 2011 | A1 |
20120013651 | Trayner et al. | Jan 2012 | A1 |
20120019434 | Kuhlman et al. | Jan 2012 | A1 |
20120026161 | Chen et al. | Feb 2012 | A1 |
20120030616 | Howes et al. | Feb 2012 | A1 |
20120033306 | Valera et al. | Feb 2012 | A1 |
20120038629 | Brown et al. | Feb 2012 | A1 |
20120041721 | Chen | Feb 2012 | A1 |
20120044573 | Simmonds et al. | Feb 2012 | A1 |
20120050144 | Morlock | Mar 2012 | A1 |
20120052934 | Maharbiz et al. | Mar 2012 | A1 |
20120062998 | Schultz et al. | Mar 2012 | A1 |
20120069413 | Schultz | Mar 2012 | A1 |
20120084710 | Sirpal et al. | Apr 2012 | A1 |
20120106170 | Matthews et al. | May 2012 | A1 |
20120111544 | Senatori | May 2012 | A1 |
20120113092 | Bar-Zeev et al. | May 2012 | A1 |
20120120493 | Simmonds et al. | May 2012 | A1 |
20120134623 | Boudreau et al. | May 2012 | A1 |
20120144331 | Tolonen et al. | Jun 2012 | A1 |
20120157114 | Alameh et al. | Jun 2012 | A1 |
20120162764 | Shimizu | Jun 2012 | A1 |
20120176322 | Karmi et al. | Jul 2012 | A1 |
20120176474 | Border | Jul 2012 | A1 |
20120182687 | Dighde et al. | Jul 2012 | A1 |
20120188205 | Jansson et al. | Jul 2012 | A1 |
20120195553 | Hasegawa et al. | Aug 2012 | A1 |
20120200495 | Johansson | Aug 2012 | A1 |
20120206589 | Crandall | Aug 2012 | A1 |
20120206880 | Andres et al. | Aug 2012 | A1 |
20120218301 | Miller | Aug 2012 | A1 |
20120227006 | Amm | Sep 2012 | A1 |
20120235885 | Miller et al. | Sep 2012 | A1 |
20120242561 | Sugihara | Sep 2012 | A1 |
20120256856 | Suzuki et al. | Oct 2012 | A1 |
20120256963 | Suzuki et al. | Oct 2012 | A1 |
20120262657 | Nakanishi et al. | Oct 2012 | A1 |
20120287381 | Li et al. | Nov 2012 | A1 |
20120292535 | Choi et al. | Nov 2012 | A1 |
20120304092 | Jarrett et al. | Nov 2012 | A1 |
20120304108 | Jarrett et al. | Nov 2012 | A1 |
20130000871 | Olson et al. | Jan 2013 | A1 |
20130033485 | Kollin et al. | Feb 2013 | A1 |
20130081779 | Liao et al. | Apr 2013 | A1 |
20130093741 | Akimoto et al. | Apr 2013 | A1 |
20130106674 | Wheeler et al. | May 2013 | A1 |
20130148864 | Dolson et al. | Jun 2013 | A1 |
20130162673 | Bohn | Jun 2013 | A1 |
20130163089 | Bohn | Jun 2013 | A1 |
20130170031 | Bohn | Jul 2013 | A1 |
20130170802 | Pitwon | Jul 2013 | A1 |
20130186596 | Rubenstein | Jul 2013 | A1 |
20130186598 | Rubenstein | Jul 2013 | A1 |
20130187943 | Bohn et al. | Jul 2013 | A1 |
20130198176 | Kim | Aug 2013 | A1 |
20130207964 | Fleck | Aug 2013 | A1 |
20130208003 | Bohn | Aug 2013 | A1 |
20130208362 | Bohn | Aug 2013 | A1 |
20130208482 | Fleck | Aug 2013 | A1 |
20130215081 | Levin et al. | Aug 2013 | A1 |
20130226931 | Hazel et al. | Aug 2013 | A1 |
20130242056 | Fleck | Sep 2013 | A1 |
20130242555 | Mukawa | Sep 2013 | A1 |
20130250431 | Robbins et al. | Sep 2013 | A1 |
20130252628 | Kuehnel | Sep 2013 | A1 |
20130254412 | Menezes et al. | Sep 2013 | A1 |
20130257848 | Westerinen et al. | Oct 2013 | A1 |
20130258701 | Westerinen et al. | Oct 2013 | A1 |
20130267309 | Robbins | Oct 2013 | A1 |
20130294030 | Wang et al. | Nov 2013 | A1 |
20130305184 | Kim et al. | Nov 2013 | A1 |
20130307875 | Anderson | Nov 2013 | A1 |
20130314789 | Saarikko et al. | Nov 2013 | A1 |
20130314793 | Robbins | Nov 2013 | A1 |
20130322810 | Robbins | Dec 2013 | A1 |
20130332159 | Federighi et al. | Dec 2013 | A1 |
20130335671 | Fleck | Dec 2013 | A1 |
20130339446 | Balassanian et al. | Dec 2013 | A1 |
20130342674 | Dixon | Dec 2013 | A1 |
20130346725 | Lomet et al. | Dec 2013 | A1 |
20140010265 | Peng | Jan 2014 | A1 |
20140022265 | Canan et al. | Jan 2014 | A1 |
20140041827 | Giaimo | Feb 2014 | A1 |
20140059139 | Filev et al. | Feb 2014 | A1 |
20140063367 | Yang et al. | Mar 2014 | A1 |
20140078130 | Uchino et al. | Mar 2014 | A1 |
20140089833 | Hwang et al. | Mar 2014 | A1 |
20140094973 | Giaimo et al. | Apr 2014 | A1 |
20140098671 | Raleigh et al. | Apr 2014 | A1 |
20140104665 | Popovich et al. | Apr 2014 | A1 |
20140104685 | Bohn | Apr 2014 | A1 |
20140111865 | Kobayashi | Apr 2014 | A1 |
20140116982 | Schellenberg et al. | May 2014 | A1 |
20140140653 | Brown et al. | May 2014 | A1 |
20140140654 | Brown et al. | May 2014 | A1 |
20140143247 | Rathnavelu et al. | May 2014 | A1 |
20140143351 | Deng | May 2014 | A1 |
20140176528 | Robbins | Jun 2014 | A1 |
20140184699 | Ito et al. | Jul 2014 | A1 |
20140204455 | Popovich et al. | Jul 2014 | A1 |
20140240842 | Nguyen et al. | Aug 2014 | A1 |
20140300966 | Travers et al. | Oct 2014 | A1 |
20140314374 | Fattal et al. | Oct 2014 | A1 |
20150086163 | Valera et al. | Mar 2015 | A1 |
20150168731 | Robbins | Jun 2015 | A1 |
20160033697 | Sainiema et al. | Feb 2016 | A1 |
20160033784 | Levola et al. | Feb 2016 | A1 |
20160035539 | Sainiema et al. | Feb 2016 | A1 |
Number | Date | Country |
---|---|---|
1440513 | Sep 2003 | CN |
101029968 | Sep 2007 | CN |
101105512 | Jan 2008 | CN |
102004315 | Apr 2011 | CN |
0977022 | Feb 2000 | EP |
1494109 | Jan 2005 | EP |
1847924 | Oct 2007 | EP |
2065750 | Jun 2009 | EP |
2083310 | Jul 2009 | EP |
2112547 | Oct 2009 | EP |
2144177 | Jan 2010 | EP |
2216678 | Jan 2010 | EP |
2241926 | Oct 2010 | EP |
2662761 | Nov 2013 | EP |
2752691 | Jul 2014 | EP |
2887121 | Jun 2015 | EP |
2942811 | Sep 2010 | FR |
2500631 | Oct 2013 | GB |
S57109618 | Jul 1982 | JP |
H0422358 | Jan 1992 | JP |
7311303 | Nov 1995 | JP |
2000347037 | Dec 2000 | JP |
2001078234 | Mar 2001 | JP |
2008017135 | Jan 2008 | JP |
20070001771 | Jan 2007 | KR |
20090076539 | Jul 2009 | KR |
20090084316 | Aug 2009 | KR |
20110070087 | Jun 2011 | KR |
20120023458 | Mar 2012 | KR |
201407202 | Feb 2014 | TW |
WO-9418595 | Aug 1994 | WO |
WO-9952002 | Oct 1999 | WO |
WO-0133282 | May 2001 | WO |
WO-0195027 | Dec 2001 | WO |
WO-03090611 | Nov 2003 | WO |
WO-2006054056 | May 2006 | WO |
WO-2006064334 | Jun 2006 | WO |
WO-2007052265 | May 2007 | WO |
WO-2007057500 | May 2007 | WO |
WO-2008021504 | Feb 2008 | WO |
WO-2008081070 | Jul 2008 | WO |
WO-2009029826 | Mar 2009 | WO |
WO-2009077601 | Jun 2009 | WO |
WO-2009127849 | Oct 2009 | WO |
WO-2010092409 | Aug 2010 | WO |
WO-2010125337 | Nov 2010 | WO |
WO-2011003381 | Jan 2011 | WO |
WO-2011051660 | May 2011 | WO |
WO-2011090455 | Jul 2011 | WO |
WO-2011110728 | Sep 2011 | WO |
WO-2011131978 | Oct 2011 | WO |
WO-2012172295 | Dec 2012 | WO |
WO-2012177811 | Dec 2012 | WO |
WO-2013033274 | Mar 2013 | WO |
WO-2013058769 | Apr 2013 | WO |
WO-2013164665 | Nov 2013 | WO |
WO-2014051920 | Apr 2014 | WO |
WO-2014085502 | Jun 2014 | WO |
WO-2014088343 | Jun 2014 | WO |
WO-2014111163 | Jul 2014 | WO |
WO-2014130383 | Aug 2014 | WO |
Entry |
---|
“International Search Report and Written Opinion”, Application No. PCT/US2015/042371, Oct. 2, 2015, 10 pages. |
“International Search Report and Written Opinion”, Application No. PCT/US2015/042187, Oct. 20, 2015, 10 pages. |
“International Search Report and Written Opinion”, Application No. PCT/US2015/042226, Oct. 27, 2015, 10 Pages. |
“International Search Report and Written Opinion”, Application No. PCT/US2015/042205, Oct. 30, 2015, 10 pages. |
“International Search Report and Written Opinion”, Application No. PCT/US2015/042218, Nov. 6, 2015, 10 pages. |
“International Search Report and Written Opinion”, Application No. PCT/US2015/042259, Oct. 12, 2015, 11 pages. |
“International Search Report and Written Opinion”, Application No. PCT/US2015/041930, Oct. 20, 2015, 12 Pages. |
“International Search Report and Written Opinion”, Application No. PCT/US2015/041900, Oct. 21, 2015, 12 pages. |
“International Search Report and Written Opinion”, Application No. PCT/US2015/041909, Oct. 20, 2015, 13 pages. |
“International Search Report and Written Opinion”, Application No. PCT/US2015/041046, Nov. 9, 2015, 15 pages. |
“Notice of Allowance”, U.S. Appl. No. 14/447,464, Nov. 9, 2015, 10 pages. |
“Restriction Requirement”, U.S. Appl. No. 14/617,697, Nov. 30, 2015, 6 pages. |
Ando,“Development of Three-Dimensional Microstages Using Inclined Deep-Reactive Ion Etching”, Journal of Microelectromechanical Systems, Jun. 1, 2007, 10 pages. |
Antonopoulos,“Efficient Updates for Web-Scale Indexes over the Cloud”, IEEE 28th International Conference on Data Engineering Workshops, Apr. 2012, 8 pages. |
Garcia,“COMET: Content Mediator Architecture for Content-Aware Networks”, In IEEE Future Network & Mobile Summit, 2011, 8 pages. |
Gila,“First Results From A Multi-Ion Beam Lithography And Processing System At The University Of Florida”, AIP Conference Proceedings, Jun. 1, 2011, 6 pages. |
Levandoski,“Ranking and New Database Architectures”, In Proceedings of the 7th International Workshop on Ranking in Databases, Aug. 2013, 4 pages. |
“Non-Final Office Action”, U.S. Appl. No. 14/447,419, Feb. 2, 2016, 8 pages. |
“Non-Final Office Action”, U.S. Appl. No. 14/617,574, Feb. 26, 2016, 22 pages. |
“Non-Final Office Action”, U.S. Appl. No. 14/617,710, Mar. 2, 2016, 16 pages. |
“Notice of Allowance”, U.S. Appl. No. 14/617,697, Feb. 29, 2016, 7 pages. |
“Notice of Allowance”, U.S. Appl. No. 14/617,723, Feb. 9, 2016, 10 pages. |
“Supplemental Notice of Allowance”, U.S. Appl. No. 14/447,464, Jan. 12, 2016, 2 pages. |
Glendenning, “Polymer Micro-Optics via Micro Injection Moulding”, Available at: https://web.archive.org/web/20120310003606/http://www.microsystems.uk.com/english/polymer—optics—injection—moulding.html, Jan. 10, 2011, 6 pages. |
L, et al., “All-Nanoparticle Concave Diffraction Grating Fabricated by Self-Assembly onto Magnetically-Recorded Templates”, In Proceedings of Optical Express, vol. 21, Issue 1, Jan. 2013, 1 page. |
“Advisory Action”, U.S. Appl. No. 13/428,879, Sep. 19, 2014, 3 pages. |
“Augmented Reality and Physical Games”, U.S. Appl. No. 13/440,165, Apr. 5, 2012, 49 pages. |
“Corrected Final Office Action”, U.S. Appl. No. 13/432,311, Dec. 24, 2014, 25 pages. |
“Corrected Notice of Allowance”, U.S. Appl. No. 13/355,836, Sep. 11, 2014, 2 pages. |
“Corrected Notice of Allowance”, U.S. Appl. No. 13/355,836, Dec. 15, 2014, 2 pages. |
“DigiLens”, SBG Labs—retrieved from <http://www.digilens.com/products.html> on Jun. 19, 2012, 1 page. |
“Final Office Action”, U.S. Appl. No. 13/336,873, Jan. 5, 2015, 21 pages. |
“Final Office Action”, U.S. Appl. No. 13/336,895, May 27, 2014, 11 pages. |
“Final Office Action”, U.S. Appl. No. 13/355,836, Mar. 10, 2014, 18 pages. |
“Final Office Action”, U.S. Appl. No. 13/355,914, Feb. 23, 2015, 21 pages. |
“Final Office Action”, U.S. Appl. No. 13/355,914, Jun. 19, 2014, 11 pages. |
“Final Office Action”, U.S. Appl. No. 13/397,495, May 29, 2014, 10 pages. |
“Final Office Action”, U.S. Appl. No. 13/397,516, Jan. 29, 2015, 13 pages. |
“Final Office Action”, U.S. Appl. No. 13/397,539, Jun. 29, 2015, 11 pages. |
“Final Office Action”, U.S. Appl. No. 13/428,879, Jul. 14, 2014, 12 pages. |
“Final Office Action”, U.S. Appl. No. 13/432,311, Dec. 15, 2014, 24 pages. |
“Final Office Action”, U.S. Appl. No. 13/432,372, Jan. 29, 2015, 33 pages. |
“Final Office Action”, U.S. Appl. No. 13/440,165, Jun. 6, 2014, 12 pages. |
“Final Office Action”, U.S. Appl. No. 13/440,165, Jul. 21, 2015, 11 pages. |
“Final Office Action”, U.S. Appl. No. 13/477,646, Feb. 23, 2015, 36 pages. |
“Final Office Action”, U.S. Appl. No. 13/477,646, May 5, 2014, 26 pages. |
“Final Office Action”, U.S. Appl. No. 13/525,649, Oct. 9, 2014, 8 pages. |
“Final Office Action”, U.S. Appl. No. 13/774,875, Jun. 4, 2015, 10 pages. |
“Final Office Action”, U.S. Appl. No. 14/134,993, Jul. 16, 2015, 19 pages. |
“Final Office Action”, U.S. Appl. No. 14/134,993, Aug. 20, 2014, 15 pages. |
“Foreign Notice of Allowance”, CN Application No. 201320034345.X, Aug. 14, 2013, 2 Pages. |
“Foreign Office Action”, CN Application No. 201210563730.3, Jan. 7, 2015, 16 pages. |
“Foreign Office Action”, CN Application No. 201210567932.5, Aug. 14, 2014, 12 pages. |
“Foreign Office Action”, EP Application No. 13769961.7, Mar. 11, 2015, 8 pages. |
“Foreign Office Action”, EP Application No. 13769961.7, Jun. 30, 2015, 6 pages. |
“HDTV Helmet Mounted Display”, Available at <http://defense-update.com/products/h/HDTV-HMD.htm>, Jan. 26, 2005, 1 page. |
“International Search Report and Written Opinion”, Application No. PCT/US2012/069331, Mar. 29, 2013, 10 pages. |
“International Search Report and Written Opinion”, Application No. PCT/US2014/016658, Apr. 23, 2014, 10 pages. |
“International Search Report and Written Opinion”, Application No. PCT/US2013/053676, Oct. 16, 2013, 10 pages. |
“International Search Report and Written Opinion”, Application No. PCT/US2013/030632, Jun. 26, 2013, 10 pages. |
“International Search Report and Written Opinion”, Application No. PCT/US2013/028477, Jun. 21, 2013, 11 pages. |
“International Search Report and Written Opinion”, Application No. PCT/US2013/031111, Jun. 26, 2013, 11 pages. |
“International Search Report and Written Opinion”, Application No. PCT/US2013/076832, Mar. 17, 2014, 12 pages. |
“International Search Report and Written Opinion”, Application No. PCT/US2013/061225, Jun. 4, 2014, 12 pages. |
“International Search Report and Written Opinion”, Application No. PCT/US2012/071563, Apr. 25, 2013, 13 pages. |
“International Search Report and Written Opinion”, Application No. PCT/US2013/021784, Apr. 30, 2013, 9 pages. |
“International Search Report and Written Opinion”, Application No. PCT/US2012/069330, Mar. 28, 2013, 9 pages. |
“International Search Report and Written Opinion”, Application No. PCT/US2013/021783, May 15, 2013, 9 pages. |
“International Search Report and Written Opinion”, Application No. PCT/US2013/026200, Jun. 3, 2013, 9 pages. |
“Light Guide Techniques using LED Lamps”, Application Brief I-003, retrieved from <http://www.ciri.org.nz/downloads/Lightpipe%20design.pdf> on Jan. 12, 2012, Oct. 14, 2008, 22 pages. |
“New Technology from MIT may Enable Cheap, Color, Holographic Video Displays”, Retrieved from <http://www.gizmag.com/holograph-3d-color-video-display-inexpensive-mit/28029/> on Feb. 25, 2015, Jun. 24, 2013, 8 pages. |
“Non-Final Office Action”, U.S. Appl. No. 13/397,495, Nov. 13, 2013, 8 pages. |
“Non-Final Office Action”, U.S. Appl. No. 13/440,165, Feb. 6, 2014, 12 pages. |
“Non-Final Office Action”, U.S. Appl. No. 13/336,873, Apr. 9, 2015, 18 pages. |
“Non-Final Office Action”, U.S. Appl. No. 13/336,873, Jul. 25, 2014, 16 pages. |
“Non-Final Office Action”, U.S. Appl. No. 13/336,895, Oct. 24, 2013, 9 pages. |
“Non-Final Office Action”, U.S. Appl. No. 13/343,675, Jul. 16, 2013, 9 pages. |
“Non-Final Office Action”, U.S. Appl. No. 13/355,836, Nov. 4, 2013, 15 pages. |
“Non-Final Office Action”, U.S. Appl. No. 13/355,914, Feb. 14, 2014, 10 pages. |
“Non-Final Office Action”, U.S. Appl. No. 13/355,914, Oct. 28, 2014, 18 pages. |
“Non-Final Office Action”, U.S. Appl. No. 13/397,495, Apr. 3, 2015, 11 pages. |
“Non-Final Office Action”, U.S. Appl. No. 13/397,516, Jun. 12, 2014, 11 pages. |
“Non-Final Office Action”, U.S. Appl. No. 13/397,516, Nov. 25, 2013, 10 pages. |
“Non-Final Office Action”, U.S. Appl. No. 13/397,539, Mar. 16, 2015, 9 pages. |
“Non-Final Office Action”, U.S. Appl. No. 13/397,617, May 5, 2015, 6 pages. |
“Non-Final Office Action”, U.S. Appl. No. 13/397,617, Oct. 9, 2014, 6 pages. |
“Non-Final Office Action”, U.S. Appl. No. 13/428,879, Feb. 24, 2015, 10 pages. |
“Non-Final Office Action”, U.S. Appl. No. 13/428,879, Mar. 17, 2014, 10 pages. |
“Non-Final Office Action”, U.S. Appl. No. 13/428,879, Jun. 26, 2015, 13 pages. |
“Non-Final Office Action”, U.S. Appl. No. 13/432,311, Jun. 2, 2015, 25 pages. |
“Non-Final Office Action”, U.S. Appl. No. 13/432,311, Jul. 8, 2014, 33 pages. |
“Non-Final Office Action”, U.S. Appl. No. 13/432,372, May 9, 2014, 26 pages. |
“Non-Final Office Action”, U.S. Appl. No. 13/432,372, Oct. 24, 2014, 27 pages. |
“Non-Final Office Action”, U.S. Appl. No. 13/440,165, Feb. 13, 2015, 10 pages. |
“Non-Final Office Action”, U.S. Appl. No. 13/440,165, Oct. 16, 2014, 11 pages. |
“Non-Final Office Action”, U.S. Appl. No. 13/477,646, Jun. 18, 2015, 43 pages. |
“Non-Final Office Action”, U.S. Appl. No. 13/477,646, Oct. 6, 2014, 34 pages. |
“Non-Final Office Action”, U.S. Appl. No. 13/477,646, Nov. 22, 2013, 20 pages. |
“Non-Final Office Action”, U.S. Appl. No. 13/525,649, Jan. 29, 2014, 7 pages. |
“Non-Final Office Action”, U.S. Appl. No. 13/525,649, Feb. 5, 2015, 7 pages. |
“Non-Final Office Action”, U.S. Appl. No. 13/525,649, Jun. 5, 2014, 7 pages. |
“Non-Final Office Action”, U.S. Appl. No. 13/570,073, Jan. 23, 2015, 7 pages. |
“Non-Final Office Action”, U.S. Appl. No. 13/631,308, Feb. 23, 2015, 9 pages. |
“Non-Final Office Action”, U.S. Appl. No. 13/722,917, May 21, 2015, 12 pages. |
“Non-Final Office Action”, U.S. Appl. No. 13/774,875, Nov. 24, 2014, 8 pages. |
“Non-Final Office Action”, U.S. Appl. No. 14/134,993, Jan. 22, 2015, 17 pages. |
“Non-Final Office Action”, U.S. Appl. No. 14/134,993, Apr. 17, 2014, 34 pages. |
“Notice of Allowance”, U.S. Appl. No. 13/336,895, Aug. 11, 2014, 6 pages. |
“Notice of Allowance”, U.S. Appl. No. 13/343,675, Sep. 16, 2013, 8 pages. |
“Notice of Allowance”, U.S. Appl. No. 13/355,836, Jun. 13, 2014, 11 pages. |
“Notice of Allowance”, U.S. Appl. No. 13/355,836, Oct. 8, 2014, 11 pages. |
“Notice of Allowance”, U.S. Appl. No. 13/356,545, Mar. 28, 2014, 6 pages. |
“Notice of Allowance”, U.S. Appl. No. 13/488,145, Nov. 19, 2014, 8 pages. |
“Restriction Requirement”, U.S. Appl. No. 13/355,836, Sep. 27, 2013, 6 pages. |
“Restriction Requirement”, U.S. Appl. No. 13/397,539, Dec. 1, 2014, 6 pages. |
“Restriction Requirement”, U.S. Appl. No. 13/488,145, Sep. 8, 2014, 14 pages. |
“Restriction Requirement”, U.S. Appl. No. 13/570,073, Nov. 18, 2014, 7 pages. |
“Supplemental Notice of Allowance”, U.S. Appl. No. 13/356,545, Jul. 22, 2014, 2 pages. |
“Supplementary European Search Report”, EP Application No. 13769961.7, Mar. 3, 2015, 3 pages. |
“Two-Faced: Transparent Phone with Dual Touch Screens”, Retrieved from <http://gajitz.com/two-faced-transparent-phone-with-dual-touch-screens/>, Jun. 7, 2012, 3 pages. |
“Variable Groove Depth (VGD) Master Gratings”, Retrieved From: <http://www.horiba.com/scientific/products/diffraction-gratings/catalog/variable-groove-depth-vgd/> May 28, 2014, 2 pages. |
“Written Opinion”, Application No. PCT/US2013/061225, Oct. 10, 2014, 6 Pages. |
Allen,“ELiXIR—Solid-State Luminaire with Enhanced Light Extraction by Internal Reflection”, Journal of Display Technology, vol. 3, No. 2, Available at <http://www.nanolab.uc.edu/Publications/PDFfiles/355.pdf>, Jun. 2007, pp. 155-159. |
Aron,“‘Sprinting’ chips could push phones to the speed limit”, New Scientist, Feb. 20, 2012, Issue #2852, Feb. 20, 2012, 2 pages. |
Baluja,“Non-Intrusive Gaze Tracking Using Artificial Neural Networks”, Technical Report CMU-CS-94-102, Available at <http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.33.4027&rep=rep1&type=pdf> , Jan. 5, 1994, 14 pages. |
Barger,“COTS Cooling”, Publication of the National Electronics Manufacturing Center of Excellence, Retrieved from: <http://www.empf.org/empfasis/2009/Oct09/cots.html > on Jul. 9, 2012, Oct. 2009, 4 pages. |
Baudisch,“Back-of-Device Interaction Allows Creating Very Small Touch Devices”, In Proceedings of 27th International Conference on Human Factors in Computing Systems, Retrieved from <http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.160.3337&rep=rep1&type=pdf >, Apr. 2005, 10 pages. |
Baxtor,“TwinTech GeForce GTS 250 XT OC 1GB Graphics Card”, retrieved from <http://www.tweaktown.com/reviews/2733/twintech—geforce—gts—250—xt—oc—1gb—graphics—card/index3.html> on Dec. 30, 2011, Apr. 24, 2009, 4 pages. |
Chang-Yen,“A Monolithic PDMS Waveguide System Fabricated Using Soft-Lithography Techniques”, In Journal of Lightwave Technology, vol. 23, No. 6, Jun. 2005, 6 pages. |
Charles,“Design of Optically Path Length Matched, Three-Dimensional Photonic Circuits Comprising Uniquely Routed Waveguides”, In Proceedings of Applied Optics, vol. 51, Issue 27, Sep. 20, 2012, 11 pages. |
Chen,“A Study of Fiber-to-Fiber Losses in Waveguide Grating Routers”, In Journal of Lightwave Technology, vol. 15, No. 10, Oct. 1997, 5 pages. |
Chen,“Strategies for 3D Video with Wide Fields-of-View”, IEEE Proceeding Optoelectronics, vol. 148, Issue 2, Available at <http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=926823>, Apr. 2001, pp. 85-90. |
Cheng,“Waveguide Displays Based on Polymer-dispersed Liquid Crystals”, SPIE Newsroom, Available at <http://spie.org/documents/Newsroom/Imported/003805/003805—10.pdf>, Aug. 12, 2011, 2 pages. |
Chirgwin,“Researchers propose ‘overclock’ scheme for mobiles—Processing at a sprint to overcome tech limitations”, The Register, Feb. 21, 2012, 2 pages. |
Coldewey,“Researchers Propose “Computational Sprinting” To Speed Up Chips By 1000%—But Only for a Second”, TechCrunch, Feb. 28, 2012, 2 pages. |
Cottier,“Label-free Highly Sensitive Detection of (small) Molecules by Wavelength Interrogation of Integrated Optical Chips”, n Proceedings of Sensors and Actuators B: Chemical, vol. 91, Issue 1-3, Jun. 1, 2003, pp. 241-251. |
DeAgazio,“Selecting Display Backlighting for Portable, Handheld Devices”, Hearst Electronics Products, retrieved from <http://www2.electronicproducts.com/Selecting—display—backlighting—for—portable—handheld—devices-article-farcglobal-feb2008-html.aspx> on Jan. 12, 2012, Jan. 2, 2008, 4 pages. |
Dumon,“Compact Arrayed Waveguide Grating Devices in Silicon-on-Insulator”, In Proceedings of the IEEE/LEOS Symposium Benelux Chapter, May 27, 2014, 4 pages. |
Eadicicco,“First Transparent Tablet Lets You Touch From Both Sides”, Retrieved from <http://blog.laptopmag.com/first-transparent-tablet>, Dec. 26, 2013, 4 pages. |
Grabarnik,“Concave Diffraction Gratings Fabricated With Planar Lithography”, In Proceedings of SPIE, vol. 6992, May 3, 2008, 8 pages. |
Greenemeier,“Could “Computational Sprinting” Speed Up Smart Phones without Burning Them Out?”, Scientific American, Feb. 29, 2012, 2 pages. |
Greiner,“Bandpass engineering of lithographically scribed channel-waveguide Bragg gratings”, In Proceedings of Optics Letters, vol. 29, No. 8, Apr. 15, 2004, pp. 806-808. |
Han,“Accurate diffraction efficiency control for multiplexed volume holographic gratings”, Retrieved at: opticalengineering.spiedigitallibrary.org/data/Journals/.../2799—1, 2002, 4 pages. |
Hua,“Engineering of Head-mounted Projective Displays”, In Proceedings of Applied Optics, vol. 39, No. 22, Aug. 1, 2000, 11 pages. |
Ismail,“Improved Arrayed-Waveguide-Grating Layout Avoiding Systematic Phase Errors”, In Proceedings of Optics Express, vol. 19, No. 9, Apr. 25, 2011, pp. 8781-8794. |
Jacques,“Polarized Light Imaging of Tissue”, Available at <http://www.lumamed.com/documents/5—polarized%20light%20imaging.pdf>, 2004, 17 pages. |
Jarvenpaa,“Compact near-to-eye display with integrated gaze tracker”, Second International Conference on Computer Engineering and Applications, Mar. 19, 2010, 9 pages. |
Jaworski,“A Novel Design of Heat Sink with PCM for Electronics Cooling”, 10th International Conference on Thermal Energy Storage, Stockton, May 31-Jun. 2, 2006, retrieved from <https://intraweb.stockton.edu/eyos/energy—studies/content/docs/FINAL—PRESENTATIONS/4b-6%20.pdf> on Jan. 5, 2012, May 31, 2006, 8 pages. |
Karp,“Planar Micro-optic Solar Concentration using Multiple Imaging Lenses into a Common Slab Waveguide”, In Proceedings of SPIE vol. 7407, Available at <http://psilab.ucsd.edu/research/slab—concentration/files/SPIE—Slab—Published.pdf>, Jan. 2009, 11 pages. |
Kress,“Exit Pupil for Wearable See-through displays”, Downloaded From: http://proceedings.spiedigitallibrary.org/ on Jan. 31, 2015 Terms of Use: http://spiedl.org/terms, 2012, 8 pages. |
Krishnan,“A Novel Hybrid Heat Sink Using Phase Change Materials for Transient Thermal Management of Electronics”, IEEE transactions on components and packaging technologies, vol. 28, No. 2, retrieved from <http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1432936> on Jan. 5, 2012, Jun. 2005, pp. 281-289. |
Lanman,“Near-eye Light Field Displays”, In Journal of ACM Transactions on Graphics, vol. 32, No. 6, Nov. 2013, 10 pages. |
Large,“Parallel Optics in Waveguide Displays: a Flat Panel Autostereoscopic”, Display Technology, Journal of, Retrieved from <http://download.microsoft.com/download/D/2/E/D2E425F8-CF3C-4C71-A4A2-70F9D4081007/ParallelOpticsinWaveguideDisplaysMS090925.Final.pdf>, Jun. 21, 2010, pp. 1-7. |
Lerner,“Penn Helps Rethink Smartphone Design With ‘Computational Sprinting’”, Penn News Release, Feb. 28, 2012, 2 pages. |
Li,“Design Optimization of Reflective Polarizers for LCD Backlight Recycling”, Journal of Display Technology, vol. 5, No. 8, Available at <http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5196840 >, Aug. 2009, pp. 335-340. |
Li,“Switchable Electro-optic Diffractive Lens with High Efficiency for Ophthalmic Applications”, PNAS Apr. 18, 2006 vol. 103 No. 16 6100-6104, Retrieved from: <http://www.pnas.org/content/103/16/6100.long> Feb. 22. 2012, Feb. 2, 2006, 4 pages. |
Lindau,“Controlling The Groove Depth Of Holographic Gratings”, In Proceedings of Optical System Design, Analysis, and Production, vol. 0399, Oct. 26, 1983, 2 pages. |
Man,“IT Equipment Noise Emission Standards: Overview of New Development in the Next Edition of ISO/ECMA Standards”, In Proceedings of 37th International Congress and Exposition on Noise Control Engineering, Available at <http://www.ecma-international.org/activities/Acoustics/Inter-noise%202008%20paper%20on%20ECMA-74%20updates.pdf >, Oct. 26, 2008, 8 pages. |
Massenot,“Multiplexed holographic transmission gratings recorded in holographic polymer-dispersed liquid crystals: static and dynamic studies”, Retrieved at: http://oatao.univ-toulouse.fr/2874/, 2005, 8 pages. |
McMillan,“Your Future iPhone May Be Stuffed With Wax”, Aug. 23, 2013, 3 pages. |
Mei,“An all fiber interferometric gradient hydrophone with optical path length compensation”, In Proceedings of Summaries of Papers Presented at the Conference on Lasers and Electro-Optics, May 28, 1999, 2 pages. |
Melcher,“LCoS for High Performance Displays”, In Proceedings of LEOS 2003, Available at <http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1253048>, Oct. 27, 2003, pp. 812-813. |
Minier,“Diffraction Characteristics of Superimposed Holographic gratings in Planar Optical waveguides”, IEEE Photonics Technology Letters, vol. 4, No. 10, Oct. 1992, 4 pages. |
Moore,“Computational sprinting pushes smartphones till they're tired”, Michigan News Release, Feb. 28, 2012, 2 pages. |
Morga,“History of Saw Devices”, In Proceedings of the IEEE International Frequency Control Symposium, May 27, 1998, 22 pages. |
Nguyen,“Advanced Cooling System Using Miniature Heat Pipes in Mobile PC”, IEEE Transactions on Components and Packaging Technology, vol. 23, No. 1, Available at <http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=833046&userType=inst>, Mar. 2000, pp. 86-90. |
Owano,“Study explores computing bursts for smartphones”, PhysOrg.com, Feb. 21, 2012, 2 pages. |
Papaefthymiou,“Computational Sprinting on a Hardware/Software Testbed”, In the Proceedings of the 18th Eighteenth International Conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS), Mar. 2013., 12 pages. |
Patrizio,“Researchers Working on Ways to Put 16-Core Processors in Smartphones”, Brighthand, Mar. 18, 2012, 2 pages. |
Pu,“Exposure schedule for multiplexing holograms in photopolymer films”, Retrieved at: lo.epfl.ch/webdav/site/lo/shared/1996/OE—35—2824—Oct1996.pdf, Oct. 1996, 6 pages. |
Raghavan,“Computational Sprinting”, In the Proceedings of the 18th Symposium on High Performance Computer Architecture (HPCA), Feb. 2012, 12 pages. |
Raghavan,“Designing for Responsiveness With Computational Sprinting”, IEEE Micro's “Top Picks of 2012” Issue, May 2013, 8 pages. |
Scott,“RearType: Text Entry Using Keys on the Back of a Device”, In Proceedings of 12th Conference on Human-Computer Interaction with Mobile Devices and Services, Retrieved from <https://research.microsoft.com/pubs/135609/reartype%20mobilehci.pdf>, Sep. 7, 2010, 9 pages. |
Singh“Laser-Based Head-Tracked 3D Display Research”, Journal of Display Technology, vol. 6, No. 10, Available at <http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5462999>, Oct. 2010, pp. 531-543. |
Smalley,“Anisotropic Leaky-Mode Modulator for Holographic Video Displays”, In Proceedings of Nature, vol. 498, Jun. 20, 2013, 6 pages. |
Stupar,“Optimization of Phase Change Material Heat Sinks for Low Duty Cycle High Peak Load Power Supplies”, IEEE transactions on components, packaging and manufacturing technology, retrieved from <http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6081913> on Jan. 5, 2012, Nov. 15, 2011, 14 pages. |
Tari,“CFD Analyses of a Notebook Computer Thermal Management System and a Proposed Passive Cooling Alternative”, IEEE Transactions on Components and Packaging Technologies, vol. 33, No. 2, retrieved from <http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5466211> on Dec. 30, 2011, Jun. 2010, pp. 443-452. |
Teng,“Fabrication of nanoscale zero-mode waveguides using microlithography for single molecule sensing”, In Proceedings of Nanotechnology, vol. 23, No. 45, Jul. 7, 2012, 7 pages. |
Tien,“Microcontact Printing of SAMs”, In Proceedings of Thin Films, vol. 24, May 28, 2014, 24 pages. |
Travis,“Collimated Light from a Waveguide for a Display Backlight”, Optics Express—Retrieved from <http://download.microsoft.com/download/D/2/E/D2E425F8-CF3C-4C71-A4A2-70F9D4081007/OpticsExpressbacklightpaper.pdf>, Oct. 15, 2009, pp. 19714-19719. |
Travis,“The Design of Backlights for View-Sequential 3D”, Microsoft Corporation, Available at <http://download.microsoft.com/download/D/2/E/D2E425F8-CF3C-4C71-A4A2-70F9D4081007/Backlightforviewsequentialautostereo.docx>, Jul. 3, 2010, 4 pages. |
Van“A Survey of Augmented Reality Technologies, Applications and Limitations”, The International Journal of Virtual Reality, 2010, 9(2), Available at <http://www.ijyr.org/issues/issue2-2010/paper1%20.pdf>, Jun. 2010, pp. 1-19. |
Walker,“Thermalright Ultra—120 Extreme CPU Cooler”, retrieved from <http://www.pro-clockers.com/cooling/66-thermalright-ultra-120-extreme-cpu-cooler.html> on Dec. 30, 2011, Jul. 2, 2009, 7 pages. |
Westerinen,“Light Guide Display and Field of View”, U.S. Appl. No. 13/428,879, filed Mar. 23, 2012, 46 pages. |
Wigdor,“LucidTouch: A See-Through Mobile Device”, In Proceedings of 20th Annual ACM symposium on User Interface Software and Technology, Retrieved from <http://dl.acm.org/citation.cfm?id=1294259>, Oct. 7, 2007, 10 pages. |
Xie,“Fabrication of Varied-Line-Spacing Grating by Elastic Medium”, In Proceedings SPIE 5636, Holography, Diffractive Optics, and Applications II, Nov. 2004, 4 pages. |
Yan,“Multiplexing holograms in the photopolymer with equal diffraction efficiency”, 2005, 9 pages. |
Zharkova,“Study of the Dynamics of Transmission Gratings Growth on Holographic Polymer-Dispersed Liquid Crystals”, International Conference on Methods of Aerophysical Research, ICMAR 2008, 2008, 4 pages. |
“Restriction Requirement”, U.S. Appl. No. 14/447,419, Aug. 4, 2015, 6 pages. |
“Adobe Audition / Customizing Workspaces”, Retrieved From: <http://help.adobe.com/en—US/audition/cs/using/WS9FA7B8D7-5991-4e05-B13C-4C85DAF1F051.html> Jul. 5, 2014, May 18, 2011, 6 Pages. |
“Always Connected”, Available at: http://www.samsung.com/global/microsite/galaxycamera/nx/, Jun. 24, 2013, 5 pages. |
“Controlling Your Desktop's Power Management”, Retrieved From: <http://www.vorkon.de/SU1210.001/drittanbieter/Dokumentation/openSUSE—11.2/manual/sec.gnomeuser.start.power—mgmt.html> Jul. 7, 2014, 6 Pages. |
“Display Control”, Retrieved From: <http://www.portrait.com/technology/display-control.html> Jul. 4, 2014, Jun. 24, 2013, 5 Pages. |
“Manage Multiple Windows”, Retrieved From: <http://windows.microsoft.com/en-hk/windows/manage-multiple-windows#1TC=windows-7> Jul. 8, 2014, 4 Pages. |
“Merge Operator”, Retrieved on: Jun. 3, 2014, Available at: https://github.com/facebook/rocksdb/wiki/Merge-Operator, 10 pages. |
“Non-Final Office Action”, U.S. Appl. No. 13/774,875, Sep. 16, 2015, 8 pages. |
“Organize Your Desktop Workspace for More Comfort with Window Space”, Retrieved From: <http://www.ntwind.com/software/windowspace.html> Jul. 4, 2014, Sep. 19, 2008, 5 Pages. |
“SizeUp The Missing Window Manager”, Retrieved From: <https://www.irradiatedsoftware.com/sizeup/> Jul. 4, 2014, Jan. 17, 2013, 4 Pages. |
“Using Flickr to Organize a Collection of Images”, Available at: http://www.jiscdigitalmedia.ac.uk/guide/using-flickr-to-organise-a-collection-of-images, Apr. 2, 2013, 17 pages. |
“Window Magnet”, Retrieved From: <http://magnet.crowdcafe.com/> Jul. 4, 2014, Jun. 23, 2011, 2 Pages. |
“Windows 7: Display Reminder When Click on Shutdown?”, Retrieved From: <http://www.sevenforums.com/customization/118688-display-reminder-when-click-shutdown.html> Jul. 8, 2014, Oct. 18, 2010, 5 Pages. |
“Working with Windows”, Retrieved From: <http://windows.microsoft.com/en-us/windows/working-with-windows#1TC=windows-7> Jul. 4, 2014, 10 Pages. |
Ashraf,“Winsplit Revolution: Tile, Resize, and Position Windows for Efficient Use of Your Screen”, Retrieved From: <http://dottech.org/11240/winsplit-revolution-tile-resize-and-position-windows-for-efficient-use-of-your-screen/> Jul. 8, 2014, Dec. 18, 2011, 4 Pages. |
Callaghan,“Types of writes”, Available at: http://smalldatum.blogspot.in/2014/04/types-of-writes.html, Apr. 17, 2014, 3 pages. |
Cohen,“Automatic Strategies in the Siemens RTL Tiled Window Manager”, In Proceedings: The 2nd IEEE Conference on Computer Workstations, Mar. 7, 1988, pp. 111-119. |
Eckel,“Personalize Alerts with the Help of OS X Mavericks Notifications”, Retrieved From: <http://www.techrepublic.com/article/customize-os-x-mavericks-notifications-to-personalize-alerts/> Jul. 8, 2014, Mar. 10, 2014, 7 Pages. |
Elnaka,“Real-Time Traffic Classification for Unified Communication Networks”, In Proceedings of International Conference on Selected Topics in Mobile and Wireless Networking, Aug. 19, 2013, 6 pages. |
Hepburn,“Color: The Location Based Social Photo App”, Available at: http://www.digitalbuzzblog.com/color-the-location-based-social-photo-iphone-app/, Mar. 27, 2011, 12 pages. |
Johnson,“Samsung Galaxy Tab Pro 10.1 Review”, Retrieved From: <http://hothardware.com/Reviews/Samsung-Galaxy-Tab-Pro-101-Review/?p.=3#!baG2DY > Jul. 9, 2014, Mar. 21, 2014, 10 Pages. |
Kandogan,“Elastic Windows: Improved Spatial Layout and Rapid Multiple Window Operations”, In Proceedings of the Workshop on Advanced Visual Interfaces, May 27, 1996, 10 Pages. |
Levandoski,“Latch-Free, Log-Structured Storage for Multiple Access Methods”, U.S. Appl. No. 13/924,567, filed Jun. 22, 2013, 51 pages. |
Levandoski,“The Bw-Tree: A B-tree for New Hardware Platforms”, In IEEE 29th International Conference on Data Engineering, Apr. 8, 2013, 12 pages. |
Li,“QRON: QoS-Aware Routing in Overlay Networks”, In Proceedings of IEEE Journal on Selected Areas in Communications, vol. 22, No. 1, Jan. 2004, 12 pages. |
Mack,“Moto X: The First Two Weeks”, Retrieved From: <http://www.gizmag.com/two-weeks-motorola-google-moto-x-review/28722/> Jul. 8, 2014, Aug. 16, 2013, 8 pages. |
O'Reilly,“How to Use the Microsoft Surface Touch Screen and Keyboard”, Retrieved From: <http://www.cnet.com/how-to/how-to-use-the-microsoft-surface-touch-screen-and-keyboard/> Jul. 5, 2014, Nov. 6, 2012, 5 Pages. |
Paul,“Three Windows Multitasking Features That Help Maximize Your Screen Space”, Retrieved From: <http://www.pcworld.com/article/2094124/three-windows-multitasking-features-that-help-maximize-your-screen-space.html> Jul. 4, 2014, Feb. 4, 2014, 4 Pages. |
Prohaska,“Fast Updates with TokuDB”, Available at: http://www.tokutek.com/2013/02/fast-updates-with-tokudb/, Feb. 12, 2013, 2 pages. |
Thurrott,“Nokia Lumia “Black”: Glance 2.0”, Retrieved From:<http://winsupersite.com/windows-phone/nokia-lumia-black-glance-20> Jul. 8, 2014, Jan. 11, 2014, 3 Pages. |
Vranjes,“Application Window Divider Control for Window Layout Management”, U.S. Appl. No. 13/863,369, filed Apr. 15, 2013, 21 pages. |
Wiebe,“Using screen space efficiently with Gridmove”, Available at: http://lowerthought.wordpress.com/2010/05/15/using-screen-space-efficiently-with-gridmove/, May 15, 2010, 2 pages. |
Corrected Notice of Allowance, U.S. Appl. No. 14/617,723, Apr. 20, 2016, 7 pages. |
Final Office Action, U.S. Appl. No. 13/774,875, Apr. 22, 2016, 10 pages. |
Final Office Action, U.S. Appl. No. 14/447,419, May 17, 2016, 10 pages. |
International Search Report and Written Opinion, Application No. PCT/US2016/015496, Apr. 11, 2016, 11 pages. |
International Search Report and Written Opinion, Application No. PCT/US2016/015873, May 23, 2016, 11 pages. |
International Search Report and Written Opinion, Application No. PCT/US2016/016028, May 25, 2016, 11 pages. |
International Search Report and Written Opinion, Application No. PCT/US2016/016241, Apr. 20, 2016, 12 pages. |
International Search Report and Written Opinion, Application No. PCT/US2016/015869, May 12, 2016, 12 pages. |
International Search Report and Written Opinion, Application No. PCT/US2016/016029, May 12, 2016, 12 pages. |
International Search Report and Written Opinion, Application No. PCT/US2016/016027, May 17, 2016, 13 pages. |
International Search Report and Written Opinion, Application No. PCT/US2016/015871, Jun. 13, 2016, 13 pages. |
International Search Report and Written Opinion, Application No. PCT/US2016/019006, May 12, 2016, 14 pages. |
International Search Report and Written Opinion, Application No. PCT/US2016/016242, May 27, 2016, 14 pages. |
International Search Report and Written Opinion, Application No. PCT/US2016/015497, May 19, 2016, 17 pages. |
Non-Final Office Action, U.S. Appl. No. 14/335,927, Jun. 3, 2016, 8 pages. |
Non-Final Office Action, U.S. Appl. No. 14/617,606, May 23, 2016, 12 pages. |
Notice of Allowance, U.S. Appl. No. 14/617,723, May 24, 2016, 7 pages. |
Notice of Allowance, U.S. Appl. No. 14/617,735, Apr. 5, 2016, 12 pages. |
Restriction Requirement, U.S. Appl. No. 14/617,683, May 9, 2016, 6 pages. |
Kim,“Determination of small angular displacement by moire fringes of matched radial-parallel gratings”, Applied Optics, vol. 36, No. 13, May 1997, 8 pages. |
Levola,“Diffractive optics for virtual reality displays”, Journal of the Society for Information Display—SID, Jan. 1, 2006, 9 pages. |
Theocaris,“Radial Gratings as Moire Gauges”, Journal of Physics E. Scientific Instruments, Jun. 1, 1968, 6 pages. |
Corrected Notice of Allowance, U.S. Appl. No. 14/617,735, Jun. 20, 2016, 2 pages. |
Second Written Opinion, Application No. PCT/US2015/041930, Jun. 21, 2016, 5 pages. |