Optical components

Information

  • Patent Grant
  • 9429692
  • Patent Number
    9,429,692
  • Date Filed
    Monday, February 9, 2015
    9 years ago
  • Date Issued
    Tuesday, August 30, 2016
    8 years ago
Abstract
A substantially transparent optical component, which comprises polymer, is molded. The optical component has substantially matching grating imprints on respective portions of its surface, which imprints have a substantially zero relative orientation angle. Substantially transparent molten polymer is forced between two surfaces of a molding component. The molten polymer is forced into contact with surface modulations which form two substantially matching gratings. An alignment portion is located so that light which has interacted with both gratings is observable when the substantially transparent polymer is between the surfaces. While the polymer is still liquid, the molding component is reconfigured from a current configuration to a new configuration in which the fringe spacing of a fringe pattern formed by the two gratings is substantially maximal, thus aligning the gratings to have a substantially zero relative orientation angle. The new configuration is maintained while the polymer sets.
Description
BACKGROUND

Optical components can be used in optical systems to alter the state of visible light in a predictable and desired manner, for example in display systems to make a desired image visible to a user. Optical components can interact with light by way of reflection, refractions, diffraction etc. Diffraction occurs when a propagating wave interacts with a structure, such as an obstacle or slit. Diffraction can be described as the interference of waves and is most pronounced when that structure is comparable in size to the wavelength of the wave. Optical diffraction of visible light is due to the wave nature of light and can be described as the interference of light waves. Visible light has wavelengths between approximately 390 and 700 nanometers (nm) and diffraction of visible light is most pronounced when propagating light encounters structures similar scale e.g. of order 100 or 1000 nm in scale.


One example of a diffractive structure is a periodic structure. Periodic structures can cause diffraction of light which is typically most pronounced when the periodic structure has a spatial period of similar size to the wavelength of the light. Types of periodic structures include, for instance, surface modulations on a surface of an optical component, refractive index modulations, holograms etc. When propagating light encounters the periodic structure, diffraction causes the light to be split into multiple beams in different directions. These directions depend on the wavelength of the light thus diffractions gratings cause dispersion of polychromatic (e.g. white) light, whereby the polychromatic light is split into different coloured beams travelling in different directions.


When the period structure is on a surface of an optical component, it is referred to a surface grating. When the periodic structure is due to modulation of the surface itself, it is referred to as a surface relief grating (SRG). An example of a SRG is uniform straight grooves in a surface of an optical component that are separated by uniform straight groove spacing regions. Groove spacing regions are referred to herein as “lines”, “grating lines” and “filling regions”. The nature of the diffraction by a SRG depends both on the wavelength of light incident on the grating and various optical characteristics of the SRG, such as line spacing, groove depth and groove slant angle. SRGs have many useful applications. One example is an SRG light guide application. A light guide (also referred to herein as a “waveguide”) is an optical component used to transport light by way of internal reflection e.g. total internal reflection (TIR) within the light guide. A light guide may be used, for instance, in a light guide-based display system for transporting light of a desired image from a light engine to a human eye to make the image visible to the eye. Incoupling and outcoupling SRGs on surface(s) of the light guide can be used for inputting light to and outputting light from the waveguide respectively.


Surface gratings can be fabricated by way of a suitable microfabrication process to create appropriate surface modulations on a substrate. Microfabrication refers to the fabrication of desired structures of micrometer scales and smaller (such as surface gratings). Microfabrication may involve etching of and/or deposition on a substrate (and possibly etching of and/or deposition on a film deposited on the substrate) to create the desired microstructure on the substrate (or film on the substrate). As used herein, the term “patterning a substrate” or similar encompasses all such etching of/deposition on a substrate or substrate film. Whilst a substrate patterned with a surface grating may be suitable for use as an optical component in an optical system itself, a patterned substrate can also be used as a production masters for manufacturing such optical components. For example, a fused silica substrate (or similar), once patterned with a surface grating, can then be used as part of a moulding component for moulding optical components from polymer e.g. the moulding component may be arranged to provide a moulding cavity with the surface grating on the surface of the cavity. When liquid polymer is forced into the moulding cavity, it is forced into contact with the surface grating so as to imprint the surface grating in the polymer, which then sets to form a solid polymer optical component with the surface grating imprinted on its surface. Thus, large numbers of polymer optical components can be mass-manufactured using the same patterned substrate in an inexpensive, quick and straightforward manner.


SUMMARY

This Summary is provided to introduce a selection of concepts in a simplified form that are further described below in the Detailed Description. This Summary is not intended to identify key features or essential features of the claimed subject matter, nor is it intended to be used to limit the scope of the claimed subject matter. Nor is the claimed subject matter limited to implementations that solve any or all of the disadvantages noted in the Background section.


A first aspect is directed to a moulding process for making a substantially transparent optical component which comprises polymer. The optical component has substantially matching grating imprints on respective portions of its surface. The grating imprints have a substantially zero relative orientation angle. The process comprises the following steps. Substantially transparent molten polymer is forced between two surfaces of a moulding component. The surfaces have surface modulations which form two substantially matching gratings. The molten polymer is forced into contact with the surface modulations so as to imprint the gratings in the polymer. The moulding component is configurable to change the relative orientation angle of the gratings. At least an alignment portion of the moulding component is substantially transparent. The alignment portion is located so that light which has interacted with both gratings is observable from the alignment portion when the substantially transparent polymer is between the surfaces, whereby an observable fringe pattern is formed as the relative orientation angle of the gratings is changed towards zero. The fringe pattern exhibits a fringe spacing which increases as the relative orientation angle decreases. Whilst the polymer is still liquid, the moulding component is reconfigured from a current configuration to a new configuration in which the fringe spacing of the fringe pattern is substantially maximal, thus aligning the gratings to have a substantially zero relative orientation angle. The new configuration is maintained whilst the polymer sets.


A second aspect is directed to a moulding apparatus for moulding a substantially transparent optical component which comprises polymer. The optical component has substantially matching grating imprints on opposing portions of its surface. The grating imprints have a substantially zero relative orientation angle. The apparatus comprises a moulding component, a drive mechanism, a light sensor and a controller. The moulding component has two surfaces, the surfaces having surface modulations which form two substantially matching gratings. The moulding component is configurable to change the relative orientation angle of the gratings. The drive mechanism is coupled to the moulding component and is controllable to configure the moulding component. At least an alignment portion of the moulding component is substantially transparent, the alignment portion located so that light which has interacted with both gratings is observable from the alignment portion when the substantially transparent polymer is between the surfaces, whereby an observable fringe pattern is formed as the relative orientation angle of the gratings is changed towards zero. The fringe pattern exhibits a fringe spacing which increases as the relative orientation angle decreases. The light sensor is configured to receive at least some of the light which has interacted with both gratings. The controller is configured, whilst the polymer is still liquid, to control the drive mechanism based on sensed data received from the image sensor to reconfigure the moulding component from a current configuration to a new configuration in which the fringe spacing of the fringe pattern is substantially maximal, thus aligning the gratings to have a substantially zero relative orientation angle. The new configuration is maintained whilst the polymer sets.


Products obtained by any of the processes disclosed herein are also provided. Such products include an optical component for use in an optical system, which optical component is substantially transparent, formed of polymer, and has substantially matching gratings on opposing portions of its surface, the gratings having a relative orientation angle that is zero to within one thousandth of a degree.





BRIEF DESCRIPTION OF FIGURES

To aid understanding of the subject matter, reference will now be made by way of example only to the following drawings in which:



FIG. 1A is a schematic plan view of an optical component;



FIG. 1B is a schematic illustration of an optical component, shown interacting with incident light and viewed from the side;



FIG. 2A is a schematic illustration of a straight binary grating, shown interacting with incident light and viewed from the side;



FIG. 2B is a schematic illustration of a slanted binary grating, shown interacting with incident light and viewed from the side;



FIG. 2C is a schematic illustration of an overhanging triangular grating, shown interacting with incident light and viewed from the side;



FIG. 3 is a perspective view of an optical component;



FIGS. 4A, 4B and 4C are side, plan and perspective views of parts of a moulding apparatus respectively;



FIG. 4D shows various views of a fringe observed at different points in time during a moulding process of one embodiment;



FIG. 5 is a block diagram of a moulding apparatus;



FIGS. 6A and 6B are side views of a moulding apparatus during a moulding process of another embodiment.





DETAILED DESCRIPTION


FIGS. 1A and 1B show from the top and the side respectively a substantially transparent optical component 2, such as a wave guide, having an outer surface S. At least a portion of the surface S exhibits surface modulations that form a surface grating 4, which is a SRG. Such a portion is referred to as a “grating area”. The modulations comprise grating lines which are substantially parallel and elongate (substantially longer than they are wide), and also substantially straight in this example (though they need not be straight in general).



FIG. 1B shows the optical component 2, and in particular the grating 4, interacting with an incoming illuminating light beam I that is inwardly incident on the SRG 4. The light I is white light in this example, and thus has multiple colour components. The light I interacts with the grating 4 which splits the light into several beams directed inwardly into the optical component 2. Some of the light I may also be reflected back from the surface S as a reflected beam R0. A zero-order mode inward beam T0 and any reflection R0 are created in accordance with the normal principles of diffraction as well as other non-zero-order (±n-order) modes (which can be explained as wave interference). FIG. 1B shows first-order inward beams T1, T-1; it will be appreciated that higher-order beams may or may not also be created depending on the configuration of the optical component 2. Because the nature of the diffraction is dependent on wavelength, for higher-order modes, different colour components (i.e. wavelength components) of the incident light I are, when present, split into beams of different colours at different angles of propagation relative to one another as illustrated in FIG. 1B.



FIGS. 2A-2C are close-up schematic cross sectional views of different exemplary SRGs 4a-4c (collectively referenced as 4 herein) that may be formed by modulations of the surface S of the optical component 2 (which is viewed from the side in these figures). Light beams are denoted as arrows whose thicknesses denote approximate relative intensity (with higher intensity beams shown as thicker arrows).



FIG. 2A shows an example of a straight binary SRG 4a. The straight binary grating 4a is formed of a series of grooves 7a in the surface S separated by protruding groove spacing regions 9a which are also referred to herein as “filling regions”, “grating lines” or simply “lines”. The grating 4a has a spatial period of d (referred to as the “grating period”), which is the distance over which the modulations' shape repeats. The grooves 7a have a depth h and have substantially straight walls and substantially flat bases. As such, the filling regions have a height h and a width that is substantially uniform over the height h of the filling regions, labelled “w” in FIG. 2A (with w being some fraction f of the period: w=f*d).


For a straight binary grating, the walls are substantially perpendicular to the surface S. For this reason, the grating 4a causes symmetric diffraction of incident light I that is entering perpendicularly to the surface, in that each +n-order mode beam (e.g. T1) created by the grating 4a has substantially the same intensity as the corresponding −n-order mode beam (e.g. T-1), typically less than about one fifth (0.2) of the intensity of the incident beam I.



FIG. 2B shows an example of a slanted binary grating 4b. The slanted grating 4b is also formed of grooves, labelled 7b, in the surface S having substantially straight walls and substantially flat bases separated by lines 9b of width w. However, in contrast to the straight grating 4a, the walls are slanted by an amount relative to the normal, denoted by the angle α in FIG. 2B. The grooves 7b have a depth h as measured along the normal. Due to the asymmetry introduced by the non-zero slant, ±n-order mode inward beams travelling away from the slant direction have greater intensity that their ∓n-order mode counterparts (e.g. in the example of FIG. 2B, the T1 beam is directed away from the direction of slant and has usually greater intensity than the T-1 beam, though this depends on e.g. the grating period d); by increasing the slant by a sufficient amount, those ∓n counterparts can be substantially eliminated (i.e. to have substantially zero intensity). The intensity of the T0 beam is typically also reduced very much by a slanted binary grating such that, in the example of FIG. 2B, the first-order beam T1 typically has an intensity of at most about four fifths (0.8) the intensity of the incident beam I.


The binary gratings 4a and 4b can be viewed as spatial waveforms embedded in the surface S that have a substantially square wave shape (with period d). In the case of the grating 4b, the shape is a skewed square wave shape skewed by α.



FIG. 2C shows an example of an overhanging triangular grating 4c which is a special case of an overhanging trapezoidal grating. The triangular 4c is formed of grooves 7c in the surface S that are triangular in shape (and which thus have discernible tips) and which have a depth h as measured along the normal. Filling regions 9c take the form of triangular, tooth-like protrusions (teeth), having medians that make an angle α with the normal (α being the slant angle of the grating 4c). The teeth have tips that are separated by d (which is the grating period of the grating 4c), a width that is w at the base of the teeth and which narrows to substantially zero at the tips of the teeth. For the grating of FIG. 4c, w≈d, but generally can be w<d. The grating is overhanging in that the tips of the teeth extend over the tips of the grooves. It is possible to construct overhanging triangular grating gratings that substantially eliminate both the transmission-mode T0 beam and the ∓n-mode beams, leaving only ±n-order mode beams (e.g. only T1). The grooves have walls which are at an angle γ to the median (wall angle). The grating 4c can be viewed as a spatial waveform embedded in S that has a substantially triangular wave shape, which is skewed by a.


The grooves and spacing regions that form the gratings 4a-4c constitute surface modulations.


Other type of grating are also possible, for example other types of trapezoidal grating patterns (which may not narrow in width all the way to zero), sinusoidal grating patterns etc. and have a modulation width that can be readily defined in a suitable manner. Such other patterns also exhibit depth h, linewidth w, slant angle α and wall angles γ which can be defined in a similar manner to FIG. 2A-C.


A grating 4 has a grating vector (generally denoted as d), whose size (magnitude) is the grating period d, and which is in a direction perpendicular to the grating lines which form that grating—see FIG. 1A.


In light guide-based display applications (e.g. where SRGs are used for coupling of light into and out of a light guide of the display system, and/or for providing beam expansion of beams coupled into the waveguide), d is typically between about 250 and 500 nm, and h between about 30 and 400 nm. The slant angle α is typically between about −45 and 45 degrees and is measured in the direction of the grating vector.



FIG. 3A shows a perspective view of an optical component 2 having two separate gratings 4F and 4B on respective portions of the component's surface, which are opposing, substantially parallel and substantially flat. Viewed as in FIG. 3A, these are front and rear portions of the surface. Each of the gratings 4B, 4F is formed of substantially parallel, elongate grating lines and grooved, which are also substantially straight in this example. The gratings 4B, 4F have respective grating periods dF, dB, which may or may not be the same. The gratings 4B, 4F can be of the type described above (and may, but need not be, of the same type).


The gratings 4F and 4B have respective grating vectors dF, dB (front and back grating vectors) which run parallel to their respective grating lines. A plane 3 is shown, which has a normal {circumflex over (n)}(3) (unit vector perpendicular to the plane 3) shown as a dotted arrow. In the example of FIG. 3A, because the front and rear surface portions are substantially parallel, they have substantially the same normals as the plane (≈{circumflex over (n)}(3)) so that the front and rear surface portions and the plane 3 are all substantially parallel (more generally, for non-parallel surface portions, the plane 3 could be defined to have a normal {circumflex over (n)}(3) in the approximate direction of the vector sum of the normals to the front and rear surface portions as this represents a direction of the mean of those normals, which normal {circumflex over (n)}(3) is considered to substantially match those normals when so defined).


Vectors 15F, 15B (shown as dashed arrows) lie in the plane 3, which are geometric projections of the front and back grating vectors dF, dB onto the plane 3. The projections 15F, 15B have an angular separation Δφ, which is an angle in the plane 3 (azimuth), and which is the angular separation of dF, dB when viewed along the normal {circumflex over (n)}(3). The angular separation Δφ is a measure of the relative orientation of the gratings 4F, 4B and is referred to herein as the relative orientation angle of the gratings 4F, 4B. When Δφ=0, the grating lines of the gratings 4F, 4B are aligned, at least when viewed along the normal 3′, and the gratings 4F, 4B are said to be aligned. In the example of FIG. 3, because the front and rear surface portions are substantially parallel, when Δφ=0 the gratings 4F, 4B are aligned when viewed from any viewpoint (more generally, this is true when the gratings 4F, 4B are arranged on opposing surface portions such that their respective grating lines are parallel when Δφ=0).


As will be apparent, the value of Δφ affects the optical characteristics of the optical component 2. In waveguide-based display applications, in which the optical component 2 forms part of a waveguide-based display system, misalignment of the gratings (that is deviation from zero in Δφ) can—depending on the function of the gratings—cause unwanted distortion of the image.


A moulding process for moulding optical components of the type shown in FIG. 3 from polymer will now be described with reference to FIGS. 4A-4D, which show various views of a moulding apparatus 1 during the process. The polymer is substantially transparent, which makes the process suitable for (among other things) moulding waveguides for waveguide-based display systems (see above).



FIG. 4A shows the apparatus 1 from the side. The apparatus comprises blocks 5F, 5B (front, back), 5U, 5D (upper, lower—visible in FIG. 4A only) and 5L (left—visible in FIG. 4B only), which are formed of a rigid material. The reference numeral 5 is used to refer to the blocks collectively. The blocks are arranged in contact so as to form a cavity 11 (moulding cavity), with regions of their surfaces (inner surface regions) forming the surface of the cavity 11. The rigid blocks 5 constitute a moulding component.


Portions of the front and back blocks' inner surface regions are modulated to form respective gratings 4′F, 4′B (front and rear cavity gratings) on each of those inner surface portions, which have structures corresponding to the gratings 4F, 4B of the optical component 2 shown in FIG. 3 respectively—in this case, each cavity grating 4′F, 4′B is formed by surface modulations in the form of substantially parallel, elongate and substantially straight grating lines/grooves, and have periods dF, dB respectively. These inner surface portions constitute opposing portions of the surface of the cavity 11, which are also substantially parallel to one another.


The cavity gratings 4′F, 4′B can be patterned on the front and rear blocks 5F, 5B, for instance, by way of a suitable microfabrication process, or they may themselves be moulded from a suitably patterned substrate.


An injection component 10 forces polymer 8 into the moulding cavity 11 (from the right as viewed in FIG. 4B) when the polymer 8 is in a molten (and thus liquid) state. In this manner, the liquid polymer 8 is forced into contact with the front and rear cavity gratings 4′F, 4′B—that is, into contact with the grooved and lines that form those gratings, which has the effect of imprinting the structure of the cavity gratings 4′F, 4′B in the polymer 8. The blocks 5 are sufficiently rigid to resist distortion from the force of the liquid polymer, so the gratings are imprinted undistorted. This is ultimately the mechanism by which the gratings 4F, 4B are formed on the optical component 2, itself formed by the polymer 8 upon setting, and for this reason the gratings 4F, 4B of the final optical component 2 are referred to hereinbelow as front and rear “imprint gratings” or equivalently “grating imprints” 4F, 4B. The front and rear surface portions of the final optical component 2 on which the imprint gratings 4F, 4B are formed correspond to the front and rear surface portions of the moulding cavity. The overall size and shape of the final component 2 matches that of the cavity 11 when the polymer was allowed to set therein.


In FIGS. 4A-4D, the z-direction is that of the normal {circumflex over (n)}(3) as defined in relation to the final optical component (which is perpendicular to the cavity surface portions on which the cavity gratings 4′F, 4′B are formed in this example), the xy-plane corresponds to the plane 3 of FIG. 3 (which lies parallel to those cavity surface portions in this example), and the cavity gratings 4′F, 4′B have a relative orientation angle Δφ′ that is defined in an equivalent manner to that of the imprint gratings 4F, 4B (i.e. as their angular separation measured in the xy-plane).


The arrangement of the rigid blocks 5 is not fixed: at least one of the front and back blocks 5B, 4F (the back block 5B in this example) is susceptible to xy-rotation whilst still maintaining the integrity of the moulding cavity 11 so that it can be rotated whilst continuing to hold the liquid polymer in the cavity 11. Controlled xy-rotation of the back block 5B is effected by controlling a suitable drive mechanism coupled to the back block 5B. Using commercially available drive mechanisms, it is possible to controller xy-rotation of the back block 5B to effect controlled rotation of the back block 5B by miniscule amounts (fractions of a thousandth of a degree, or less) in a regulated manner.


By adjusting the xy-orientation angle of the front and back blocks 5B, 5F relative to one another so as to adjust the relative orientation angle Δφ′ of the cavity gratings 4′F, 4′B, it is possible to precisely align the cavity gratings 4′F, 4′B (that is, to have a substantially zero Δφ′) before the polymer 8 sets. By maintaining a substantially zero Δφ′ whilst the polymer sets, the imprint gratings 4F, 4B on the optical component 2—as formed when the polymer 8 finished setting—are as aligned with equal precision as (i.e. with substantially zero Δφ=Δφ′). The mechanism by which this precise alignment is achieved will now be described with reference to FIGS. 4C and 4D.



FIG. 4C shows a perspective view of components of the moulding apparatus 1. A light sensor 6 (also shown in FIGS. 4A-4B) is positioned forward of the moulding cavity 5 to receive light propagating towards the sensor along a line of sight (LOS—shown as a dotted line) that has passed through a portion 7 of the moulding component 5 (alignment portion), which is a portion of the front block 4′F in this example. The LOS is oriented so as to intersect both of the cavity gratings 4F, 4B. At least the alignment portion 7 of the moulding component is substantially transparent along the LOS, so that light which has interacted with both gratings can propagate out of the moulding component along the LOS.


The disclosure recognizes that, when the cavity gratings 4′F, 4′B are in near alignment, an observable fringe pattern is formed that is observable along the LOS. A “fringe pattern” means a pattern created when light interacts with two substantially matching gratings (in this cast, the patterns of the cavity gratings 4′F, 4′B, which are perceived to overlap when viewed along the LOS) to create a pattern with fringes, the fringe spacing of which depends on the relative orientation angle of the gratings. The fringe pattern is formed of a series of alternating light and dark fringes, whose spacing increases as the relative orientation angle of the cavity gratings 4′F, 4′B is changed towards zero, at which the fringe spacing become maximal (theoretically infinite were the patterns to be exactly aligned with a relative orientation angle of exactly zero). “Near alignment” means that Δφ′ is within a range near zero that the fringe spacing is detectable (i.e. not so close to zero that the fringe spacing is too large to be detectable, but not so far from zero that the fringe spacing is too small to be detectable).


In practice, the Fringe pattern is best observed using diffracted light from the gratings. The diffracted light will generally propagate along almost the same path as the incident light but in the opposite direction. The path along which incident/diffracted light propagates is labelled I/D in FIG. 4A (R denotes the path followed by light reflected from the back grating 4′B) The LOS is substantially parallel to I/D, thus light visible along the LOS will include light which has interacted with both of the cavity gratings 4′F, 4′B, including when the polymer 8 is in the cavity 11 (as the polymer 8 is also substantially transparent and thus permits the passage of such light to the sensor 6). Thus, the sensor 6 is able to receive light from inside the moulding cavity which has interacted with both cavity gratings 4′F, 4′B. In the example of FIG. 4A, this light will have been reflected from the back grating 4′B (the reflected light being of a reflective diffraction mode) before passing through the front grating 4′F.


When the relative orientation angle Δφ′≈(5/1000)°, the fringe pattern will typically have a fringe spacing around 2 mm, which is readily observable. As this angle Δφ′ is decreased, the fringe spacing increases to the point at which it becomes substantially maximal—this is the point at the fringe spacing is so large that the pattern is no longer observable because the fringes are larger than the cavity gratings, or at least larger than a portion of the grating being if only that portion is being observed. At this point of substantially maximal fringe spacing, Δφ′ is substantially zero—in practice, when Δφ′ is no more than about (0.5*1/1000)° to (1/1000)°.


This is exploited present moulding process as follows. Whilst the polymer 8 in the moulding cavity 11 is still liquid, the front and back blocks 5B, 5F are brought into near alignment if they are not already in near alignment, so that the fringe pattern is observable along the LOS (current cavity configuration). Their relative orientation angle Δφ′ is then fine-tuned until the fringe spacing becomes substantially maximal, at which point Δφ′ is substantially zero (new and final cavity configuration). That new configuration (with the substantially zero Δφ′) is maintained whilst the polymer 8 sets to form the optical component 2, with the relative orientation angle Δφ of the imprint gratings 4F, 4B being substantially zero (equal to Δφ′ as reached in the new and final configuration) in the final component 2.



FIG. 4D shows views of the alignment portion 7 along the LOS at various points in time during the moulding process. A fringe pattern is visible at these points in time, which exhibits a changing fringe spacing D. The left-most view represents a view at a point in time when the gratings are in near alignment. Moving to the right, views are shown at points in time as the relative orientation angle Δφ′ is changed towards zero (with D increasing accordingly) until reaching the point at which D is substantially maximal as shown in the left-most view (which represents an exemplary view in or near the new and final configuration).


In practice, visibility of the fringe pattern can be increased by suitable illumination of the apparatus. For instance, to enhance the visibility of the fringe pattern, a laser (not shown) may be used to provide a beam that is directed towards the alignment portion 7. The beam is reflectively diffracted back of the back grating 4′B and the diffracted beam then passes thought the front grating 4′F towards the sensor 6. A beam expander (not shown) may be used to expand the beam before reaching the alignment portion 7, so as to increase the area over which the visibility is enhanced. For example, the beam may be expanded to encompass the cavity gratings 4′F, 4′B to provide the enhanced visibility of the fringe patterns over the full extent of the cavity gratings 4′F, 4′B. Curved components can be made using a curved mould i.e. the surfaces of the moulding component on which the gratings 4′F and 4′B care formed can be curved, whereby the curvature is imparted to the polymer as well as the structure of the gratings 4f, 4′B.



FIG. 5 is a block diagram of the moulding apparatus 1, which comprises a controller 20 connected to control both the drive mechanism 22 and the injection component 10, and to receive sensed data from the sensor 6. The drive mechanism is coupled to at least one of the back blocks 5F, 5B that form part of the moulding component (back block 5B in this example) for fine-tuning the relative orientation angle Δφ′ of the front and back cavity gratings 4′B, 4′B. The controller 20 can adjust Δφ′ automatically by controlling the drive mechanism 22, once it has controlled the injection component 10 force the polymer 8 into the cavity 11.


The controller 20 receives the sensed data from the sensor 6, and adjusts the relative orientation angle Δφ′ of the front and back cavity gratings 4′B, 4′F based on the sensed data until Δφ′ is substantially zero by effecting the procedure outlined above. The controller may be implemented by code executed on a processor.


In a first embodiment, the sensor 6 comprises an image sensing component in the form of a camera, which supplies images of the alignment portion 7, taken along the LOS, to the controller 20 (such images capturing the views shown in FIG. 4D). The controller comprises an image recognition module which performs an automatic image recognition procedure on the received images to detect the fringes of the fringe pattern when captured in the images. The controller adjusts Δφ′ until the results of the image recognition procedure indicate that the fringe spacing D is maximal, and maintains that Δφ′ until the polymer has set.


When illuminated with the laser beam, the fringe pattern is formed by light of the laser beam which has interacted with both gratings. The fringe pattern may not, and need not, be visible on any surface of either mould as the fringe pattern obtained with expanded laser beam can be recorded directly to a pixelated detector (for example, an array of individual pixel detectors), i.e. light reflected back from both alignment gratings interferes and creates the fringe patters on a detection surface of detector. The detector for example may part of the camera. In this manner, the pattern is observed on the surface of a detector instead on the surface of the moulds. The detector is used to detect the fringe spacing as created on the detector, and the moulding process is controlled based on the detected fringe spacing to align the gratings to the maximal fringe spacing.


In a second embodiment, the sensor 6 comprises a photodiode, which is shielded from surrounding light but for a small pinhole—e.g. having a diameter ˜1 mm (order of magnitude)—through which only a small portion of the fringe pattern is observable. That is, such that the only light received by the photodiode is from a small portion of the fringe pattern the size of the pinhole, so that once the cavity gratings are in near alignment, the fringes are larger than the pinhole. The controller 20 then changes Δφ′, e.g. at a uniform rate. As the cavity gratings 4′F, 4′B are brought into alignment, the fringe spacing increases, which effectively results in movement of the fringes (this is evident in FIG. 4D). Thus the intensity of the light received by the photodiode oscillates between high (when only part of a light fringe is observable through the pinhole) and low (when only part of a dark fringe is perceivable through the pinhole) as Δφ′ is changed. As the fringe spacing increases, the rate of this oscillation will decrease due to the light and dark fringes becoming progressively larger so that the rate of oscillation is minimal as Δφ′ becomes substantially zero—in the second embodiment, the controller adjusts Δφ′ until that minimum rate of oscillation is achieved, and maintains that Δφ′ until the polymer has set.


In some optical components, it may be desirable to have additional surface gratings that have a relative orientation angle, which does not deviate from a non-zero amount Φ by more than an amount which is substantially zero (i.e. which is Φ+Δφ, where Δφ is substantially zero). In this case, the gratings 4′F, 4′D as shown in FIG. 4C can be used in the same way as described above, with a first further grating formed on a distinct portion of the front block's inner surface that is oriented at an angle Φ1 relative to 4′F, and a second further grating formed on a distinct portion of the rear block's inner surface that is oriented at an angle Φ2 relative to 4′B. The angles Φ1, Φ2 are such that Φ=|Φ2−Φ1|, which can be achieved to a high level of accuracy using conventional techniques e.g. conventional microfabrication techniques. When the gratings 4′F, 4′B are aligned to have a substantially zero relative orientation angle Δφ′ (relative to one another) using the above techniques, the further gratings will have an orientation angle relative to one another that is substantially Φ i.e. that deviates from Φ by at most an amount of the order of Δφ′ (which is, of course, substantially zero). The further gratings will also be imprinted in the polymer as the polymer is forced into contact with these gratings when liquid in a similar manner to 4′F, 4′B, so that the further gratings as imprinted in the polymer have substantially the desired relative orientation angle Φ.



FIGS. 6A and 6B exemplify an alternative moulding process. In this process a transparent substrate, such as a glass or suitable plastic plate 30. Thin layers of polymer on the substrate are used to replicate the gratings from the mould i.e. the substrate acts as a “back bone” of the optical component and the gratings are formed on thin layers of polymer 8 on the substrate.



FIG. 6A show an alternative moulding apparatus 1′ in an initial arrangement, in which the plate 30, having thin layers of liquid polymer 8 deposited on portions of its outer surface, is disposed between two blocks 5F, 5B. These blocks can be substantially the same as in the apparatus of FIGS. 4A-C, with equivalent gratings 4′F, 4′B. The blocks 5F, 5B are then forced towards one another so that the gratings 4′F, 4′B are forced into contact with the liquid polymer layers as shown in FIG. 6B. In this manner, their structure is imprinted in the polymer layers. The relative orientation angle of the modulations 4′F, 4′B is then changed to substantially zero using the fringe pattern formed by the gratings 4′F, 4′B, and remains thus whilst the polymer layers set. The final optical component comprises the plate 30 and the set polymer layers on the plate's surface.


Note that, in this case, the area in which the polymer is imprinted does not necessarily have to be sealed, and the alignment portion could alternatively be an uncovered gap between the components 5F and 5B (e.g. the sensor 6 could be located below the apparatus 1′ to receive light reflected of both gratings 4′F, 4′B, the alignment portion being the gap between 5F and 5B at the bottom of the apparatus 1′).


As will be apparent, the alternative apparatus 1′ does not need an injection component, but otherwise has a similar configuration to that shown in FIG. 5.


Whilst in the above, the exemplary gratings 4F,4B (equivalently 4′F, 4′B) match due to the fact that they are both formed of substantially straight grating lines, in general gratings which are considered to “substantially match” do not necessarily have to be formed of straight grating lines, nor do they have to be formed of identically shaped curved grating lines. In general, two gratings “substantially match” provided some parts of their respective structures are similar enough for it to be possible to create an observable fringe pattern that exhibits a discernible fringe spacing by overlaying those parts (even though other parts of their structure may be markedly different).


Note that the alignment gratings need not overlap, provided it is possible to receive light which has interacted with (e.g. been reflected from) both at a location in space (e.g. at a detector) so that a fringe pattern is formed at that location.


Whilst in the above, gratings are formed on opposing, substantially parallel surfaces, in general the terminology “opposing surfaces portions” (or similar) encompasses surface portions which are not parallel. Note that the definition of the relative orientation angle (azimuth) between two gratings as set out above with reference to FIG. 3B can be applied to gratings on non-parallel surface portions.


Whilst the above has been described with reference to opposing gratings, the techniques can be applied to non-opposing gratings, whereby the fringe pattern is formed for instance by a beam which has been guided by reflection onto both gratings, and which thus interacts with both.


The cavity gratings 4′F, 4′B (and thus the imprint gratings 4F, 4B) can be binary (slanted/non-slanted), sinusoidal, trapezoidal (e.g. triangular) in shape (among others) and need not have the same shape, slant α, width w, depth h etc. as one another (though this is not excluded).


Whilst the above considers a substantially software-implemented controller 20, the functionality of the controller can be implemented using software, firmware, hardware (e.g., fixed logic circuitry), or a combination of these implementations. The terms “module,” “functionality,” “component” and “logic” as used herein generally represent, where applicable, software, firmware, hardware, or a combination thereof. In the case of a software implementation, the module, functionality, or logic represents program code that performs specified tasks when executed on a processor (e.g. CPU or CPUs). The program code can be stored in one or more computer readable memory devices. The features of the techniques described below are platform-independent, meaning that the techniques may be implemented on a variety of commercial computing platforms having a variety of processors.


For example, the apparatus may also include an entity (e.g. software) that causes hardware of a computer of the apparatus to perform operations, e.g., processors functional blocks, and so on. For example, the computer may include a computer-readable medium that may be configured to maintain instructions that cause the computer, and more particularly the operating system and associated hardware of the computer to perform operations. Thus, the instructions function to configure the operating system and associated hardware to perform the operations and in this way result in transformation of the operating system and associated hardware to perform functions. The instructions may be provided by the computer-readable medium to the computer through a variety of different configurations.


One such configuration of a computer-readable medium is signal bearing medium and thus is configured to transmit the instructions (e.g. as a carrier wave) to the computing device, such as via a network. The computer-readable medium may also be configured as a computer-readable storage medium and thus is not a signal bearing medium. Examples of a computer-readable storage medium include a random-access memory (RAM), read-only memory (ROM), an optical disc, flash memory, hard disk memory, and other memory devices that may us magnetic, optical, and other techniques to store instructions and other data.


Moreover, whilst the above alignment process is automated, manual or partially manual processes are not excluded.


In embodiments of the various aspects set out above, images of the fringe pattern may be captured as the cavity is reconfigured and an automatic image recognition procedure may be performed to detect the fringe pattern in the images, the step of reconfiguring being based on the results of the image recognition procedure.


Light of only a small portion of the fringe pattern may be sensed as the cavity is reconfigured, the step of reconfiguring being based on the rate at which the intensity of that light changes.


Each of the gratings may lie substantially parallel to a plane, and the gratings may not overlap or may only partially overlap with one another when viewed along a direction normal to the plane.


The gratings may be illuminated with an expanded laser beam, the fringe pattern being formed by light of the laser beam which has interacted with both gratings. The light of the laser beam may for instance be received at a detector, part of the received light having been reflected from one of the gratings and another part of the light having been reflected from the other of the gratings, whereby the part and the other part interfere at the detector to form the fringe pattern on a detection surface of the detector. An output of the detector may be used to control the reconfiguring step.


The opposing portions of the cavity's surface may be substantially parallel, so that the opposing portions of the moulded optical component's surface are substantially parallel.


A first and a second further grating may be formed on other opposing portions of the cavity's surface, the first further grating having a first orientation angle Φ1 relative to the one of the gratings and the second further grating having a second orientation angle Φ2 relative to the other of the gratings, so that the first and second further gratings are imprinted in the polymer having a relative orientation angle that is substantially |Φ2−Φ1| in the new configuration.


At least one of the surfaces of the moulding component may be curved so that the polymer sets in a curved configuration.


The moulding component may be arranged to provide a moulding cavity, the surfaces being of the moulding cavity, and the polymer may be forced into the moulding cavity to force the polymer into contact with the surface modulations, the moulding component reconfigured to the new configuration whilst the polymer in the cavity is still liquid.


The polymer may be arranged in layers on the surface of a substantially transparent substrate, whereby the gratings are imprinted in the layers, the moulding component reconfigured to the new configuration whilst the layers are still liquid, the optical component comprising the substrate and the layers once set.


The light sensor may comprise a camera which captures images of the fringe pattern as the cavity is reconfigured, the controller may comprise an image recognition module which performs an automatic image recognition procedure to detect the fringe pattern in the images, and the controller may reconfigure the cavity based on the results of the image recognition procedure.


The light sensor may sense light of only a small portion of the fringe pattern as the cavity is reconfigured, and the controller may be reconfigured based on the rate at which the intensity of that light changes.


According to a third aspect an optical component for use in an optical system is substantially transparent and has two opposing outer surfaces. At least a respective portion of each of the opposing surfaces is formed of polymer in which a respective grating is imprinted. The gratings substantially match one another and have a relative orientation angle that is zero to within one thousandth of a degree.


The relative orientation angle may for instance be zero to within one half of one thousandth of a degree.


The opposing surface portions may be substantially parallel.


The optical component may be used as a waveguide in a display system to transport light of an image to a user's eye, for example a wearable display system that is wearable by the user.


The gratings may be binary, trapezoidal or sinusoidal in shape.


Another aspect of the subject matter is directed to a moulding apparatus for moulding a substantially transparent optical component which comprises polymer, the optical component having substantially matching grating imprints on opposing portions of its surface, wherein the grating imprints have a substantially zero relative orientation angle, the apparatus comprising: a moulding component having two surfaces, the surfaces having surface modulations which form two substantially matching gratings, wherein the moulding component is configurable to change the relative orientation angle of the gratings; a drive mechanism coupled to the moulding component controllable to configure the moulding component; wherein at least an alignment portion of the moulding component is substantially transparent, the alignment portion located so that light which has interacted with both gratings is observable from the alignment portion when the substantially transparent polymer is between the surfaces, whereby an observable fringe pattern is formed as the relative orientation angle of the gratings is changed towards zero, the fringe pattern exhibiting a fringe spacing which increases as the relative orientation angle decreases, the apparatus further comprising: a light sensor configured to receive at least some of the light which has interacted with both gratings; and a controller configured, whilst the polymer is still liquid, to control the drive mechanism based on sensed data received from the image sensor to reconfigure the moulding component from a current configuration to a new configuration in which the fringe spacing of the fringe pattern is substantially maximal, thus aligning the gratings to have a substantially zero relative orientation angle, wherein the new configuration is maintained whilst the polymer sets.


Yet another aspect is directed to a moulding process for moulding a substantially transparent optical component from polymer, the optical component having substantially matching grating imprints on opposing portions of its surface, wherein the grating imprints have a substantially zero relative orientation angle, the process comprising: forcing substantially transparent molten polymer into a moulding cavity provided by a moulding component, the cavity's surface having surface modulations which form two substantially matching gratings on opposing portions of the cavity's surface, the molten polymer forced into contact with the surface modulations so as to imprint the gratings in the polymer, wherein the cavity is configurable to change the relative orientation angle of the gratings; wherein at least an alignment portion of the moulding component is substantially transparent along a line of sight that intersects both gratings so that light which has interacted with both gratings is observable along the line of sight when the substantially transparent polymer is in the cavity, whereby an observable fringe pattern is formed as the relative orientation angle of the gratings is changed towards zero, the fringe pattern exhibiting a fringe spacing which increases as the relative orientation angle decreases, the process further comprising: whilst the polymer in the cavity is still liquid, reconfiguring the cavity from a current configuration to a new configuration in which the fringe spacing of the fringe pattern is substantially maximal, thus aligning the gratings to have a substantially zero relative orientation angle, wherein the new configuration is maintained whilst the polymer sets.


Although the subject matter has been described in language specific to structural features and/or methodological acts, it is to be understood that the subject matter defined in the appended claims is not necessarily limited to the specific features or acts described above. Rather, the specific features and acts described above are disclosed as example forms of implementing the claims.

Claims
  • 1. A moulding process for making a substantially transparent optical component which comprises polymer, the optical component having substantially matching grating imprints on respective portions of its surface, wherein the grating imprints have a substantially zero relative orientation angle, the process comprising: forcing substantially transparent molten polymer between two surfaces of a moulding component, the surfaces having surface modulations which form two substantially matching gratings, the molten polymer forced into contact with the surface modulations so as to imprint the gratings in the polymer, wherein the moulding component is configurable to change the relative orientation angle of the gratings;wherein at least an alignment portion of the moulding component is substantially transparent, the alignment portion located so that light which has interacted with both gratings is observable from the alignment portion when the substantially transparent polymer is between the surfaces, whereby an observable fringe pattern is formed as the relative orientation angle of the gratings is changed towards zero, the fringe pattern exhibiting a fringe spacing which increases as the relative orientation angle decreases, the process further comprising:whilst the polymer is still liquid, reconfiguring the moulding component from a current configuration to a new configuration in which the fringe spacing of the fringe pattern is substantially maximal, thus aligning the gratings to have a substantially zero relative orientation angle, wherein the new configuration is maintained whilst the polymer sets.
  • 2. A moulding process according to claim 1 comprising capturing images of the fringe pattern as the cavity is reconfigured and performing an automatic image recognition procedure to detect the fringe pattern in the images, wherein the step of reconfiguring is based on the results of the image recognition procedure.
  • 3. A moulding process according to claim 1 comprising sensing light of only a small portion of the fringe pattern as the cavity is reconfigured, wherein the step of reconfiguring is based on the rate at which the intensity of that light changes.
  • 4. A moulding process according to claim 1 wherein each of the gratings lies substantially parallel to a plane, and the gratings do not overlap or only partially overlap with one another when viewed along a direction normal to the plane.
  • 5. A moulding process according to claim 1 comprising illuminating the gratings with an expanded laser beam, the fringe pattern formed by light of the laser beam which has interacted with both gratings.
  • 6. A moulding process according to claim 5 comprising: receiving the light of the laser beam at a detector, part of the received light having been reflected from one of the gratings and another part of the light having been reflected from the other of the gratings, whereby the part and the other part interfere at the detector to form the fringe pattern on a detection surface of the detector; andusing an output of the detector to control the reconfiguring step.
  • 7. A moulding process according to claim 1 wherein the opposing portions of the cavity's surface are substantially parallel, so that the opposing portions of the moulded optical component's surface are substantially parallel.
  • 8. A moulding process according to claim 1, wherein a first and a second further grating are formed on other opposing portions of the cavity's surface, the first further grating having a first orientation angle Φ1 relative to the one of the gratings and the second further grating having a second orientation angle Φ2 relative to the other of the gratings, so that the first and second further gratings are imprinted in the polymer having a relative orientation angle that is substantially |Φ2−Φ1| in the new configuration.
  • 9. A moulding process according to claim 1 wherein at least one of the surfaces of the moulding component is curved so that the polymer sets in a curved configuration.
  • 10. A moulding process according to claim 1 wherein the moulding component is arranged to provide a moulding cavity, the surfaces being of the moulding cavity, and wherein the polymer is forced into the moulding cavity to force the polymer into contact with the surface modulations, the moulding component reconfigured to the new configuration whilst the polymer in the cavity is still liquid.
  • 11. A moulding process according to claim 1 wherein the polymer is arranged in layers on the surface of a substantially transparent substrate, whereby the gratings are imprinted in the layers, the moulding component reconfigured to the new configuration whilst the layers are still liquid, wherein the optical component comprises the substrate and the layers once set.
  • 12. A product obtained by the process of claim 1.
  • 13. A moulding apparatus for moulding a substantially transparent optical component which comprises polymer, the optical component having substantially matching grating imprints on opposing portions of its surface, wherein the grating imprints have a substantially zero relative orientation angle, the apparatus comprising: a moulding component having two surfaces, the surfaces having surface modulations which form two substantially matching gratings, wherein the moulding component is configurable to change the relative orientation angle of the gratings;a drive mechanism coupled to the moulding component controllable to configure the moulding component;wherein at least an alignment portion of the moulding component is substantially transparent, the alignment portion located so that light which has interacted with both gratings is observable from the alignment portion when the substantially transparent polymer is between the surfaces, whereby an observable fringe pattern is formed as the relative orientation angle of the gratings is changed towards zero, the fringe pattern exhibiting a fringe spacing which increases as the relative orientation angle decreases, the apparatus further comprising:a light sensor configured to receive at least some of the light which has interacted with both gratings; anda controller configured, whilst the polymer is still liquid, to control the drive mechanism based on sensed data received from the image sensor to reconfigure the moulding component from a current configuration to a new configuration in which the fringe spacing of the fringe pattern is substantially maximal, thus aligning the gratings to have a substantially zero relative orientation angle, wherein the new configuration is maintained whilst the polymer sets.
  • 14. A moulding apparatus according to claim 13 wherein the light sensor comprises a camera which captures images of the fringe pattern as the cavity is reconfigured, and wherein the controller comprises an image recognition module which performs an automatic image recognition procedure to detect the fringe pattern in the images, wherein the controller reconfigures the cavity based on the results of the image recognition procedure.
  • 15. A moulding apparatus according to claim 13 wherein the light sensor senses light of only a small portion of the fringe pattern as the cavity is reconfigured, and the controller is reconfigured based on the rate at which the intensity of that light changes.
  • 16. An optical component for use in an optical system, wherein the optical component is substantially transparent and has two opposing outer surfaces, wherein at least a respective portion of each of the opposing surfaces is formed of polymer in which a respective grating is imprinted, wherein the gratings substantially match one another and have a relative orientation angle that is zero to within one thousandth of a degree.
  • 17. An optical component according to claim 16, wherein the relative orientation angle is zero to within one half of one thousandth of a degree.
  • 18. An optical component according to claim 16, wherein the opposing surface portions are substantially parallel.
  • 19. An optical component according to claim 16, when used as a waveguide in a display system to transport light of an image to a user's eye.
  • 20. An optical component according to claim 16, when used in a wearable display system that is wearable by the user.
US Referenced Citations (555)
Number Name Date Kind
3227888 Turnbull et al. Jan 1966 A
3542453 Kantor Nov 1970 A
3836258 Courten et al. Sep 1974 A
3906528 Johnson Sep 1975 A
3971065 Bayer Jul 1976 A
4200395 Smith et al. Apr 1980 A
4294507 Johnson Oct 1981 A
4402610 Lacombat Sep 1983 A
4664524 Hattori et al. May 1987 A
4711512 Upatnieks Dec 1987 A
4758087 Hicks, Jr. Jul 1988 A
4799752 Carome Jan 1989 A
4822145 Staelin Apr 1989 A
4860361 Sato et al. Aug 1989 A
4900129 Vanderwerf Feb 1990 A
4957351 Shioji Sep 1990 A
5004673 Vlannes Apr 1991 A
5019808 Prince et al. May 1991 A
5019898 Chao et al. May 1991 A
5106181 Rockwell, III Apr 1992 A
5114236 Matsugu et al. May 1992 A
5146355 Prince et al. Sep 1992 A
5162656 Matsugu et al. Nov 1992 A
5309169 Lippert May 1994 A
5313535 Williams May 1994 A
5359444 Piosenka et al. Oct 1994 A
5413884 Koch et al. May 1995 A
5453877 Gerbe et al. Sep 1995 A
5455458 Quon et al. Oct 1995 A
5459611 Bohn et al. Oct 1995 A
5483307 Anderson Jan 1996 A
5543588 Bisset et al. Aug 1996 A
5549212 Kanoh et al. Aug 1996 A
5574473 Sekiguchi Nov 1996 A
5579830 Giammaruti Dec 1996 A
5583609 Mizutani et al. Dec 1996 A
5606455 Eichenlaub Feb 1997 A
5614941 Hines Mar 1997 A
5630902 Galarneau May 1997 A
5648643 Knowles et al. Jul 1997 A
5651414 Suzuki et al. Jul 1997 A
5673146 Kelly Sep 1997 A
5708449 Heacock et al. Jan 1998 A
5712995 Cohn Jan 1998 A
5714967 Okamura et al. Feb 1998 A
5737171 Buller et al. Apr 1998 A
5751476 Matsui et al. May 1998 A
5771042 Santos-Gomez Jun 1998 A
5771320 Stone Jun 1998 A
5772903 Hirsch Jun 1998 A
5856842 Tedesco Jan 1999 A
5861931 Gillian et al. Jan 1999 A
5880725 Southgate Mar 1999 A
5886822 Spitzer Mar 1999 A
5940149 Vanderwerf Aug 1999 A
5959664 Woodgate Sep 1999 A
5982553 Bloom et al. Nov 1999 A
5991087 Rallison Nov 1999 A
6101008 Popovich Aug 2000 A
6144439 Carollo Nov 2000 A
6160667 Smoot Dec 2000 A
6169829 Laming et al. Jan 2001 B1
6181852 Adams et al. Jan 2001 B1
6226178 Broder et al. May 2001 B1
6239502 Grewe et al. May 2001 B1
6271808 Corbin Aug 2001 B1
6307142 Allen et al. Oct 2001 B1
6323949 Lading et al. Nov 2001 B1
6323970 Popovich Nov 2001 B1
6377401 Bartlett Apr 2002 B1
6411512 Mankaruse et al. Jun 2002 B1
6417892 Sharp et al. Jul 2002 B1
6446442 Batchelor et al. Sep 2002 B1
6466198 Feinstein Oct 2002 B1
6470289 Peters et al. Oct 2002 B1
6481851 McNelley et al. Nov 2002 B1
6483580 Xu et al. Nov 2002 B1
6496218 Takigawa et al. Dec 2002 B2
6529331 Massof et al. Mar 2003 B2
6542307 Gleckman et al. Apr 2003 B2
6545650 Yamada et al. Apr 2003 B1
6553165 Temkin et al. Apr 2003 B1
6554428 Fergason et al. Apr 2003 B2
6577411 David Jun 2003 B1
6580529 Amitai et al. Jun 2003 B1
6606152 Littau et al. Aug 2003 B2
6621702 Elias et al. Sep 2003 B2
6631755 Kung et al. Oct 2003 B1
6635999 Belliveau Oct 2003 B2
6639201 Almogy et al. Oct 2003 B2
6661436 Barksdale et al. Dec 2003 B2
6735499 Ohki et al. May 2004 B2
6753828 Tuceryan et al. Jun 2004 B2
6775460 Steiner et al. Aug 2004 B2
6792328 Laughery et al. Sep 2004 B2
6804115 Lai Oct 2004 B2
6809925 Belady et al. Oct 2004 B2
6819426 Sezginer et al. Nov 2004 B2
6825987 Repetto et al. Nov 2004 B2
6829095 Amitai Dec 2004 B2
6867753 Chinthammit et al. Mar 2005 B2
6888613 Robins et al. May 2005 B2
6889755 Zuo et al. May 2005 B2
6906901 Liu Jun 2005 B1
6916584 Sreenivasan et al. Jul 2005 B2
6919867 Sauer Jul 2005 B2
6947020 Kiser et al. Sep 2005 B2
6964731 Krisko et al. Nov 2005 B1
6971443 Kung et al. Dec 2005 B2
6992738 Ishihara et al. Jan 2006 B2
6997241 Chou et al. Feb 2006 B2
7006215 Hoff et al. Feb 2006 B2
7015876 Miller Mar 2006 B1
7031894 Niu et al. Apr 2006 B2
7048385 Beeson et al. May 2006 B2
7061624 Ishizuka Jun 2006 B2
7069975 Haws et al. Jul 2006 B1
7099005 Fabrikant et al. Aug 2006 B1
7113605 Rui et al. Sep 2006 B2
7116555 Kamath et al. Oct 2006 B2
7151635 Bidnyk et al. Dec 2006 B2
7181699 Morrow et al. Feb 2007 B2
7184615 Levola Feb 2007 B2
7189362 Nordin et al. Mar 2007 B2
7191820 Chou et al. Mar 2007 B2
7193584 Lee et al. Mar 2007 B2
7196758 Crawford et al. Mar 2007 B2
7206107 Levola Apr 2007 B2
7212709 Hosoi May 2007 B2
7212723 McLeod et al. May 2007 B2
7250930 Hoffman et al. Jul 2007 B2
7261453 Morejon et al. Aug 2007 B2
7261827 Ootsu et al. Aug 2007 B2
7271795 Bradski Sep 2007 B2
7277282 Tate Oct 2007 B2
7301587 Uehara et al. Nov 2007 B2
7333690 Peale et al. Feb 2008 B1
7337018 Espinoza-Ibarra et al. Feb 2008 B2
7359420 Shchegrov et al. Apr 2008 B2
7365734 Fateh et al. Apr 2008 B2
7369101 Sauer et al. May 2008 B2
7372565 Holden et al. May 2008 B1
7376852 Edwards May 2008 B2
7396133 Burnett et al. Jul 2008 B2
7412306 Katoh et al. Aug 2008 B2
7416017 Haws et al. Aug 2008 B2
7417617 Eichenlaub Aug 2008 B2
7418170 Mukawa et al. Aug 2008 B2
7428001 Schowengerdt et al. Sep 2008 B2
7430349 Jones Sep 2008 B2
7430355 Heikenfeld et al. Sep 2008 B2
7437678 Awada et al. Oct 2008 B2
7455102 Cheng Nov 2008 B2
7505269 Cosley et al. Mar 2009 B1
7513627 Larson et al. Apr 2009 B2
7515143 Keam et al. Apr 2009 B2
7532227 Nakajima et al. May 2009 B2
7542665 Lei Jun 2009 B2
7551814 Smits Jun 2009 B1
7576916 Amitai Aug 2009 B2
7583327 Takatani Sep 2009 B2
7607111 Vaananen et al. Oct 2009 B2
7612882 Wu et al. Nov 2009 B2
7619895 Wertz et al. Nov 2009 B1
7631687 Yang Dec 2009 B2
7646606 Rytka et al. Jan 2010 B2
7649594 Kim et al. Jan 2010 B2
7656912 Brueck et al. Feb 2010 B2
7660500 Konttinen et al. Feb 2010 B2
7679641 Lipton et al. Mar 2010 B2
7693292 Gross et al. Apr 2010 B1
7701716 Blanco, Jr. et al. Apr 2010 B2
7706785 Lei et al. Apr 2010 B2
7716003 Wack et al. May 2010 B1
7719769 Sugihara et al. May 2010 B2
7728933 Kim et al. Jun 2010 B2
7764413 Levola Jul 2010 B2
7768534 Pentenrieder et al. Aug 2010 B2
7777944 Ho et al. Aug 2010 B2
7788474 Switzer et al. Aug 2010 B2
7817104 Ryu et al. Oct 2010 B2
7826508 Reid et al. Nov 2010 B2
7832885 Hsiao et al. Nov 2010 B2
7843691 Reichert et al. Nov 2010 B2
7871811 Fang et al. Jan 2011 B2
7890882 Nelson Feb 2011 B1
7894613 Ong et al. Feb 2011 B1
7903409 Patel et al. Mar 2011 B2
7904832 Ubillos Mar 2011 B2
7909958 Washburn et al. Mar 2011 B2
7941231 Dunn May 2011 B1
7949214 DeJong May 2011 B2
7986462 Kobayashi et al. Jul 2011 B2
8004621 Woodgate et al. Aug 2011 B2
8014644 Morimoto et al. Sep 2011 B2
8033709 Kao et al. Oct 2011 B2
8046616 Edwards Oct 2011 B2
8061411 Xu et al. Nov 2011 B2
8085948 Thomas et al. Dec 2011 B2
8092064 Erchak et al. Jan 2012 B2
8125579 Khan et al. Feb 2012 B2
8128800 Seo et al. Mar 2012 B2
8139504 Mankins et al. Mar 2012 B2
8150893 Bohannon et al. Apr 2012 B2
8160411 Levola et al. Apr 2012 B2
8162524 Van Ostrand et al. Apr 2012 B2
8165988 Shau et al. Apr 2012 B2
8176436 Arend et al. May 2012 B2
8189263 Wang et al. May 2012 B1
8195220 Kim et al. Jun 2012 B2
8233204 Robbins et al. Jul 2012 B1
8233273 Chen et al. Jul 2012 B2
8244667 Weinberger et al. Aug 2012 B1
8246170 Yamamoto et al. Aug 2012 B2
8274614 Yokote et al. Sep 2012 B2
8300614 Ankaiah et al. Oct 2012 B2
8320032 Levola Nov 2012 B2
8332402 Forstall et al. Dec 2012 B2
8358400 Escuti Jan 2013 B2
8384999 Crosby et al. Feb 2013 B1
8392035 Patel et al. Mar 2013 B2
8395898 Chamseddine et al. Mar 2013 B1
8418083 Lundy et al. Apr 2013 B1
8434019 Nelson Apr 2013 B2
8446340 Aharoni May 2013 B2
8466953 Levola Jun 2013 B2
8472119 Kelly Jun 2013 B1
8482920 Tissot et al. Jul 2013 B2
8571539 Ranganathan et al. Oct 2013 B1
8576143 Kelly Nov 2013 B1
8589341 Golde et al. Nov 2013 B2
8593734 Laakkonen Nov 2013 B2
8594702 Naaman et al. Nov 2013 B2
8605700 Gurin Dec 2013 B2
8611014 Valera et al. Dec 2013 B2
8627228 Yosef et al. Jan 2014 B2
8629815 Brin et al. Jan 2014 B2
8634139 Brown et al. Jan 2014 B1
8638498 Bohn et al. Jan 2014 B2
8645871 Fong et al. Feb 2014 B2
8666212 Amirparviz Mar 2014 B1
8693500 Ludwig et al. Apr 2014 B2
8698845 Lemay Apr 2014 B2
8700931 Gudlavenkatasiva et al. Apr 2014 B2
8712598 Dighde et al. Apr 2014 B2
8717676 Rinko May 2014 B2
8754831 Kollin et al. Jun 2014 B2
8810600 Bohn et al. Aug 2014 B2
8817350 Robbins et al. Aug 2014 B1
8823531 McCleary et al. Sep 2014 B1
8885997 Nguyen et al. Nov 2014 B2
8909384 Beitelmal et al. Dec 2014 B1
8917453 Bohn Dec 2014 B2
8934235 Rubenstein et al. Jan 2015 B2
8941683 Son et al. Jan 2015 B2
8989535 Robbins Mar 2015 B2
9304235 Sainiemi et al. Apr 2016 B2
9372347 Levola et al. Jun 2016 B1
20010043208 Furness, III et al. Nov 2001 A1
20020035455 Niu et al. Mar 2002 A1
20020038196 Johnson et al. Mar 2002 A1
20020041735 Cai et al. Apr 2002 A1
20020044152 Abbott et al. Apr 2002 A1
20020044162 Sawatari Apr 2002 A1
20020063820 Broer et al. May 2002 A1
20020097558 Stone et al. Jul 2002 A1
20020138772 Crawford et al. Sep 2002 A1
20020171939 Song Nov 2002 A1
20020180659 Takahashi Dec 2002 A1
20030006364 Katzir et al. Jan 2003 A1
20030023889 Hofstee et al. Jan 2003 A1
20030137706 Rmanujam et al. Jul 2003 A1
20030179453 Mori et al. Sep 2003 A1
20030214728 Olczak Nov 2003 A1
20040011503 Kung et al. Jan 2004 A1
20040042724 Gombert et al. Mar 2004 A1
20040085649 Repetto et al. May 2004 A1
20040108971 Waldern et al. Jun 2004 A1
20040109234 Levola Jun 2004 A1
20040135209 Hsieh et al. Jul 2004 A1
20040151466 Crossman-Bosworth et al. Aug 2004 A1
20040176928 Johnson Sep 2004 A1
20040267990 Lin Dec 2004 A1
20050100272 Gilman May 2005 A1
20050174737 Meir Aug 2005 A1
20050207120 Tseng et al. Sep 2005 A1
20050243107 Haim et al. Nov 2005 A1
20050248705 Smith et al. Nov 2005 A1
20050285878 Singh et al. Dec 2005 A1
20060018025 Sharon et al. Jan 2006 A1
20060032616 Yang Feb 2006 A1
20060038881 Starkweather et al. Feb 2006 A1
20060054787 Olsen et al. Mar 2006 A1
20060072206 Tsuyuki et al. Apr 2006 A1
20060118280 Liu Jun 2006 A1
20060126181 Levola Jun 2006 A1
20060129951 Vaananen et al. Jun 2006 A1
20060132806 Shchegrov et al. Jun 2006 A1
20060132914 Weiss et al. Jun 2006 A1
20060139447 Unkrich Jun 2006 A1
20060152646 Schrader Jul 2006 A1
20060164382 Kulas et al. Jul 2006 A1
20060183331 Hofmann Aug 2006 A1
20060196643 Hata et al. Sep 2006 A1
20060221448 Nivon et al. Oct 2006 A1
20060228073 Mukawa et al. Oct 2006 A1
20060249765 Hsieh Nov 2006 A1
20060250541 Huck Nov 2006 A1
20070002412 Aihara Jan 2007 A1
20070008456 Lesage et al. Jan 2007 A1
20070023703 Sunaoshi et al. Feb 2007 A1
20070027591 Goldenberg et al. Feb 2007 A1
20070041684 Popovich et al. Feb 2007 A1
20070097019 Wynne-Powell et al. May 2007 A1
20070147673 Crandall Jun 2007 A1
20070153395 Repetto et al. Jul 2007 A1
20070171328 Freeman et al. Jul 2007 A1
20070177260 Kuppenheimer et al. Aug 2007 A1
20070214180 Crawford Sep 2007 A1
20070236959 Tolbert et al. Oct 2007 A1
20070284093 Bhatti et al. Dec 2007 A1
20080008076 Raguin et al. Jan 2008 A1
20080014534 Barwicz et al. Jan 2008 A1
20080025350 Arbore et al. Jan 2008 A1
20080043100 Sobel et al. Feb 2008 A1
20080043425 Hebert et al. Feb 2008 A1
20080088603 Eliasson et al. Apr 2008 A1
20080088624 Long et al. Apr 2008 A1
20080106677 Kuan et al. May 2008 A1
20080117341 McGrew May 2008 A1
20080141681 Arnold Jun 2008 A1
20080150913 Bell et al. Jun 2008 A1
20080174735 Quach et al. Jul 2008 A1
20080232680 Berestov et al. Sep 2008 A1
20080248852 Rasmussen Oct 2008 A1
20080285140 Amitai Nov 2008 A1
20080297535 Reinig Dec 2008 A1
20080303918 Keithley Dec 2008 A1
20080311386 Wendt Dec 2008 A1
20090002939 Baugh et al. Jan 2009 A1
20090015742 Liao et al. Jan 2009 A1
20090021908 Patel et al. Jan 2009 A1
20090051283 Cok et al. Feb 2009 A1
20090059376 Hayakawa Mar 2009 A1
20090084525 Satou et al. Apr 2009 A1
20090092261 Bard Apr 2009 A1
20090097127 Amitai Apr 2009 A1
20090128449 Brown et al. May 2009 A1
20090128901 Tilleman et al. May 2009 A1
20090180250 Holling et al. Jul 2009 A1
20090189974 Deering Jul 2009 A1
20090190003 Park et al. Jul 2009 A1
20090195756 Li et al. Aug 2009 A1
20090199128 Matthews et al. Aug 2009 A1
20090222147 Nakashima et al. Sep 2009 A1
20090224416 Laakkonen et al. Sep 2009 A1
20090235203 Iizuka Sep 2009 A1
20090244413 Ishikawa et al. Oct 2009 A1
20090246707 Li et al. Oct 2009 A1
20090256837 Deb et al. Oct 2009 A1
20090262419 Robinson et al. Oct 2009 A1
20090303599 Levola Dec 2009 A1
20100002989 Tokushima Jan 2010 A1
20100021108 Kang et al. Jan 2010 A1
20100053151 Marti et al. Mar 2010 A1
20100060551 Sugiyama et al. Mar 2010 A1
20100061078 Kim Mar 2010 A1
20100074291 Nakamura Mar 2010 A1
20100079865 Saarikko et al. Apr 2010 A1
20100084674 Paetzold et al. Apr 2010 A1
20100096617 Shanks Apr 2010 A1
20100103078 Mukawa et al. Apr 2010 A1
20100134534 Seesselberg et al. Jun 2010 A1
20100141905 Burke Jun 2010 A1
20100149073 Chaum et al. Jun 2010 A1
20100188353 Yoon et al. Jul 2010 A1
20100200736 Laycock et al. Aug 2010 A1
20100201953 Freeman et al. Aug 2010 A1
20100202725 Popovich et al. Aug 2010 A1
20100211575 Collins et al. Aug 2010 A1
20100213467 Lee et al. Aug 2010 A1
20100220439 Qin Sep 2010 A1
20100229853 Vandal et al. Sep 2010 A1
20100238270 Bjelkhagen et al. Sep 2010 A1
20100245387 Bachelder et al. Sep 2010 A1
20100259889 Chen et al. Oct 2010 A1
20100271467 Akeley Oct 2010 A1
20100277421 Charlier et al. Nov 2010 A1
20100277439 Charlier et al. Nov 2010 A1
20100277779 Futterer et al. Nov 2010 A1
20100277803 Pockett et al. Nov 2010 A1
20100284085 Laakkonen Nov 2010 A1
20100300654 Edwards Dec 2010 A1
20100309687 Sampsell et al. Dec 2010 A1
20100315781 Agostini Dec 2010 A1
20100317132 Rogers et al. Dec 2010 A1
20100321609 Qi et al. Dec 2010 A1
20100321781 Levola Dec 2010 A1
20100328351 Tan Dec 2010 A1
20110012814 Tanaka Jan 2011 A1
20110021251 Lind ën Jan 2011 A1
20110025605 Kwitek Feb 2011 A1
20110026128 Baker et al. Feb 2011 A1
20110032482 Agurok Feb 2011 A1
20110038049 Vallius et al. Feb 2011 A1
20110050547 Mukawa Mar 2011 A1
20110050655 Mukawa Mar 2011 A1
20110051660 Popovich et al. Mar 2011 A1
20110063795 Yeh et al. Mar 2011 A1
20110075442 Chiang Mar 2011 A1
20110084893 Lee et al. Apr 2011 A1
20110090343 Alt et al. Apr 2011 A1
20110091156 Laughlin Apr 2011 A1
20110096401 Levola Apr 2011 A1
20110099512 Jeong Apr 2011 A1
20110114823 Katzir et al. May 2011 A1
20110115340 Lee May 2011 A1
20110127024 Patel et al. Jun 2011 A1
20110134017 Burke Jun 2011 A1
20110134645 Hitchcock et al. Jun 2011 A1
20110141388 Park et al. Jun 2011 A1
20110148931 Kim Jun 2011 A1
20110163986 Lee et al. Jul 2011 A1
20110175930 Hwang et al. Jul 2011 A1
20110194029 Herrmann et al. Aug 2011 A1
20110205251 Auld Aug 2011 A1
20110210946 Goertz et al. Sep 2011 A1
20110214082 Osterhout et al. Sep 2011 A1
20110215349 An et al. Sep 2011 A1
20110221658 Haddick et al. Sep 2011 A1
20110221659 King, Iii et al. Sep 2011 A1
20110222236 Luo et al. Sep 2011 A1
20110227820 Haddick et al. Sep 2011 A1
20110227913 Hyndman Sep 2011 A1
20110235179 Simmonds Sep 2011 A1
20110242145 Nishimura et al. Oct 2011 A1
20110242392 Chiang Oct 2011 A1
20110242757 Tracy et al. Oct 2011 A1
20110248904 Miyawaki et al. Oct 2011 A1
20110248958 Gruhlke et al. Oct 2011 A1
20110267799 Epstein et al. Nov 2011 A1
20110283223 Vaittinen et al. Nov 2011 A1
20110295913 Enbutsu Dec 2011 A1
20110299044 Yeh et al. Dec 2011 A1
20110304640 Noge Dec 2011 A1
20110309378 Lau et al. Dec 2011 A1
20110310232 Wilson et al. Dec 2011 A1
20110310312 Yokote et al. Dec 2011 A1
20120013651 Trayner et al. Jan 2012 A1
20120019434 Kuhlman et al. Jan 2012 A1
20120026161 Chen et al. Feb 2012 A1
20120030616 Howes et al. Feb 2012 A1
20120033306 Valera et al. Feb 2012 A1
20120038629 Brown et al. Feb 2012 A1
20120041721 Chen Feb 2012 A1
20120044573 Simmonds et al. Feb 2012 A1
20120050144 Morlock Mar 2012 A1
20120052934 Maharbiz et al. Mar 2012 A1
20120062998 Schultz et al. Mar 2012 A1
20120069413 Schultz Mar 2012 A1
20120084710 Sirpal et al. Apr 2012 A1
20120106170 Matthews et al. May 2012 A1
20120111544 Senatori May 2012 A1
20120113092 Bar-Zeev et al. May 2012 A1
20120120493 Simmonds et al. May 2012 A1
20120134623 Boudreau et al. May 2012 A1
20120144331 Tolonen et al. Jun 2012 A1
20120157114 Alameh et al. Jun 2012 A1
20120162764 Shimizu Jun 2012 A1
20120176322 Karmi et al. Jul 2012 A1
20120176474 Border Jul 2012 A1
20120182687 Dighde et al. Jul 2012 A1
20120188205 Jansson et al. Jul 2012 A1
20120195553 Hasegawa et al. Aug 2012 A1
20120200495 Johansson Aug 2012 A1
20120206589 Crandall Aug 2012 A1
20120206880 Andres et al. Aug 2012 A1
20120218301 Miller Aug 2012 A1
20120227006 Amm Sep 2012 A1
20120235885 Miller et al. Sep 2012 A1
20120242561 Sugihara Sep 2012 A1
20120256856 Suzuki et al. Oct 2012 A1
20120256963 Suzuki et al. Oct 2012 A1
20120262657 Nakanishi et al. Oct 2012 A1
20120287381 Li et al. Nov 2012 A1
20120292535 Choi et al. Nov 2012 A1
20120304092 Jarrett et al. Nov 2012 A1
20120304108 Jarrett et al. Nov 2012 A1
20130000871 Olson et al. Jan 2013 A1
20130033485 Kollin et al. Feb 2013 A1
20130081779 Liao et al. Apr 2013 A1
20130093741 Akimoto et al. Apr 2013 A1
20130106674 Wheeler et al. May 2013 A1
20130148864 Dolson et al. Jun 2013 A1
20130162673 Bohn Jun 2013 A1
20130163089 Bohn Jun 2013 A1
20130170031 Bohn Jul 2013 A1
20130170802 Pitwon Jul 2013 A1
20130186596 Rubenstein Jul 2013 A1
20130186598 Rubenstein Jul 2013 A1
20130187943 Bohn et al. Jul 2013 A1
20130198176 Kim Aug 2013 A1
20130207964 Fleck Aug 2013 A1
20130208003 Bohn Aug 2013 A1
20130208362 Bohn Aug 2013 A1
20130208482 Fleck Aug 2013 A1
20130215081 Levin et al. Aug 2013 A1
20130226931 Hazel et al. Aug 2013 A1
20130242056 Fleck Sep 2013 A1
20130242555 Mukawa Sep 2013 A1
20130250431 Robbins et al. Sep 2013 A1
20130252628 Kuehnel Sep 2013 A1
20130254412 Menezes et al. Sep 2013 A1
20130257848 Westerinen et al. Oct 2013 A1
20130258701 Westerinen et al. Oct 2013 A1
20130267309 Robbins Oct 2013 A1
20130294030 Wang et al. Nov 2013 A1
20130305184 Kim et al. Nov 2013 A1
20130307875 Anderson Nov 2013 A1
20130314789 Saarikko et al. Nov 2013 A1
20130314793 Robbins Nov 2013 A1
20130322810 Robbins Dec 2013 A1
20130332159 Federighi et al. Dec 2013 A1
20130335671 Fleck Dec 2013 A1
20130339446 Balassanian et al. Dec 2013 A1
20130342674 Dixon Dec 2013 A1
20130346725 Lomet et al. Dec 2013 A1
20140010265 Peng Jan 2014 A1
20140022265 Canan et al. Jan 2014 A1
20140041827 Giaimo Feb 2014 A1
20140059139 Filev et al. Feb 2014 A1
20140063367 Yang et al. Mar 2014 A1
20140078130 Uchino et al. Mar 2014 A1
20140089833 Hwang et al. Mar 2014 A1
20140094973 Giaimo et al. Apr 2014 A1
20140098671 Raleigh et al. Apr 2014 A1
20140104665 Popovich et al. Apr 2014 A1
20140104685 Bohn Apr 2014 A1
20140111865 Kobayashi Apr 2014 A1
20140116982 Schellenberg et al. May 2014 A1
20140140653 Brown et al. May 2014 A1
20140140654 Brown et al. May 2014 A1
20140143247 Rathnavelu et al. May 2014 A1
20140143351 Deng May 2014 A1
20140176528 Robbins Jun 2014 A1
20140184699 Ito et al. Jul 2014 A1
20140204455 Popovich et al. Jul 2014 A1
20140240842 Nguyen et al. Aug 2014 A1
20140300966 Travers et al. Oct 2014 A1
20140314374 Fattal et al. Oct 2014 A1
20150086163 Valera et al. Mar 2015 A1
20150168731 Robbins Jun 2015 A1
20160033697 Sainiema et al. Feb 2016 A1
20160033784 Levola et al. Feb 2016 A1
20160035539 Sainiema et al. Feb 2016 A1
Foreign Referenced Citations (61)
Number Date Country
1440513 Sep 2003 CN
101029968 Sep 2007 CN
101105512 Jan 2008 CN
102004315 Apr 2011 CN
0977022 Feb 2000 EP
1494109 Jan 2005 EP
1847924 Oct 2007 EP
2065750 Jun 2009 EP
2083310 Jul 2009 EP
2112547 Oct 2009 EP
2144177 Jan 2010 EP
2216678 Jan 2010 EP
2241926 Oct 2010 EP
2662761 Nov 2013 EP
2752691 Jul 2014 EP
2887121 Jun 2015 EP
2942811 Sep 2010 FR
2500631 Oct 2013 GB
S57109618 Jul 1982 JP
H0422358 Jan 1992 JP
7311303 Nov 1995 JP
2000347037 Dec 2000 JP
2001078234 Mar 2001 JP
2008017135 Jan 2008 JP
20070001771 Jan 2007 KR
20090076539 Jul 2009 KR
20090084316 Aug 2009 KR
20110070087 Jun 2011 KR
20120023458 Mar 2012 KR
201407202 Feb 2014 TW
WO-9418595 Aug 1994 WO
WO-9952002 Oct 1999 WO
WO-0133282 May 2001 WO
WO-0195027 Dec 2001 WO
WO-03090611 Nov 2003 WO
WO-2006054056 May 2006 WO
WO-2006064334 Jun 2006 WO
WO-2007052265 May 2007 WO
WO-2007057500 May 2007 WO
WO-2008021504 Feb 2008 WO
WO-2008081070 Jul 2008 WO
WO-2009029826 Mar 2009 WO
WO-2009077601 Jun 2009 WO
WO-2009127849 Oct 2009 WO
WO-2010092409 Aug 2010 WO
WO-2010125337 Nov 2010 WO
WO-2011003381 Jan 2011 WO
WO-2011051660 May 2011 WO
WO-2011090455 Jul 2011 WO
WO-2011110728 Sep 2011 WO
WO-2011131978 Oct 2011 WO
WO-2012172295 Dec 2012 WO
WO-2012177811 Dec 2012 WO
WO-2013033274 Mar 2013 WO
WO-2013058769 Apr 2013 WO
WO-2013164665 Nov 2013 WO
WO-2014051920 Apr 2014 WO
WO-2014085502 Jun 2014 WO
WO-2014088343 Jun 2014 WO
WO-2014111163 Jul 2014 WO
WO-2014130383 Aug 2014 WO
Non-Patent Literature Citations (244)
Entry
“International Search Report and Written Opinion”, Application No. PCT/US2015/042371, Oct. 2, 2015, 10 pages.
“International Search Report and Written Opinion”, Application No. PCT/US2015/042187, Oct. 20, 2015, 10 pages.
“International Search Report and Written Opinion”, Application No. PCT/US2015/042226, Oct. 27, 2015, 10 Pages.
“International Search Report and Written Opinion”, Application No. PCT/US2015/042205, Oct. 30, 2015, 10 pages.
“International Search Report and Written Opinion”, Application No. PCT/US2015/042218, Nov. 6, 2015, 10 pages.
“International Search Report and Written Opinion”, Application No. PCT/US2015/042259, Oct. 12, 2015, 11 pages.
“International Search Report and Written Opinion”, Application No. PCT/US2015/041930, Oct. 20, 2015, 12 Pages.
“International Search Report and Written Opinion”, Application No. PCT/US2015/041900, Oct. 21, 2015, 12 pages.
“International Search Report and Written Opinion”, Application No. PCT/US2015/041909, Oct. 20, 2015, 13 pages.
“International Search Report and Written Opinion”, Application No. PCT/US2015/041046, Nov. 9, 2015, 15 pages.
“Notice of Allowance”, U.S. Appl. No. 14/447,464, Nov. 9, 2015, 10 pages.
“Restriction Requirement”, U.S. Appl. No. 14/617,697, Nov. 30, 2015, 6 pages.
Ando,“Development of Three-Dimensional Microstages Using Inclined Deep-Reactive Ion Etching”, Journal of Microelectromechanical Systems, Jun. 1, 2007, 10 pages.
Antonopoulos,“Efficient Updates for Web-Scale Indexes over the Cloud”, IEEE 28th International Conference on Data Engineering Workshops, Apr. 2012, 8 pages.
Garcia,“COMET: Content Mediator Architecture for Content-Aware Networks”, In IEEE Future Network & Mobile Summit, 2011, 8 pages.
Gila,“First Results From A Multi-Ion Beam Lithography And Processing System At The University Of Florida”, AIP Conference Proceedings, Jun. 1, 2011, 6 pages.
Levandoski,“Ranking and New Database Architectures”, In Proceedings of the 7th International Workshop on Ranking in Databases, Aug. 2013, 4 pages.
“Non-Final Office Action”, U.S. Appl. No. 14/447,419, Feb. 2, 2016, 8 pages.
“Non-Final Office Action”, U.S. Appl. No. 14/617,574, Feb. 26, 2016, 22 pages.
“Non-Final Office Action”, U.S. Appl. No. 14/617,710, Mar. 2, 2016, 16 pages.
“Notice of Allowance”, U.S. Appl. No. 14/617,697, Feb. 29, 2016, 7 pages.
“Notice of Allowance”, U.S. Appl. No. 14/617,723, Feb. 9, 2016, 10 pages.
“Supplemental Notice of Allowance”, U.S. Appl. No. 14/447,464, Jan. 12, 2016, 2 pages.
Glendenning, “Polymer Micro-Optics via Micro Injection Moulding”, Available at: https://web.archive.org/web/20120310003606/http://www.microsystems.uk.com/english/polymer—optics—injection—moulding.html, Jan. 10, 2011, 6 pages.
L, et al., “All-Nanoparticle Concave Diffraction Grating Fabricated by Self-Assembly onto Magnetically-Recorded Templates”, In Proceedings of Optical Express, vol. 21, Issue 1, Jan. 2013, 1 page.
“Advisory Action”, U.S. Appl. No. 13/428,879, Sep. 19, 2014, 3 pages.
“Augmented Reality and Physical Games”, U.S. Appl. No. 13/440,165, Apr. 5, 2012, 49 pages.
“Corrected Final Office Action”, U.S. Appl. No. 13/432,311, Dec. 24, 2014, 25 pages.
“Corrected Notice of Allowance”, U.S. Appl. No. 13/355,836, Sep. 11, 2014, 2 pages.
“Corrected Notice of Allowance”, U.S. Appl. No. 13/355,836, Dec. 15, 2014, 2 pages.
“DigiLens”, SBG Labs—retrieved from <http://www.digilens.com/products.html> on Jun. 19, 2012, 1 page.
“Final Office Action”, U.S. Appl. No. 13/336,873, Jan. 5, 2015, 21 pages.
“Final Office Action”, U.S. Appl. No. 13/336,895, May 27, 2014, 11 pages.
“Final Office Action”, U.S. Appl. No. 13/355,836, Mar. 10, 2014, 18 pages.
“Final Office Action”, U.S. Appl. No. 13/355,914, Feb. 23, 2015, 21 pages.
“Final Office Action”, U.S. Appl. No. 13/355,914, Jun. 19, 2014, 11 pages.
“Final Office Action”, U.S. Appl. No. 13/397,495, May 29, 2014, 10 pages.
“Final Office Action”, U.S. Appl. No. 13/397,516, Jan. 29, 2015, 13 pages.
“Final Office Action”, U.S. Appl. No. 13/397,539, Jun. 29, 2015, 11 pages.
“Final Office Action”, U.S. Appl. No. 13/428,879, Jul. 14, 2014, 12 pages.
“Final Office Action”, U.S. Appl. No. 13/432,311, Dec. 15, 2014, 24 pages.
“Final Office Action”, U.S. Appl. No. 13/432,372, Jan. 29, 2015, 33 pages.
“Final Office Action”, U.S. Appl. No. 13/440,165, Jun. 6, 2014, 12 pages.
“Final Office Action”, U.S. Appl. No. 13/440,165, Jul. 21, 2015, 11 pages.
“Final Office Action”, U.S. Appl. No. 13/477,646, Feb. 23, 2015, 36 pages.
“Final Office Action”, U.S. Appl. No. 13/477,646, May 5, 2014, 26 pages.
“Final Office Action”, U.S. Appl. No. 13/525,649, Oct. 9, 2014, 8 pages.
“Final Office Action”, U.S. Appl. No. 13/774,875, Jun. 4, 2015, 10 pages.
“Final Office Action”, U.S. Appl. No. 14/134,993, Jul. 16, 2015, 19 pages.
“Final Office Action”, U.S. Appl. No. 14/134,993, Aug. 20, 2014, 15 pages.
“Foreign Notice of Allowance”, CN Application No. 201320034345.X, Aug. 14, 2013, 2 Pages.
“Foreign Office Action”, CN Application No. 201210563730.3, Jan. 7, 2015, 16 pages.
“Foreign Office Action”, CN Application No. 201210567932.5, Aug. 14, 2014, 12 pages.
“Foreign Office Action”, EP Application No. 13769961.7, Mar. 11, 2015, 8 pages.
“Foreign Office Action”, EP Application No. 13769961.7, Jun. 30, 2015, 6 pages.
“HDTV Helmet Mounted Display”, Available at <http://defense-update.com/products/h/HDTV-HMD.htm>, Jan. 26, 2005, 1 page.
“International Search Report and Written Opinion”, Application No. PCT/US2012/069331, Mar. 29, 2013, 10 pages.
“International Search Report and Written Opinion”, Application No. PCT/US2014/016658, Apr. 23, 2014, 10 pages.
“International Search Report and Written Opinion”, Application No. PCT/US2013/053676, Oct. 16, 2013, 10 pages.
“International Search Report and Written Opinion”, Application No. PCT/US2013/030632, Jun. 26, 2013, 10 pages.
“International Search Report and Written Opinion”, Application No. PCT/US2013/028477, Jun. 21, 2013, 11 pages.
“International Search Report and Written Opinion”, Application No. PCT/US2013/031111, Jun. 26, 2013, 11 pages.
“International Search Report and Written Opinion”, Application No. PCT/US2013/076832, Mar. 17, 2014, 12 pages.
“International Search Report and Written Opinion”, Application No. PCT/US2013/061225, Jun. 4, 2014, 12 pages.
“International Search Report and Written Opinion”, Application No. PCT/US2012/071563, Apr. 25, 2013, 13 pages.
“International Search Report and Written Opinion”, Application No. PCT/US2013/021784, Apr. 30, 2013, 9 pages.
“International Search Report and Written Opinion”, Application No. PCT/US2012/069330, Mar. 28, 2013, 9 pages.
“International Search Report and Written Opinion”, Application No. PCT/US2013/021783, May 15, 2013, 9 pages.
“International Search Report and Written Opinion”, Application No. PCT/US2013/026200, Jun. 3, 2013, 9 pages.
“Light Guide Techniques using LED Lamps”, Application Brief I-003, retrieved from <http://www.ciri.org.nz/downloads/Lightpipe%20design.pdf> on Jan. 12, 2012, Oct. 14, 2008, 22 pages.
“New Technology from MIT may Enable Cheap, Color, Holographic Video Displays”, Retrieved from <http://www.gizmag.com/holograph-3d-color-video-display-inexpensive-mit/28029/> on Feb. 25, 2015, Jun. 24, 2013, 8 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/397,495, Nov. 13, 2013, 8 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/440,165, Feb. 6, 2014, 12 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/336,873, Apr. 9, 2015, 18 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/336,873, Jul. 25, 2014, 16 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/336,895, Oct. 24, 2013, 9 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/343,675, Jul. 16, 2013, 9 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/355,836, Nov. 4, 2013, 15 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/355,914, Feb. 14, 2014, 10 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/355,914, Oct. 28, 2014, 18 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/397,495, Apr. 3, 2015, 11 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/397,516, Jun. 12, 2014, 11 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/397,516, Nov. 25, 2013, 10 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/397,539, Mar. 16, 2015, 9 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/397,617, May 5, 2015, 6 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/397,617, Oct. 9, 2014, 6 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/428,879, Feb. 24, 2015, 10 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/428,879, Mar. 17, 2014, 10 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/428,879, Jun. 26, 2015, 13 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/432,311, Jun. 2, 2015, 25 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/432,311, Jul. 8, 2014, 33 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/432,372, May 9, 2014, 26 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/432,372, Oct. 24, 2014, 27 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/440,165, Feb. 13, 2015, 10 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/440,165, Oct. 16, 2014, 11 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/477,646, Jun. 18, 2015, 43 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/477,646, Oct. 6, 2014, 34 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/477,646, Nov. 22, 2013, 20 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/525,649, Jan. 29, 2014, 7 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/525,649, Feb. 5, 2015, 7 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/525,649, Jun. 5, 2014, 7 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/570,073, Jan. 23, 2015, 7 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/631,308, Feb. 23, 2015, 9 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/722,917, May 21, 2015, 12 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/774,875, Nov. 24, 2014, 8 pages.
“Non-Final Office Action”, U.S. Appl. No. 14/134,993, Jan. 22, 2015, 17 pages.
“Non-Final Office Action”, U.S. Appl. No. 14/134,993, Apr. 17, 2014, 34 pages.
“Notice of Allowance”, U.S. Appl. No. 13/336,895, Aug. 11, 2014, 6 pages.
“Notice of Allowance”, U.S. Appl. No. 13/343,675, Sep. 16, 2013, 8 pages.
“Notice of Allowance”, U.S. Appl. No. 13/355,836, Jun. 13, 2014, 11 pages.
“Notice of Allowance”, U.S. Appl. No. 13/355,836, Oct. 8, 2014, 11 pages.
“Notice of Allowance”, U.S. Appl. No. 13/356,545, Mar. 28, 2014, 6 pages.
“Notice of Allowance”, U.S. Appl. No. 13/488,145, Nov. 19, 2014, 8 pages.
“Restriction Requirement”, U.S. Appl. No. 13/355,836, Sep. 27, 2013, 6 pages.
“Restriction Requirement”, U.S. Appl. No. 13/397,539, Dec. 1, 2014, 6 pages.
“Restriction Requirement”, U.S. Appl. No. 13/488,145, Sep. 8, 2014, 14 pages.
“Restriction Requirement”, U.S. Appl. No. 13/570,073, Nov. 18, 2014, 7 pages.
“Supplemental Notice of Allowance”, U.S. Appl. No. 13/356,545, Jul. 22, 2014, 2 pages.
“Supplementary European Search Report”, EP Application No. 13769961.7, Mar. 3, 2015, 3 pages.
“Two-Faced: Transparent Phone with Dual Touch Screens”, Retrieved from <http://gajitz.com/two-faced-transparent-phone-with-dual-touch-screens/>, Jun. 7, 2012, 3 pages.
“Variable Groove Depth (VGD) Master Gratings”, Retrieved From: <http://www.horiba.com/scientific/products/diffraction-gratings/catalog/variable-groove-depth-vgd/> May 28, 2014, 2 pages.
“Written Opinion”, Application No. PCT/US2013/061225, Oct. 10, 2014, 6 Pages.
Allen,“ELiXIR—Solid-State Luminaire with Enhanced Light Extraction by Internal Reflection”, Journal of Display Technology, vol. 3, No. 2, Available at <http://www.nanolab.uc.edu/Publications/PDFfiles/355.pdf>, Jun. 2007, pp. 155-159.
Aron,“‘Sprinting’ chips could push phones to the speed limit”, New Scientist, Feb. 20, 2012, Issue #2852, Feb. 20, 2012, 2 pages.
Baluja,“Non-Intrusive Gaze Tracking Using Artificial Neural Networks”, Technical Report CMU-CS-94-102, Available at <http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.33.4027&rep=rep1&type=pdf> , Jan. 5, 1994, 14 pages.
Barger,“COTS Cooling”, Publication of the National Electronics Manufacturing Center of Excellence, Retrieved from: <http://www.empf.org/empfasis/2009/Oct09/cots.html > on Jul. 9, 2012, Oct. 2009, 4 pages.
Baudisch,“Back-of-Device Interaction Allows Creating Very Small Touch Devices”, In Proceedings of 27th International Conference on Human Factors in Computing Systems, Retrieved from <http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.160.3337&rep=rep1&type=pdf >, Apr. 2005, 10 pages.
Baxtor,“TwinTech GeForce GTS 250 XT OC 1GB Graphics Card”, retrieved from <http://www.tweaktown.com/reviews/2733/twintech—geforce—gts—250—xt—oc—1gb—graphics—card/index3.html> on Dec. 30, 2011, Apr. 24, 2009, 4 pages.
Chang-Yen,“A Monolithic PDMS Waveguide System Fabricated Using Soft-Lithography Techniques”, In Journal of Lightwave Technology, vol. 23, No. 6, Jun. 2005, 6 pages.
Charles,“Design of Optically Path Length Matched, Three-Dimensional Photonic Circuits Comprising Uniquely Routed Waveguides”, In Proceedings of Applied Optics, vol. 51, Issue 27, Sep. 20, 2012, 11 pages.
Chen,“A Study of Fiber-to-Fiber Losses in Waveguide Grating Routers”, In Journal of Lightwave Technology, vol. 15, No. 10, Oct. 1997, 5 pages.
Chen,“Strategies for 3D Video with Wide Fields-of-View”, IEEE Proceeding Optoelectronics, vol. 148, Issue 2, Available at <http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=926823>, Apr. 2001, pp. 85-90.
Cheng,“Waveguide Displays Based on Polymer-dispersed Liquid Crystals”, SPIE Newsroom, Available at <http://spie.org/documents/Newsroom/Imported/003805/003805—10.pdf>, Aug. 12, 2011, 2 pages.
Chirgwin,“Researchers propose ‘overclock’ scheme for mobiles—Processing at a sprint to overcome tech limitations”, The Register, Feb. 21, 2012, 2 pages.
Coldewey,“Researchers Propose “Computational Sprinting” To Speed Up Chips By 1000%—But Only for a Second”, TechCrunch, Feb. 28, 2012, 2 pages.
Cottier,“Label-free Highly Sensitive Detection of (small) Molecules by Wavelength Interrogation of Integrated Optical Chips”, n Proceedings of Sensors and Actuators B: Chemical, vol. 91, Issue 1-3, Jun. 1, 2003, pp. 241-251.
DeAgazio,“Selecting Display Backlighting for Portable, Handheld Devices”, Hearst Electronics Products, retrieved from <http://www2.electronicproducts.com/Selecting—display—backlighting—for—portable—handheld—devices-article-farcglobal-feb2008-html.aspx> on Jan. 12, 2012, Jan. 2, 2008, 4 pages.
Dumon,“Compact Arrayed Waveguide Grating Devices in Silicon-on-Insulator”, In Proceedings of the IEEE/LEOS Symposium Benelux Chapter, May 27, 2014, 4 pages.
Eadicicco,“First Transparent Tablet Lets You Touch From Both Sides”, Retrieved from <http://blog.laptopmag.com/first-transparent-tablet>, Dec. 26, 2013, 4 pages.
Grabarnik,“Concave Diffraction Gratings Fabricated With Planar Lithography”, In Proceedings of SPIE, vol. 6992, May 3, 2008, 8 pages.
Greenemeier,“Could “Computational Sprinting” Speed Up Smart Phones without Burning Them Out?”, Scientific American, Feb. 29, 2012, 2 pages.
Greiner,“Bandpass engineering of lithographically scribed channel-waveguide Bragg gratings”, In Proceedings of Optics Letters, vol. 29, No. 8, Apr. 15, 2004, pp. 806-808.
Han,“Accurate diffraction efficiency control for multiplexed volume holographic gratings”, Retrieved at: opticalengineering.spiedigitallibrary.org/data/Journals/.../2799—1, 2002, 4 pages.
Hua,“Engineering of Head-mounted Projective Displays”, In Proceedings of Applied Optics, vol. 39, No. 22, Aug. 1, 2000, 11 pages.
Ismail,“Improved Arrayed-Waveguide-Grating Layout Avoiding Systematic Phase Errors”, In Proceedings of Optics Express, vol. 19, No. 9, Apr. 25, 2011, pp. 8781-8794.
Jacques,“Polarized Light Imaging of Tissue”, Available at <http://www.lumamed.com/documents/5—polarized%20light%20imaging.pdf>, 2004, 17 pages.
Jarvenpaa,“Compact near-to-eye display with integrated gaze tracker”, Second International Conference on Computer Engineering and Applications, Mar. 19, 2010, 9 pages.
Jaworski,“A Novel Design of Heat Sink with PCM for Electronics Cooling”, 10th International Conference on Thermal Energy Storage, Stockton, May 31-Jun. 2, 2006, retrieved from <https://intraweb.stockton.edu/eyos/energy—studies/content/docs/FINAL—PRESENTATIONS/4b-6%20.pdf> on Jan. 5, 2012, May 31, 2006, 8 pages.
Karp,“Planar Micro-optic Solar Concentration using Multiple Imaging Lenses into a Common Slab Waveguide”, In Proceedings of SPIE vol. 7407, Available at <http://psilab.ucsd.edu/research/slab—concentration/files/SPIE—Slab—Published.pdf>, Jan. 2009, 11 pages.
Kress,“Exit Pupil for Wearable See-through displays”, Downloaded From: http://proceedings.spiedigitallibrary.org/ on Jan. 31, 2015 Terms of Use: http://spiedl.org/terms, 2012, 8 pages.
Krishnan,“A Novel Hybrid Heat Sink Using Phase Change Materials for Transient Thermal Management of Electronics”, IEEE transactions on components and packaging technologies, vol. 28, No. 2, retrieved from <http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1432936> on Jan. 5, 2012, Jun. 2005, pp. 281-289.
Lanman,“Near-eye Light Field Displays”, In Journal of ACM Transactions on Graphics, vol. 32, No. 6, Nov. 2013, 10 pages.
Large,“Parallel Optics in Waveguide Displays: a Flat Panel Autostereoscopic”, Display Technology, Journal of, Retrieved from <http://download.microsoft.com/download/D/2/E/D2E425F8-CF3C-4C71-A4A2-70F9D4081007/ParallelOpticsinWaveguideDisplaysMS090925.Final.pdf>, Jun. 21, 2010, pp. 1-7.
Lerner,“Penn Helps Rethink Smartphone Design With ‘Computational Sprinting’”, Penn News Release, Feb. 28, 2012, 2 pages.
Li,“Design Optimization of Reflective Polarizers for LCD Backlight Recycling”, Journal of Display Technology, vol. 5, No. 8, Available at <http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5196840 >, Aug. 2009, pp. 335-340.
Li,“Switchable Electro-optic Diffractive Lens with High Efficiency for Ophthalmic Applications”, PNAS Apr. 18, 2006 vol. 103 No. 16 6100-6104, Retrieved from: <http://www.pnas.org/content/103/16/6100.long> Feb. 22. 2012, Feb. 2, 2006, 4 pages.
Lindau,“Controlling The Groove Depth Of Holographic Gratings”, In Proceedings of Optical System Design, Analysis, and Production, vol. 0399, Oct. 26, 1983, 2 pages.
Man,“IT Equipment Noise Emission Standards: Overview of New Development in the Next Edition of ISO/ECMA Standards”, In Proceedings of 37th International Congress and Exposition on Noise Control Engineering, Available at <http://www.ecma-international.org/activities/Acoustics/Inter-noise%202008%20paper%20on%20ECMA-74%20updates.pdf >, Oct. 26, 2008, 8 pages.
Massenot,“Multiplexed holographic transmission gratings recorded in holographic polymer-dispersed liquid crystals: static and dynamic studies”, Retrieved at: http://oatao.univ-toulouse.fr/2874/, 2005, 8 pages.
McMillan,“Your Future iPhone May Be Stuffed With Wax”, Aug. 23, 2013, 3 pages.
Mei,“An all fiber interferometric gradient hydrophone with optical path length compensation”, In Proceedings of Summaries of Papers Presented at the Conference on Lasers and Electro-Optics, May 28, 1999, 2 pages.
Melcher,“LCoS for High Performance Displays”, In Proceedings of LEOS 2003, Available at <http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1253048>, Oct. 27, 2003, pp. 812-813.
Minier,“Diffraction Characteristics of Superimposed Holographic gratings in Planar Optical waveguides”, IEEE Photonics Technology Letters, vol. 4, No. 10, Oct. 1992, 4 pages.
Moore,“Computational sprinting pushes smartphones till they're tired”, Michigan News Release, Feb. 28, 2012, 2 pages.
Morga,“History of Saw Devices”, In Proceedings of the IEEE International Frequency Control Symposium, May 27, 1998, 22 pages.
Nguyen,“Advanced Cooling System Using Miniature Heat Pipes in Mobile PC”, IEEE Transactions on Components and Packaging Technology, vol. 23, No. 1, Available at <http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=833046&userType=inst>, Mar. 2000, pp. 86-90.
Owano,“Study explores computing bursts for smartphones”, PhysOrg.com, Feb. 21, 2012, 2 pages.
Papaefthymiou,“Computational Sprinting on a Hardware/Software Testbed”, In the Proceedings of the 18th Eighteenth International Conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS), Mar. 2013., 12 pages.
Patrizio,“Researchers Working on Ways to Put 16-Core Processors in Smartphones”, Brighthand, Mar. 18, 2012, 2 pages.
Pu,“Exposure schedule for multiplexing holograms in photopolymer films”, Retrieved at: lo.epfl.ch/webdav/site/lo/shared/1996/OE—35—2824—Oct1996.pdf, Oct. 1996, 6 pages.
Raghavan,“Computational Sprinting”, In the Proceedings of the 18th Symposium on High Performance Computer Architecture (HPCA), Feb. 2012, 12 pages.
Raghavan,“Designing for Responsiveness With Computational Sprinting”, IEEE Micro's “Top Picks of 2012” Issue, May 2013, 8 pages.
Scott,“RearType: Text Entry Using Keys on the Back of a Device”, In Proceedings of 12th Conference on Human-Computer Interaction with Mobile Devices and Services, Retrieved from <https://research.microsoft.com/pubs/135609/reartype%20mobilehci.pdf>, Sep. 7, 2010, 9 pages.
Singh“Laser-Based Head-Tracked 3D Display Research”, Journal of Display Technology, vol. 6, No. 10, Available at <http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5462999>, Oct. 2010, pp. 531-543.
Smalley,“Anisotropic Leaky-Mode Modulator for Holographic Video Displays”, In Proceedings of Nature, vol. 498, Jun. 20, 2013, 6 pages.
Stupar,“Optimization of Phase Change Material Heat Sinks for Low Duty Cycle High Peak Load Power Supplies”, IEEE transactions on components, packaging and manufacturing technology, retrieved from <http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6081913> on Jan. 5, 2012, Nov. 15, 2011, 14 pages.
Tari,“CFD Analyses of a Notebook Computer Thermal Management System and a Proposed Passive Cooling Alternative”, IEEE Transactions on Components and Packaging Technologies, vol. 33, No. 2, retrieved from <http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5466211> on Dec. 30, 2011, Jun. 2010, pp. 443-452.
Teng,“Fabrication of nanoscale zero-mode waveguides using microlithography for single molecule sensing”, In Proceedings of Nanotechnology, vol. 23, No. 45, Jul. 7, 2012, 7 pages.
Tien,“Microcontact Printing of SAMs”, In Proceedings of Thin Films, vol. 24, May 28, 2014, 24 pages.
Travis,“Collimated Light from a Waveguide for a Display Backlight”, Optics Express—Retrieved from <http://download.microsoft.com/download/D/2/E/D2E425F8-CF3C-4C71-A4A2-70F9D4081007/OpticsExpressbacklightpaper.pdf>, Oct. 15, 2009, pp. 19714-19719.
Travis,“The Design of Backlights for View-Sequential 3D”, Microsoft Corporation, Available at <http://download.microsoft.com/download/D/2/E/D2E425F8-CF3C-4C71-A4A2-70F9D4081007/Backlightforviewsequentialautostereo.docx>, Jul. 3, 2010, 4 pages.
Van“A Survey of Augmented Reality Technologies, Applications and Limitations”, The International Journal of Virtual Reality, 2010, 9(2), Available at <http://www.ijyr.org/issues/issue2-2010/paper1%20.pdf>, Jun. 2010, pp. 1-19.
Walker,“Thermalright Ultra—120 Extreme CPU Cooler”, retrieved from <http://www.pro-clockers.com/cooling/66-thermalright-ultra-120-extreme-cpu-cooler.html> on Dec. 30, 2011, Jul. 2, 2009, 7 pages.
Westerinen,“Light Guide Display and Field of View”, U.S. Appl. No. 13/428,879, filed Mar. 23, 2012, 46 pages.
Wigdor,“LucidTouch: A See-Through Mobile Device”, In Proceedings of 20th Annual ACM symposium on User Interface Software and Technology, Retrieved from <http://dl.acm.org/citation.cfm?id=1294259>, Oct. 7, 2007, 10 pages.
Xie,“Fabrication of Varied-Line-Spacing Grating by Elastic Medium”, In Proceedings SPIE 5636, Holography, Diffractive Optics, and Applications II, Nov. 2004, 4 pages.
Yan,“Multiplexing holograms in the photopolymer with equal diffraction efficiency”, 2005, 9 pages.
Zharkova,“Study of the Dynamics of Transmission Gratings Growth on Holographic Polymer-Dispersed Liquid Crystals”, International Conference on Methods of Aerophysical Research, ICMAR 2008, 2008, 4 pages.
“Restriction Requirement”, U.S. Appl. No. 14/447,419, Aug. 4, 2015, 6 pages.
“Adobe Audition / Customizing Workspaces”, Retrieved From: <http://help.adobe.com/en—US/audition/cs/using/WS9FA7B8D7-5991-4e05-B13C-4C85DAF1F051.html> Jul. 5, 2014, May 18, 2011, 6 Pages.
“Always Connected”, Available at: http://www.samsung.com/global/microsite/galaxycamera/nx/, Jun. 24, 2013, 5 pages.
“Controlling Your Desktop's Power Management”, Retrieved From: <http://www.vorkon.de/SU1210.001/drittanbieter/Dokumentation/openSUSE—11.2/manual/sec.gnomeuser.start.power—mgmt.html> Jul. 7, 2014, 6 Pages.
“Display Control”, Retrieved From: <http://www.portrait.com/technology/display-control.html> Jul. 4, 2014, Jun. 24, 2013, 5 Pages.
“Manage Multiple Windows”, Retrieved From: <http://windows.microsoft.com/en-hk/windows/manage-multiple-windows#1TC=windows-7> Jul. 8, 2014, 4 Pages.
“Merge Operator”, Retrieved on: Jun. 3, 2014, Available at: https://github.com/facebook/rocksdb/wiki/Merge-Operator, 10 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/774,875, Sep. 16, 2015, 8 pages.
“Organize Your Desktop Workspace for More Comfort with Window Space”, Retrieved From: <http://www.ntwind.com/software/windowspace.html> Jul. 4, 2014, Sep. 19, 2008, 5 Pages.
“SizeUp The Missing Window Manager”, Retrieved From: <https://www.irradiatedsoftware.com/sizeup/> Jul. 4, 2014, Jan. 17, 2013, 4 Pages.
“Using Flickr to Organize a Collection of Images”, Available at: http://www.jiscdigitalmedia.ac.uk/guide/using-flickr-to-organise-a-collection-of-images, Apr. 2, 2013, 17 pages.
“Window Magnet”, Retrieved From: <http://magnet.crowdcafe.com/> Jul. 4, 2014, Jun. 23, 2011, 2 Pages.
“Windows 7: Display Reminder When Click on Shutdown?”, Retrieved From: <http://www.sevenforums.com/customization/118688-display-reminder-when-click-shutdown.html> Jul. 8, 2014, Oct. 18, 2010, 5 Pages.
“Working with Windows”, Retrieved From: <http://windows.microsoft.com/en-us/windows/working-with-windows#1TC=windows-7> Jul. 4, 2014, 10 Pages.
Ashraf,“Winsplit Revolution: Tile, Resize, and Position Windows for Efficient Use of Your Screen”, Retrieved From: <http://dottech.org/11240/winsplit-revolution-tile-resize-and-position-windows-for-efficient-use-of-your-screen/> Jul. 8, 2014, Dec. 18, 2011, 4 Pages.
Callaghan,“Types of writes”, Available at: http://smalldatum.blogspot.in/2014/04/types-of-writes.html, Apr. 17, 2014, 3 pages.
Cohen,“Automatic Strategies in the Siemens RTL Tiled Window Manager”, In Proceedings: The 2nd IEEE Conference on Computer Workstations, Mar. 7, 1988, pp. 111-119.
Eckel,“Personalize Alerts with the Help of OS X Mavericks Notifications”, Retrieved From: <http://www.techrepublic.com/article/customize-os-x-mavericks-notifications-to-personalize-alerts/> Jul. 8, 2014, Mar. 10, 2014, 7 Pages.
Elnaka,“Real-Time Traffic Classification for Unified Communication Networks”, In Proceedings of International Conference on Selected Topics in Mobile and Wireless Networking, Aug. 19, 2013, 6 pages.
Hepburn,“Color: The Location Based Social Photo App”, Available at: http://www.digitalbuzzblog.com/color-the-location-based-social-photo-iphone-app/, Mar. 27, 2011, 12 pages.
Johnson,“Samsung Galaxy Tab Pro 10.1 Review”, Retrieved From: <http://hothardware.com/Reviews/Samsung-Galaxy-Tab-Pro-101-Review/?p.=3#!baG2DY > Jul. 9, 2014, Mar. 21, 2014, 10 Pages.
Kandogan,“Elastic Windows: Improved Spatial Layout and Rapid Multiple Window Operations”, In Proceedings of the Workshop on Advanced Visual Interfaces, May 27, 1996, 10 Pages.
Levandoski,“Latch-Free, Log-Structured Storage for Multiple Access Methods”, U.S. Appl. No. 13/924,567, filed Jun. 22, 2013, 51 pages.
Levandoski,“The Bw-Tree: A B-tree for New Hardware Platforms”, In IEEE 29th International Conference on Data Engineering, Apr. 8, 2013, 12 pages.
Li,“QRON: QoS-Aware Routing in Overlay Networks”, In Proceedings of IEEE Journal on Selected Areas in Communications, vol. 22, No. 1, Jan. 2004, 12 pages.
Mack,“Moto X: The First Two Weeks”, Retrieved From: <http://www.gizmag.com/two-weeks-motorola-google-moto-x-review/28722/> Jul. 8, 2014, Aug. 16, 2013, 8 pages.
O'Reilly,“How to Use the Microsoft Surface Touch Screen and Keyboard”, Retrieved From: <http://www.cnet.com/how-to/how-to-use-the-microsoft-surface-touch-screen-and-keyboard/> Jul. 5, 2014, Nov. 6, 2012, 5 Pages.
Paul,“Three Windows Multitasking Features That Help Maximize Your Screen Space”, Retrieved From: <http://www.pcworld.com/article/2094124/three-windows-multitasking-features-that-help-maximize-your-screen-space.html> Jul. 4, 2014, Feb. 4, 2014, 4 Pages.
Prohaska,“Fast Updates with TokuDB”, Available at: http://www.tokutek.com/2013/02/fast-updates-with-tokudb/, Feb. 12, 2013, 2 pages.
Thurrott,“Nokia Lumia “Black”: Glance 2.0”, Retrieved From:<http://winsupersite.com/windows-phone/nokia-lumia-black-glance-20> Jul. 8, 2014, Jan. 11, 2014, 3 Pages.
Vranjes,“Application Window Divider Control for Window Layout Management”, U.S. Appl. No. 13/863,369, filed Apr. 15, 2013, 21 pages.
Wiebe,“Using screen space efficiently with Gridmove”, Available at: http://lowerthought.wordpress.com/2010/05/15/using-screen-space-efficiently-with-gridmove/, May 15, 2010, 2 pages.
Corrected Notice of Allowance, U.S. Appl. No. 14/617,723, Apr. 20, 2016, 7 pages.
Final Office Action, U.S. Appl. No. 13/774,875, Apr. 22, 2016, 10 pages.
Final Office Action, U.S. Appl. No. 14/447,419, May 17, 2016, 10 pages.
International Search Report and Written Opinion, Application No. PCT/US2016/015496, Apr. 11, 2016, 11 pages.
International Search Report and Written Opinion, Application No. PCT/US2016/015873, May 23, 2016, 11 pages.
International Search Report and Written Opinion, Application No. PCT/US2016/016028, May 25, 2016, 11 pages.
International Search Report and Written Opinion, Application No. PCT/US2016/016241, Apr. 20, 2016, 12 pages.
International Search Report and Written Opinion, Application No. PCT/US2016/015869, May 12, 2016, 12 pages.
International Search Report and Written Opinion, Application No. PCT/US2016/016029, May 12, 2016, 12 pages.
International Search Report and Written Opinion, Application No. PCT/US2016/016027, May 17, 2016, 13 pages.
International Search Report and Written Opinion, Application No. PCT/US2016/015871, Jun. 13, 2016, 13 pages.
International Search Report and Written Opinion, Application No. PCT/US2016/019006, May 12, 2016, 14 pages.
International Search Report and Written Opinion, Application No. PCT/US2016/016242, May 27, 2016, 14 pages.
International Search Report and Written Opinion, Application No. PCT/US2016/015497, May 19, 2016, 17 pages.
Non-Final Office Action, U.S. Appl. No. 14/335,927, Jun. 3, 2016, 8 pages.
Non-Final Office Action, U.S. Appl. No. 14/617,606, May 23, 2016, 12 pages.
Notice of Allowance, U.S. Appl. No. 14/617,723, May 24, 2016, 7 pages.
Notice of Allowance, U.S. Appl. No. 14/617,735, Apr. 5, 2016, 12 pages.
Restriction Requirement, U.S. Appl. No. 14/617,683, May 9, 2016, 6 pages.
Kim,“Determination of small angular displacement by moire fringes of matched radial-parallel gratings”, Applied Optics, vol. 36, No. 13, May 1997, 8 pages.
Levola,“Diffractive optics for virtual reality displays”, Journal of the Society for Information Display—SID, Jan. 1, 2006, 9 pages.
Theocaris,“Radial Gratings as Moire Gauges”, Journal of Physics E. Scientific Instruments, Jun. 1, 1968, 6 pages.
Corrected Notice of Allowance, U.S. Appl. No. 14/617,735, Jun. 20, 2016, 2 pages.
Second Written Opinion, Application No. PCT/US2015/041930, Jun. 21, 2016, 5 pages.