BRIEF DESCRIPTION OF THE DRAWINGS
The preferred embodiments according to the invention will be explained below referring to the drawings, wherein:
FIG. 1 is a cross sectional view showing an optical connector (after a butting connection of optical fibers) in a preferred embodiment according to the invention;
FIG. 2 is a side view showing an example of an optical fiber to be housed in an optical connector in a preferred embodiment according to the invention;
FIG. 3A is a side view showing an example of an optical fiber being attached with a cross-linkable refractive index matching member at the end face thereof, to be housed in an optical connector in a preferred embodiment (Examples 1 and 2) according to the invention (a partially enlarged view showing an end portion of the optical fiber shown in FIG. 2);
FIG. 3B is a side view showing an example of an optical fiber being attached with a cross-linkable refractive index matching member at the end face thereof, to be housed in an optical connector in a preferred embodiment (Examples 3 and 4) according to the invention (a partially enlarged view showing an end portion of the optical fiber shown in FIG. 2);
FIG. 4 is a cross sectional view showing an optical connector (before an insertion of a wedge to a wedge insertion groove) in a preferred embodiment according to the invention;
FIG. 5 is a side view showing an optical connector (after an insertion of a wedge to a wedge insertion groove) in a preferred embodiment according to the invention;
FIG. 6A is a cross sectional view showing an optical connector (before an insertion of a wedge to a wedge insertion groove) in a preferred embodiment according to the invention (a cross sectional view taken along the line A-A in FIG. 4);
FIG. 6B is a cross sectional view showing an optical connector (after an insertion of a wedge to a wedge insertion groove) in a preferred embodiment according to the invention (a cross sectional view taken along the line B-B in FIG. 5);
FIG. 7 is a cross sectional view showing an optical connector (after an insertion of a wedge to a wedge insertion groove) in a preferred embodiment according to the invention;
FIG. 8 is a cross sectional view showing an example of a second optical fiber to be inserted to an optical connector in a preferred embodiment according to the invention and an optical connector in Comparative Example;
FIG. 9 is a graph showing a temperature condition (a relation between a temperature and an elapsed time) in a test (a continuous temperature and humidity cycle test) conducted by using an optical connector in a preferred embodiment according to the invention and an optical connector in Comparative Example;
FIG. 10 is a graph showing a temperature condition (a relation between a temperature and an elapsed time) in a test (a temperature cycle test) conducted by using an optical connector in a preferred embodiment according to the invention and an optical connector in Comparative Example;
FIG. 11 is a graph showing a temperature condition (a relation between a temperature and an elapsed time) in a test (a temperature and humidity cycle test) conducted by using an optical connector in a preferred embodiment according to the invention and an optical connector in Comparative Example;
FIG. 12 is a graph showing a temperature condition (a relation between a temperature and an elapsed time) in a test (a low temperature test) conducted by using an optical connector in a preferred embodiment according to the invention and an optical connector in Comparative Example;
FIG. 13 is a graph showing a relation between a thickness (μm) of the cross-linkable refractive index matching member and an increase of loss (dB) measured in the temperature cycle test while a thickness of the cross-linkable refractive index matching member is changed, the member attached to the end surface in back-end side of the first optical fiber in the first preferred embodiment (Examples 1, 2) according to the invention; and
FIG. 14 is a graph showing a relation between a thickness (μm) of the cross-linkable refractive index matching member and an increase of loss (dB) measured in the temperature cycle test while a thickness of the cross-linkable refractive index matching member is changed, the member attached to the end surface in back-end side of the first optical fiber in the first preferred embodiment (Examples 3, 4) according to the invention.