In the figures:
The clamp or clip 2, more precisely the covering section 10, has at least one discharge section 14, in this exemplary embodiment a plurality of four discharge sections 14, which extend from the covering section 10 horizontally counter to the introduction direction E of the complementary connector (not illustrated). The discharge sections 14 are essentially formed as rectangular projections that are suspended on the rear side and are otherwise cantilevered.
The clamp 2 further has four stamped slots 16, which extend from the covering section 10 around the edge 12 right into the rear section 8 in order to form two self-supporting resilient press-on lugs 18.
The respective front faces or edges 14a, 34a, 36a and 38a of the discharge sections 14, 34, 36 and 38, respectively, run flush in a lateral plane A that is set back with regard to the front sides 24a and 26a of the optical fiber sections 24 and 26. The setting back preferably amounts to 1 mm to 10 mm, in this example approximately 2.5 mm.
Referring to
Referring to
The metallic ESD protection element 30 is partly arranged centrally between converters 54, 56 and has a first discharge finger 64 with a connecting section 74 angled away by 90°, with a first arm section or leg 84 and the terminating discharge section 34. The leg 84 of the first discharge finger is stamped in an L-shaped manner.
The internal ESD protection element 30 furthermore has a second discharge finger 66 with a connecting section 76 angled away by 90°, with a second arm section or leg 86 and the terminating discharge section 36. The first and second legs 84, 86 are transversely oriented oppositely and vertically offset with respect to one another.
The two arm sections 84, 86 are stamped out in the form of narrow strips.
The ESD protection element 30 further comprises a rectilinear third discharge finger 68, which extends perpendicular to the plane of the drawing in
The ESD protection element 30 has a lower soldering pin 39, which is connected to the three discharge fingers 64, 66, 68 by means of the body section. The clamp 2 also has four dedicated soldering pins 3, the soldering pins 3 and 39 being made somewhat longer than the soldering pins 55 and 57.
The first and second legs 84, 86 extend at least partly in front of the associated converter 54, 56, so that the ESD protection element 30 itself also forms an electrical shielding.
Arranged in the cavity 49 are two optical connection elements 94, 96 in the form of cylindrical connection sleeves with the optical fiber sections 24, 26 introduced therein, the connection sleeves being formed in one piece with the connector housing 40.
The connector housing 40 is formed in one piece by the front side 40a, a rear wall or inner rear wall 40b, two side walls 40c, 40d and also a bottom 40e and a cover 40f. A front side 41—facing the cavity 49—of the rear wall 40b forms the rearward boundary of the cavity 49 in this case.
The cavity 49 extends from the front side 40a as far as the rear wall 40b of the connector housing 40. Furthermore, the two optical connection elements 94, 96 project from the rear wall 40b into the cavity 49. For connection purposes, a section of the complementary connector is inserted through the opening 48 into the cavity 49.
The rear wall 40b has four elongate, rectangular openings 104 which are arranged in a horizontal line and which are arranged above the optical connection elements 94, 96 and into which the discharge sections 14 of the clamp 2 engage or project. Moreover, three further openings 114, 116 and 118 are present in the rear wall 40b, into which the discharge sections 34, 36 and 38, respectively, of the ESD protection element 30 engage or project. Consequently, both the discharge fingers 64, 66 and the shielding 2 penetrate the rear wall 40b of the connector housing 40.
The first opening 114 is arranged diagonally on the right below and the second opening 116 diagonally on the left below the connection elements 94, 96 and the third opening 118 is arranged between the connection elements 94, 96, with the result that an areal protection is obtained and a secure dissipation is ensured, irrespective of the location at which somebody e.g. inserts a finger into the cavity 49.
Referring to
Referring to
Referring to
The ESD protection element 30 is arranged outside the housing 40 at least in sections. In particular, the body element 32 and the arm sections 84, 86 are situated outside the housing 40.
Referring to
The bottom 40e of the housing 40 furthermore has recesses 120, for guiding at least some of the soldering pins 55, 57 and also mounting posts 122 for fixing to a circuit board (not illustrated).
Referring to
A rearward edge 31 of the body element 32 runs along the rear section 8 of the clamp 2, it being possible, if appropriate, for an electrical contact between the ESD protection element and the shielding to be established.
Referring to
Furthermore, the optical fibers 24, 26 are readily discernible; they are pressed into the connection elements 94 and 96, respectively.
The converters 54, 56 are furthermore surrounded by converter housings 124, 126 which engage with in each case two front-side guide arms into corresponding recesses 130 in the rear wall 40b of the converter housing 40.
The above-described connector 1 with improved ESD protection capabilities was tested by means of a test finger at 16 kV to the effect that the latter was introduced into the cavity 49 until a flashover with respect to the discharge sections took place. The FOTs were advantageously not destroyed.
It is clear to the person skilled in the art that the embodiments described above are to be understood by way of example, and the invention is not restricted thereto, but rather can be varied in diverse ways without departing from the spirit and scope of the invention.
Number | Date | Country | Kind |
---|---|---|---|
10 2004 013 969.5 | Mar 2004 | DE | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP05/02925 | 3/18/2005 | WO | 00 | 6/21/2007 |