Optical connectors with reversible polarity

Information

  • Patent Grant
  • 10191230
  • Patent Number
    10,191,230
  • Date Filed
    Tuesday, January 30, 2018
    6 years ago
  • Date Issued
    Tuesday, January 29, 2019
    5 years ago
Abstract
Reversible polarity fiber optic connectors are provided having housings at least partially surrounding first and second optical ferrules with walls above and beneath the ferrules. Positioning removable elements such as latches, removable arms, or push-pull tabs on the first wall above the ferrules yields fiber optic connectors with a first polarity type, and positioning the removable elements on the second wall beneath the ferrules yields fiber optic connectors with a second, opposite polarity type. Various engagement mechanisms are provided on either the connector housing walls or on the removable elements, or both, to assist in affixing the removable element to the connector housing.
Description
FIELD OF THE INVENTION

The present disclosure relates generally optical connectors with reversible polarity.


BACKGROUND

The prevalence of the Internet has led to unprecedented growth in communication networks. Consumer demand for service and increased competition has caused network providers to continuously find ways to improve quality of service while reducing cost.


Certain solutions have included deployment of high-density interconnect panels. High-density interconnect panels may be designed to consolidate the increasing volume of interconnections necessary to support the fast-growing networks into a compacted form factor, thereby increasing quality of service and decreasing costs such as floor space and support overhead. However, room for improvement in the area of data centers, specifically as it relates to fiber optic connections, still exists. For example, manufacturers of connectors are always looking to reduce the size of the devices, while increasing ease of deployment, robustness, and modifiability after deployment. In particular, more optical connectors may need to be accommodated in the same footprint previously used for a smaller number of connectors in order to provide backward compatibility with existing data center equipment. For example, one current footprint is known as the small form-factor pluggable footprint (SFP). This footprint currently accommodates two LC-type ferrule optical connections. However, it may be desirable to accommodate four optical connections (two duplex connections of transmit/receive) within the same footprint. Another current footprint is the quad small form-factor pluggable (QSFP) footprint. This footprint currently accommodates four LC-type ferrule optical connections. However, it may be desirable to accommodate eight optical connections of LC-type ferrules (four duplex connections of transmit/receive) within the same footprint.


In communication networks, such as data centers and switching networks, numerous interconnections between mating connectors may be compacted into high-density panels. Panel and connector producers may optimize for such high densities by shrinking the connector size and/or the spacing between adjacent connectors on the panel. While both approaches may be effective to increase the panel connector density, shrinking the connector size and/or spacing may also increase the support cost and diminish the quality of service.


In a high-density panel configuration, adjacent connectors and cable assemblies may obstruct access to the individual release mechanisms. Such physical obstructions may impede the ability of an operator to minimize the stresses applied to the cables and the connectors. For example, these stresses may be applied when the user reaches into a dense group of connectors and pushes aside surrounding optical fibers and connectors to access an individual connector release mechanism with his/her thumb and forefinger. Overstressing the cables and connectors may produce latent defects, compromise the integrity and/or reliability of the terminations, and potentially cause serious disruptions to network performance.


Accordingly, there is a need for smaller fiber optic connectors that will meet the needs of future developments in smaller SFPs and are reconfigurable for flexible deployment.


SUMMARY OF THE INVENTION

In a first aspect, the present disclosure provides a reversible polarity fiber optic connector including at least first and second optical ferrules and a connector housing at least partially surrounding the first and second optical ferrules. The housing has a first exterior wall positioned above the first and second optical ferrules and a second exterior wall positioned beneath the first and second optical ferrules. A latch coupling is positioned on each of the first and second exterior walls of the housing. A removable latch may engage either the first or second exterior wall latch coupling on the connector housing. Positioning the removable latch on the first exterior wall yields a fiber optic connector with a first polarity and positioning the removable latch on the second exterior wall yields a fiber optic connector with a second, opposite polarity.


In another aspect, the present disclosure provides a reversible polarity fiber optic connector with exchangeable arms for changing connector type. Thus, a common connector body may be formed into different connector types. The connector includes at least first and second optical ferrules and a common connector housing at least partially surrounding the first and second optical ferrules. The housing has a first exterior wall positioned above the first and second optical ferrules and a second exterior wall positioned beneath the first and second optical ferrules. A coupling surface is positioned on each of the first and second exterior walls of the common connector housing. To create a connector, a removable arm engages either the first or second exterior wall coupling surface; the removable arm includes either a latch or a latch recess depending upon the type of optical connector to be formed. Further, positioning the removable arm on the first exterior wall of the connector housing yields a fiber optic connector with a first polarity and positioning the removable arm on the second exterior surface of the housing yields a fiber optic connector with a second, opposite polarity.


In another aspect, the present disclosure provides a reversible polarity fiber optic connector with a push-pull tab. The connector includes at least first and second optical ferrules and has a connector housing at least partially surrounding the first and second optical ferrules. A first exterior wall is positioned above the first and second optical ferrules and a second exterior wall is positioned beneath the first and second optical ferrules. A first aperture is in the first exterior wall of the housing and a second aperture is in the second exterior wall of the housing. A removable push-pull tab includes a protrusion for positioning within either of the first or second apertures in the first and second exterior walls, respectively, of the connector housing. Positioning the removable push-pull tab with its protrusion within the first aperture yields a fiber optic connector with a first polarity and positioning the removable push-pull tab with its protrusion within the second aperture yields a fiber optic connector with a second, opposite polarity.


In yet another aspect, the present disclosure provides a reversible polarity fiber optic connector including at least first and second optical ferrules and a connector housing at least partially surrounding the first and second optical ferrules. A first exterior wall is positioned above the first and second optical ferrules and a second exterior wall is positioned beneath the first and second optical ferrules. A removable push-pull tab is provided. A first push-pull tab retainer is positioned on the first exterior wall and a second push-pull tab retainer is positioned on the second exterior wall. Positioning the removable push-pull tab in the retainer on the first exterior wall of the connector housing yields a fiber optic connector with a first polarity and positioning the removable push-pull tab in the retainer on the second exterior wall of the housing yields a fiber optic connector with a second, opposite polarity.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1A is a perspective view of one embodiment of a reversible polarity fiber optic connector according to some aspects of the present disclosure;



FIG. 1B is a side view of the reversible polarity fiber optic connector of FIG. 3A with the removable latch being removed from the connector housing;



FIG. 2A is a perspective view of the reversible polarity fiber optic connector of FIG. 1A;



FIG. 2B is an exploded view of a step in the process of changing the polarity of the reversible polarity fiber optic connector of FIG. 2A;



FIG. 2C is an exploded view of a next step in the process of changing the polarity of the reversible polarity fiber optic connector of FIG. 2A;



FIG. 2D is a perspective view of the fiber optic connector of FIG. 1A with its polarity reversed;



FIG. 3A is a perspective view of an embodiment of a reversible polarity fiber optic connector with a pull tab according to aspects of the present disclosure;



FIG. 3B is an exploded view of the reversible polarity fiber optic connector of FIG. 3A;



FIG. 4A is a perspective view of the polarity of the reversible polarity fiber optic connector of FIG. 3A;



FIG. 4B is an exploded view of a step in the process of changing the polarity of the reversible polarity fiber optic connector of FIG. 4A;



FIG. 4C.1 is an exploded view of positioning the latch in the process of changing the polarity of the reversible polarity fiber optic connector of FIG. 4A;



FIG. 4C.2 is an exploded view of attaching the removed components of FIG. 4B in the process of changing the polarity of the reversible polarity fiber optic connector of FIG. 4A;



FIG. 4D is a perspective view of the reversible polarity fiber optic connector of FIG. 4A with its polarity reversed;



FIG. 5A is a perspective view of another embodiment of a reversible polarity fiber optic connector with a pull tab according to aspects of the present disclosure;



FIG. 5B is an exploded view of the reversible polarity fiber optic connector of FIG. 5A;



FIG. 6A is a perspective view of the polarity of the fiber optic connector of FIG. 5A;



FIG. 6B is an exploded view of a step in the process of changing the polarity of the reversible polarity fiber optic connector of FIG. 5A;



FIG. 6C is an exploded view of a next step in the process of changing the polarity of the reversible polarity fiber optic connector of FIG. 6A;



FIG. 6D is a perspective view of the reversible polarity fiber optic connector of FIG. 6A with its polarity reversed;



FIG. 7A is a perspective view of a common connector housing of a reversible polarity fiber optic connector with exchangeable arms for changing connector type in an embodiment according to aspects of the present disclosure;



FIG. 7B is the front view of the common connector housing of FIG. 7A;



FIG. 7C is the top view of the common connector housing of FIG. 7A;



FIG. 7D is the side view of the common connector housing of FIG. 7A;



FIG. 8A.1 shows how the common connector housing of FIG. 7A is used to create a latch-type connector;



FIG. 8A.2 is an exploded view of FIG. 8A.1;



FIG. 8B.1 shows how the common connector housing of FIG. 7A is used to create a recess-type connector;



FIG. 8B.2 is an exploded view of FIG. 8B.1;



FIG. 9A is a perspective view of FIG. 8A.1 of the polarity of the latch-type fiber optic connector of FIG. 8A.1;



FIG. 9B is an exploded view of a step in the process of changing the polarity of the reversible polarity fiber optic connector of FIG. 8A.1;



FIG. 9C is an exploded view of a next step in the process of changing the polarity of the reversible polarity fiber optic connector of FIG. 8A.1;



FIG. 9D is a perspective view of the reversible polarity fiber optic connector of FIG. 8A.1 with its polarity reversed;



FIG. 10A is a perspective view of FIG. 8B.1 of the polarity of the recess-type fiber optic connector of FIG. 8B. 1;



FIG. 10B is an exploded view of a step in the process of changing the polarity of the reversible polarity fiber optic connector of FIG. 8B.1;



FIG. 10C is an exploded view of a next step in the process of changing the polarity of the reversible polarity fiber optic connector of FIG. 8B.1;



FIG. 10D is a perspective view of the reversible polarity fiber optic connector of FIG. 8B.1 with its polarity reversed;



FIGS. 11A and 11B respectively depict exploded and perspective views of a reversible polarity optical connector according to a further embodiment of the disclosure;



FIGS. 12A-12D depict the operation of the reversible polarity optical connector of FIGS. 11A and 11B;



FIGS. 13A-13D depict the process for changing the polarity of the optical connector of FIGS. 11A and 11B;



FIGS. 14A and 14B respectively depict exploded and perspective views of a reversible polarity optical connector according to a further embodiment of the disclosure;



FIGS. 15-15D depict the operation of the reversible polarity optical connector of FIGS. 14A and 14B;



FIGS. 16A-16D depict the process for changing the polarity of the optical connector of FIGS. 14A and 14B;



FIGS. 17A-17C respectively depict perspective, partial cross-section, and exploded views of a reversible polarity optical connector according to a further embodiment of the disclosure;



FIGS. 18A-18D depict the assembly of the push-pull tab to the connector body of the connector of FIGS. 17A-17C;



FIGS. 19A-19B depict the removal of the push-pull tab from the connector body using a tool;



FIGS. 20A-20D depict the process for changing the polarity of the optical connector of FIGS. 17A-17C.





DETAILED DESCRIPTION

This disclosure is not limited to the particular systems, devices and methods described, as these may vary. The terminology used in the description is for the purpose of describing the particular versions or embodiments only, and is not intended to limit the scope.


As used in this document, the singular forms “a,” “an,” and “the” include plural references unless the context clearly dictates otherwise. Unless defined otherwise, all technical and scientific terms used herein have the same meanings as commonly understood by one of ordinary skill in the art. Nothing in this disclosure is to be construed as an admission that the embodiments described in this disclosure are not entitled to antedate such disclosure by virtue of prior invention. As used in this document, the term “comprising” means “including, but not limited to.”


The following terms shall have, for the purposes of this application, the respective meanings set forth below.


The connectors of the present disclosure may be configured for fiber optic transmission or electrical signal transmission. The connector may be any suitable type now known or later developed, such as, for example, a ferrule connector (FC), a fiber distributed data interface (FDDI) connector, an LC connector, a mechanical transfer (MT) connector, a square connector (SC) connector, an SC duplex connector, or a straight tip (ST) connector. The connector may generally be defined by a connector housing. In some embodiments, the housing may incorporate any or all of the components described herein.


Various embodiments described herein generally provide a remote release mechanism such that a user can remove cable assembly connectors that are closely spaced together without damaging surrounding connectors, accidentally disconnecting surrounding connectors, disrupting transmissions through surrounding connectors, and/or the like. Various embodiments also provide narrow pitch LC duplex connectors and narrow width multi-fiber connectors.


As discussed herein, current connectors may be improved by various means, such as, for example, reducing the footprint, increasing the structural strength, enabling polarity changes, etc. Various embodiments disclosed herein offer improvements over the current state of the art, as will be further discussed below.


In some embodiments, the fiber optic connector may be a narrow pitch duplex LC connector including two LC connectors. In some embodiments, such as that shown, the two LC connectors may comprise a single combined unit. In alternative embodiments, the LC connectors may be separate members, wherein an air gap exists between the two members, or wherein the two separate members are located adjacent and flush to each other (i.e., no air gap exists). In some embodiments, each of the LC connectors includes a respective ferrule and a respective extending member or modular arm. The connector may have a pitch of 4.8 mm, defined as the axis-to-axis distance between the central axes of the LC connectors. In other embodiments, the connector pitch may be less than that of the pitch of conventional connectors, for example less than 6.25 mm and less than about 5.25 mm. In some embodiments, the pitch may be about 4.8 mm or less.


In current designs, if a fiber optic connector, particularly a duplex connector, needs to have the ferrules rotated or swapped, for example, for exchanging transmit and receive optical fibers, it can be a time consuming and difficult process. Generally, if a duplex connector needs to be rotated, current systems require twisting the individual LC connector tips 180 degrees. However, this process also twists the fibers that enter the connector tip. Twisting the fiber at any stage of the connection can cause wear and/or damage to the delicate fibers. Thus, most systems involve an alternative solution, wherein the duplex connector is partially or completely disassembled in order to access the ferrules or fibers and manually relocate them within the duplex connector. However, swapping ferrules side to side is a delicate operation. In order to prevent damage to the internal fibers, great care must be taken. Thus, this operation usually requires specialized tools and preparation time to perform safely and accurately.


Therefore, embodiments as described herein, allow for easy, quick, and safe swapping of the left and right side ferrules in a connector. Thus, embodiments discussed herein allow for a change in polarity of the duplex connector without twisting the fibers or performing any complex disassembly of the duplex connector.



FIGS. 1A and 1B depict a fiber optic connector with reversible polarity according to one aspect of the present disclosure. As shown in FIG. 1A, a reversible polarity fiber optic connector may include first and second optical ferrules 110a and 110b and a connector housing 120 at least partially surrounding the first and second optical ferrules. A removable latch 130 is depicted in FIG. 1A in its assembled state and in FIG. 1B removed from the connector housing 120.



FIG. 1B is a side view of the reversible polarity fiber optic connector of FIG. 1A with the removable latch 130 being separated from the connector housing. As shown, the connector housing 120 may have a first exterior wall 121a positioned above the first and second optical ferrules and a second exterior wall 121b positioned beneath the first and second optical ferrules. A latch coupling 122 is positioned on each of the first and second exterior walls of the housing. The removable latch 130 may include a protrusion 131 for engaging the housing latch coupling 122. In particular, the latch coupling 122 may include angled walls that interact with slanted edges of the protrusion 131 to prevent accidental disassembly of the latch 130. Although the latch coupling 122 is depicted as a recess on the housing accommodating a latch protrusion, these elements may be reversed with the latch including a recess and the housing including a protrusion. Other mechanical coupling mechanisms may be used to interconnect the housing and the removable latch. For example, an embodiment may involve a coupling system wherein the removable latch is inserted into a recess in the connector housing and twisted (e.g., 90°, 180°, etc.) to secure the latch to the recess. Alternative coupling may use a more complex shape. For example, a u-shaped recess in the connector housing may engage a cooperatively-shaped projection in the latch that is inserted and fed through the u-shape until secure. It should thus be understood, that any system or method of coupling may be used to attach the removable latch to the connector housing, including various locations (e.g., sliding from the front, sides, back, bottom, top, etc.).



FIGS. 2A-2D depict the process for changing the polarity of the fiber optic connector of FIG. 1A from a first polarity, FIG. 2A to a second, opposite polarity, FIG. 2D. The removable latch 130 may be removed from the latch coupling on the first exterior wall of the connector housing, FIG. 2B, positioned adjacent the second exterior wall on beneath the ferrules, FIG. 2C, and then coupled with the latch coupling on the second exterior wall of the connector housing to yield a connector 100R, FIG. 2D, having the opposite polarity of connector 100. In this manner, transmit and receive optical fibers may be reversed without necessitating any fiber twist or complex repositioning of the optical ferrules.


In typical embodiments, the latch of the connector housing is required to be flexible. Thus, when a latch and a connector housing (e.g., duplex connector) are built as one unified member (as is currently done), the fiber optic connector is built of a similar flexible or less rigid material. Building the connector housing out of a plastic or polymeric material, limits the amount of rigidity that it can have. Thus, as fiber optic connectors continue to reduce in size, the strength of the housing has been reduced. Therefore, it would be advantageous to build the connector housing out of a more robust material while still allowing the latch to remain flexible. In order to accomplish this, in some embodiments according to aspects of the present disclosure, the connector housing may be manufactured out of a very rigid or strong material (e.g., steel, graphene, carbon, metal alloys, or any material of suitable properties). Because the connector housing and the removable latch need only interlock with each other, the removable latch may still be made out of a more flexible material. Thus, the removable nature of the latch disclosed herein allow for a more robust and secure overall design when dealing with the shrinking footprint of fiber optic connectors.



FIG. 3A is a perspective view of another embodiment of a reversible polarity fiber optic connector 300. As shown, the reversible polarity fiber optic connector may further comprise a pull tab 340 for engaging a removable latch 330. The pull tab 340 depresses the latch 330 as the tab is pulled in a direction away from the fiber optic ferrules.



FIG. 3B is an exploded view of the reversible polarity fiber optic connector of FIG. 3A. As shown, the pull tab 340 may comprise a first opening 341 and a second opening 344. The first opening 341 is configured to allow the connector housing and the removable latch to pass through while the second opening is configured to accommodate the tip of the latch. The pull tab may further comprise a first deformable portion 342 and a second deformable portion 344. In operation, the first deformable portion 342 cooperates with the second deformable portion 344 to depress the removable latch when the pull tab is pulled in a direction away from the ferrules.



FIGS. 4A-4D depict the process for changing the polarity of the fiber optic connector 300 from a first polarity, FIG. 4A to a second polarity 300R, FIG. 4D. The pull tab 340 may be disengaged from the connector housing 320 and the removable latch 330 on the first exterior wall of the connector housing, FIG. 2B. The removable latch is then detached from the latch coupling on the first exterior wall of the connector housing, FIG. 4C.1. Next, the removable latch is engaged with the latch coupling on the second exterior wall of the connector housing, beneath the ferrules, FIG. 4C.2. Finally, the pull tab 340 is positioned surrounding the connector housing and engaging the removable latch tip, resulting in the assembled optical connector 300R having polarity opposite to that of connector 300, FIG. 4D.



FIGS. 5A and 5B are a perspective view and exploded view, respectively, of another embodiment of a reversible polarity fiber optic connector 500. The connector 500 includes a connector housing 520, a latch 530, and a pull tab 540. On the first and second exterior walls of connector housing 520 are latch couplings that include a groove 522. A recess 521 is also provided in the housing. The latch 530 includes a protrusion 531 that is received within groove 522. The latch further includes a projection 532 that is received in the housing between the optical ferrules. The pull tab 540 includes an opening 541 for engaging the removable latch 530. A front protrusion 542 is configured to depress the removable latch 530 when the pull tab is pulled in a direction away from the ferrule side of the optical connector.



FIGS. 6A-6D depict the process for changing the polarity of the fiber optic connector 500 from a first polarity, FIG. 6A to a second polarity, FIG. 6D. The pull tab 540 is disengaged from the connector housing and the removable latch 530 on the first exterior wall of the connector housing, FIG. 6B, and the removable latch is decoupled from the latch coupling on the first exterior wall of the connector housing. Then the removable latch may be coupled with the latch coupling on the second exterior wall of the connector housing, beneath the optical ferrules in FIG. 6C, and the pull tab 540 is engaged with the connector housing and the removable latch on the second exterior wall of the connector housing to create reverse polarity connector 500R, FIG. 6D.


It is of interest within the optical connectivity industry to have multiple styles of optical connectors for multiple purposes and/or multiple implementation styles. Thus, in order to more easily provide flexibility, a solution is needed that allows for on-the-fly, in-the-field, or in manufacturing modification of the connector. The below embodiment provides a universal type fiber optic connector which has a unique housing design that allows for different latches or arms to be attached.



FIG. 7A is a perspective view of a common connector housing 720 of a reversible polarity fiber optic connector 700 with exchangeable arms for changing connector type in an embodiment according to aspects of the present disclosure. As shown, the reversible polarity fiber optic connector may comprise first and second optical ferrules 710a and 710b and the common connector housing 720 at least partially surrounding the first and second optical ferrules.



FIGS. 7B, 7C and 7D are the front view, top view and side view, respectively, of the common connector housing 720. As shown, the common connector housing may have a first exterior wall 725a positioned above the first and second optical ferrules and a second exterior wall 725b positioned beneath the first and second optical ferrules. The connector housing 720 may further have a coupling surface 724 positioned on each of the first and second exterior walls and include a receiving track 726 in the coupling surface.



FIG. 8A.1 shows the common connector housing 720 used to create a latch-type connector 700 and FIG. 8B.1 shows the common connector housing 720 used to create a recess-type connector 800. Both of connectors 700 and 800 include a removable arm 730 or 830 for engaging either of the first and second exterior wall coupling surfaces 724 on the connector housing, FIGS. 8A.2 and 8B.2 respectively. The removable arms 730 and 830 may each respectively include a projection 735 or 835 for engaging in the receiving track 726 of the coupling surface 724, FIGS. 8A.2 and 8B.2 respectively. As with the previous embodiments, positioning the removable arm on the first exterior wall of the connector housing yields a fiber optic connector with a first polarity and positioning the removable arm on the second exterior surface of the housing yields a fiber optic connector with the opposite polarity.


Still referring to FIGS. 8A.2 and 8B.2 respectively the removable arms may include either a latch or a recess: removable arm 730 includes a latch 733 while removable arm 830 includes a recess 834. Thus, a latch-type connector 700 is created through assembly of the removable latch arm to the common connector body 720 as shown in FIG. 8A.1 and a recess-type connector 800 is created through assembly of the removable recess arm to the common connector body 720 as shown in FIG. 8B.1.


The fiber optic connector may further include a pull tab. When a removable arm with a latch 730 is positioned on the coupling surface of the common connector housing 720 to create a latch-type connector 700, the pull tab 740 is a separate element from the removable arm, FIG. 8A.2. When a removable arm includes a recess 830 is positioned on the coupling surface of the common connector housing 720 to create a recess-type connector 800, the pull tab 840 is integrated with the removable arm, FIG. 8B.2.



FIGS. 9A-9D depict the process for changing the polarity of the latch-type fiber optic connector from a first polarity 700, FIG. 9A to a second polarity 700R, FIG. 9D. The sub-assembly of the removable arm 730 and the pull tab 740 may be decoupled from the coupling surface 724 of the first exterior wall of the connector housing, FIG. 9B. Then the sub-assembly of the removable arm 730 and the pull tab 740 may be coupled with the coupling surface of the second exterior wall of the connector housing, FIG. 9C, creating the opposite polarity connector 700R.



FIGS. 10A-10C depicts the process for changing the polarity of the recess-type fiber optic connector 800 from a first polarity, FIG. 10A to a second polarity, FIG. 10D. The removable arm 830 with a recess and a pull tab as an integral structure may be decoupled from the coupling surface 724 of the first exterior wall of the connector housing, FIG. 10B. Then the removable arm may be coupled with the coupling surface 724 of the second exterior wall of the common connector housing 720, FIG. 10C to create opposite polarity optical connector 800R, FIG. 10D.



FIGS. 11A and 11B depict a further embodiment 1100 of the reversible polarity optical connectors of the present disclosure. In FIG. 11A, a push-pull tab 1130 may interconnect with either a first exterior wall 1110 of housing 1105 or with a second exterior wall 1115 of housing 1105. Ferrules 1120 and 1125 are at least partially surrounded by housing 1105 and may be LC connectors in an embodiment. As in previous embodiments, the push-pull tab may include a tab recess 1145. Alternatively, push-pull tab 1130 may include a latch (not shown). Various features of the push-pull tab 1130 are provided to assist in affixing the push-pull tab to the first exterior wall 1110 or the second exterior wall 1115 of the housing 1105. This includes push-pull tab clips 1135 that clip onto the optical connector, optionally in a boot region, and protrusion 1140 that fits within a first aperture, 1109A, beneath the housing exterior wall 1110 or a second aperture, 1109B, beneath housing exterior wall 1115 (to be discussed in more detail below), and projection 1131 for inserting into the housing between ferrules 1120 and 1125. Each of these features is fully reversible such that the push-pull tab is easily removed and repositioned on the opposite exterior wall to change polarity of the connector.


As best seen in FIGS. 12B and 12D, push-pull tab protrusion 1140 may be inserted into first aperture 1109A of housing 1105 through a first exterior housing aperture 1107A. Alternatively, in the reverse-polarity configuration, the push-pull tab protrusion 1140 may be inserted into second housing aperture 1109B through second exterior housing aperture 1107B. When the push-pull tab 1130 is moved forward, the protrusion slides within the aperture 1109A or 1109B, as shown in FIG. 12B. To maintain the push-pull tab in a forward-biased position, tab position spring 1150 is provided. During insertion or removal of the protrusion 1140, tab position spring 1150 is compressed, depicted in FIG. 12B. When the position spring 1150 is in its relaxed (uncompressed) position, FIGS. 12C and 12D, the protrusion 1140 is slid forward within the aperture 1109A or 1109B.


To change polarity of the optical connector 1100, FIGS. 13A-13D, the push-pull tab 1130 is removed by withdrawing the protrusion 1140 from the housing 1105 through exterior housing aperture 1107A along with detaching clips 1135 and decoupling projection 1131, thus releasing the push-pull tab from the first exterior housing wall 1110 (FIG. 138). The push-pull tab is moved toward second exterior housing wall 1115 and the protrusion 1140 is inserted into aperture 1109B through exterior housing aperture 1107B in FIG. 13C. Projection 1131 is fitted between ferrules 1120 and 1125 and clips 1135 are affixed to the connector. The resultant connector 1100R of 13D is of opposite polarity to the connector 1100 of FIG. 13A.


Various alternatives to the protrusion 1140 of optical connector 1100 may be used in the optical connectors of this disclosure. For example, the protrusion may be provided by the connector housing with receiving elements provided in the push-pull tab. Variations to the shape of the projection and apertures may be made without affecting the function of the reversible-polarity connector.


Another alternative embodiment is depicted in FIGS. 14A and 14B in which a hook-shaped protrusion 1440 is provided for engagement within the connector housing. As in the previous embodiment, the push-pull tab 1430 includes a tab recess 1445, connector-attachment clips 1435 and projection 1431 for positioning between ferrules 1420 and 1425. In FIG. 14B, the push-pull tab 1430 is positioned on first exterior housing wall 1410 and has a first polarity. In this position, the hook-shaped protrusion 1440 engages a housing projection 1460, held in a forward-biased position by push-pull tab position spring 1465, as seen in FIGS. 15B and 15D. To release the protrusion 1440, push-pull tab position spring 1465 is compressed in FIG. 15C such that housing projection 1460 is retracted sufficiently to allow removal of protrusion 1440 through the housing 1405, FIG. 15D.


To change polarity of the optical connector 1400 from the first polarity of FIG. 16A, the push-pull tab 1430 is removed by withdrawing the protrusion 1440 from the housing 1405 through the housing along with detaching clips 1435 and decoupling projection 1431, thus releasing the push-pull tab from the first exterior housing wall 1110 (FIG. 16B). The push-pull tab is moved toward second exterior housing wall 1415 and the protrusion 1440 is inserted into the housing 1405. Projection 1431 is fitted between ferrules 1420 and 1425 and clips 1435 are affixed to the connector in FIG. 16C. The resultant connector 1400R of FIG. 16D is of opposite polarity to the connector of FIG. 16A.


Protrusions from a push-pull tab may be inserted into a housing via features other than a housing aperture. Such a connector is depicted in FIG. 17 and features a deformable housing region to allow entry of a push-pull tab protrusion during affixing of the push-pull tab to the connector housing. As seen in FIG. 17A, the connector 1700 includes a connector housing 1705 which may optionally include a back body housing portion 1709 for connecting with a housing front portion 1707 (FIG. 17C). The back body housing portion 1709 includes a deformable region 1780, seen in the partial cross-section of FIG. 17B and the perspective view of FIG. 17C. The push-pull tab 1730 includes a protrusion 1740 with a projection 1741 extending therefrom.


Turning to FIG. 18, to affix the push-pull tab to the connector housing, the protrusion 1740 penetrates the deformable region 1780 (FIG. 18B) causing the deformable region to yield and accept entry of the protrusion 1740 into the housing. As the projection 1741 enters the housing as depicted in FIG. 18C, the deformable region 1780 returns to its original position (FIG. 18D), securing the push-pull tab 1730 to the connector housing.


Removal of the push-pull tab 1730 is depicted in FIGS. 19A and 19B. A removal tool 1900, which may be shaped similar to a small screwdriver, depresses deformable region 1780, allowing projection 1741 to slide along an edge of the deformable region 1780, followed by the protrusion 1740, releasing the push-pull tab 1730.


To change polarity of the optical connector 1700 from the first polarity of FIG. 20A, the push-pull tab 1730 is removed in FIG. 20B by using the removal tool technique depicted in FIGS. 19A and 19B. The push-pull tab is moved toward the second exterior housing wall and the protrusion 1740 is inserted into the housing 1705 through the deformable region 1780 in FIG. 20C. The resultant connector 1700R of FIG. 20D is of opposite polarity to the connector of FIG. 20A.


In another aspect of the disclosure, a retaining member may be provided in the connector housing to retain a push-pull tab. As seen in FIGS. 21A-21D, a connector 2100 having a housing 2105 is provided with a housing front portion 2107 and a back portion 2109. FIG. 21A depicts an assembled connector 2100 with housing 2105. FIG. 21B depicts an exploded view of connector 2100 of FIG. 21A. Push-pull tab 2130 has a receiving surface 2132, which during use of connector 2100 provides a surface over which retainer 2111 can slide across during tab movement. Extending from the housing back portion is a retainer 2111 which may include a pair of retaining clips, as shown, or any other structure configured to retain the push-pull tab 2130. FIG. 21C depicts connector 2100 showing a section view cut given by the arrows and broken line near the proximal end of connector 2100. Optionally, when the retainer 2111 includes clips, the clips may be hook-shaped as seen in the cross-sectional view of FIG. 21D. As shown in FIG. 21D, receiving surface 2132 may be a recess with a protrusion along the edge that engages the hook-shaped edge of the clips.



FIG. 22A through FIG. 22E depicts the operation of polarity change for connector 2100 of FIG. 21A-FIG. 21D. FIG. 22A depicts connector 2100 with pull-push tab clips 2135 (opposing side not shown) engaged around connector. To operate connector 2100, user can move push-pull tab 2130 forward or toward front of connector or backward or toward rear of connector, and as describe in FIG. 21 above tab moves along connector receiving surface 2123. This engages or releases connector 2100 from a receptacle as is known in the art. To change the polarity of connector 2100 from the polarity depicted in FIG. 22A to the second, opposite polarity of FIG. 22E, the retainer 2111 is removed from receiving surface 2132. Referring to FIG. 21B, lifting push-pull tab 2130 in direction of up-arrow, separates retainer 2111 from receiving surface. As shown in FIG. 22C, push-pull tab clips separate from the connector as the retainer is removed. Continuing with FIG. 22C, push-pull tab 2130 is moved to the opposite housing exterior wall in FIG. 22C. FIG. 22D depicts receiving surface 2132 engages with the retainer 2111. In FIG. 21E the assembled connector 2100R having the opposite polarity to the connector of FIG. 22A is depicted, fully assembled. Retainer 2111 is in contact with receiving surface 2132, and push-pull tab 2130 is secured to connector body, as show in FIG. 22E.


In the above detailed description, reference is made to the accompanying drawings, which form a part hereof. In the drawings, similar symbols typically identify similar components, unless context dictates otherwise. The illustrative embodiments described in the detailed description, drawings, and claims are not meant to be limiting. Other embodiments may be used, and other changes may be made, without departing from the spirit or scope of the subject matter presented herein. It will be readily understood that the aspects of the present disclosure, as generally described herein, and illustrated in the Figures, can be arranged, substituted, combined, separated, and designed in a wide variety of different configurations, all of which are explicitly contemplated herein.


The present disclosure is not to be limited in terms of the particular embodiments described in this application, which are intended as illustrations of various aspects. Many modifications and variations can be made without departing from its spirit and scope, as will be apparent to those skilled in the art. Functionally equivalent methods and apparatuses within the scope of the disclosure, in addition to those enumerated herein, will be apparent to those skilled in the art from the foregoing descriptions. Such modifications and variations are intended to fall within the scope of the appended claims. The present disclosure is to be limited only by the terms of the appended claims, along with the full scope of equivalents to which such claims are entitled. It is to be understood that the terminology used herein is for the purpose of describing particular embodiments only, and is not intended to be limiting.


With respect to the use of substantially any plural and/or singular terms herein, those having skill in the art can translate from the plural to the singular and/or from the singular to the plural as is appropriate to the context and/or application. The various singular/plural permutations may be expressly set forth herein for sake of clarity.


It will be understood by those within the art that, in general, terms used herein, and especially in the appended claims (for example, bodies of the appended claims) are generally intended as “open” terms (for example, the term “including” should be interpreted as “including but not limited to,” the term “having” should be interpreted as “having at least,” the term “includes” should be interpreted as “includes but is not limited to,” et cetera). While various compositions, methods, and devices are described in terms of “comprising” various components or steps (interpreted as meaning “including, but not limited to”), the compositions, methods, and devices can also “consist essentially of” or “consist of” the various components and steps, and such terminology should be interpreted as defining essentially closed-member groups. It will be further understood by those within the art that if a specific number of an introduced claim recitation is intended, such an intent will be explicitly recited in the claim, and in the absence of such recitation no such intent is present. For example, as an aid to understanding, the following appended claims may contain usage of the introductory phrases “at least one” and “one or more” to introduce claim recitations. However, the use of such phrases should not be construed to imply that the introduction of a claim recitation by the indefinite articles “a” or “an” limits any particular claim containing such introduced claim recitation to embodiments containing only one such recitation, even when the same claim includes the introductory phrases “one or more” or “at least one” and indefinite articles such as “a” or “an” (for example, “a” and/or “an” should be interpreted to mean “at least one” or “one or more”); the same holds true for the use of definite articles used to introduce claim recitations. In addition, even if a specific number of an introduced claim recitation is explicitly recited, those skilled in the art will recognize that such recitation should be interpreted to mean at least the recited number (for example, the bare recitation of “two recitations,” without other modifiers, means at least two recitations, or two or more recitations). Furthermore, in those instances where a convention analogous to “at least one of A, B, and C, et cetera” is used, in general such a construction is intended in the sense one having skill in the art would understand the convention (for example, “a system having at least one of A, B, and C” would include but not be limited to systems that have A alone, B alone, C alone, A and B together, A and C together, B and C together, and/or A, B, and C together, et cetera). In those instances where a convention analogous to “at least one of A, B, or C, et cetera” is used, in general such a construction is intended in the sense one having skill in the art would understand the convention (for example, “a system having at least one of A, B, or C” would include but not be limited to systems that have A alone, B alone, C alone, A and B together, A and C together, B and C together, and/or A, B, and C together, et cetera). It will be further understood by those within the art that virtually any disjunctive word and/or phrase presenting two or more alternative terms, whether in the description, claims, or drawings, should be understood to contemplate the possibilities of including one of the terms, either of the terms, or both terms. For example, the phrase “A or B” will be understood to include the possibilities of “A” or “B” or “A and B.”


In addition, where features or aspects of the disclosure are described in terms of Markush groups, those skilled in the art will recognize that the disclosure is also thereby described in terms of any individual member or subgroup of members of the Markush group.


As will be understood by one skilled in the art, for any and all purposes, such as in terms of providing a written description, all ranges disclosed herein also encompass any and all possible subranges and combinations of subranges thereof. Any listed range can be easily recognized as sufficiently describing and enabling the same range being broken down into at least equal halves, thirds, quarters, fifths, tenths, et cetera As a non-limiting example, each range discussed herein can be readily broken down into a lower third, middle third and upper third, et cetera As will also be understood by one skilled in the art all language such as “up to,” “at least,” and the like include the number recited and refer to ranges which can be subsequently broken down into subranges as discussed above. Finally, as will be understood by one skilled in the art, a range includes each individual member. Thus, for example, a group having 1-3 cells refers to groups having 1, 2, or 3 cells. Similarly, a group having 1-5 cells refers to groups having 1, 2, 3, 4, or 5 cells, and so forth.


Various of the above-disclosed and other features and functions, or alternatives thereof, may be combined into many other different systems or applications. Various presently unforeseen or unanticipated alternatives, modifications, variations or improvements therein may be subsequently made by those skilled in the art, each of which is also intended to be encompassed by the disclosed embodiments.

Claims
  • 1. A reversible polarity fiber optic connector comprising: at least first and second optical ferrules;a connector housing at least partially surrounding the first and second optical ferrules and having a first exterior wall positioned above the first and second optical ferrules and a second exterior wall positioned beneath the first and second optical ferrules;a latch coupling positioned on each of the first and second exterior walls of the housing;a removable latch for engaging either of the first and second exterior wall latch couplings on the connector housing;wherein positioning the removable latch on the first exterior wall of the connector housing yields a fiber optic connector with a first polarity and positioning the removable latch on the second exterior wall of the housing yields a fiber optic connector with a second polarity, the second polarity being opposite to the first polarity.
  • 2. The reversible polarity fiber optic connector of claim 1, wherein each of the latch couplings on the first and second exterior walls of the connector housing includes at least a recess with angled walls; andthe latch includes at least a protrusion with slanted edges for coupling with the angled walls of the recess on the first exterior wall when the fiber optic connector is configured in the first polarity or the angled walls of the recess on the second exterior wall when the fiber optic connector is configured in the second polarity.
  • 3. The reversible polarity fiber optic connector of claim 1, further comprising a pull tab for engaging the removable latch; wherein pulling the pull tab in a direction away from the first and second ferrules causes the removable latch to be depressed.
  • 4. The reversible polarity fiber optic connector of claim 3, wherein the pull tab comprises at least a first opening and a seconding opening for engaging the removable latch; wherein the first opening is configured to allow the connector housing and the removable latch to pass through; andthe second opening is configured to allow the removable latch to partially pass through.
  • 5. The reversible polarity fiber optic connector of claim 3, wherein the pull tab further comprises a first deformable portion and a second deformable portion; wherein the first deformable portion is configured to cooperate with the second deformable portion to depress the removable latch when the pull tab is pulled in a direction away from the first and second ferrules.
  • 6. The reversible polarity fiber optic connector of claim 1, wherein each of the latch couplings on the first and second exterior walls of the connector housing includes a groove; and at least a projection for coupling with the groove on the first exterior wall when the fiber optic connector is configured in the first polarity or the groove on the second exterior wall when the fiber optic connector is configured in the second polarity.
  • 7. The reversible polarity fiber optic connector of claim 6, further comprising a pull tab for engaging the removable latch; wherein pulling the pull tab in a direction away from the reversible polarity fiber optic connector depresses the removable latch.
  • 8. The reversible polarity fiber optic connector of claim 7, wherein the pull tab comprises: an opening for engaging the removable latch; anda front protrusion configured to depress the removable latch when the pull tab is pulled in a direction away from the first and second ferrules.
  • 9. A reversible polarity fiber optic connector with exchangeable arms for changing connector type comprising: at least first and second optical ferrules;a common connector housing at least partially surrounding the first and second optical ferrules and having a first exterior wall positioned above the first and second optical ferrules and a second exterior wall positioned beneath the first and second optical ferrules;a coupling surface positioned on each of the first and second exterior walls of the common connector housing;a removable arm for engaging either of the first and second exterior wall coupling surfaces on the common connector housing, the removable arm including either a latch or a latch recess;wherein positioning the removable arm on the first exterior wall of the connector housing yields a fiber optic connector with a first polarity and positioning the removable arm on the second exterior surface of the housing yields a fiber optic connector with a second polarity, the second polarity being opposite to the first polarity.
  • 10. The reversible polarity fiber optic connector of claim 9 wherein positioning a removable arm with a latch on the coupling surface creates a latch-type connector and positioning a removable arm with a recess creates a recess-type connector.
  • 11. The reversible polarity fiber optic connector of claim 9 wherein the housing includes a receiving track in the coupling surface and the removable arm includes a projection for engaging in the receiving track in the coupling surface.
  • 12. The reversible polarity fiber optic connector of claim 9 further comprising a pull tab.
  • 13. The reversible polarity fiber optic connector of claim 12 wherein the removable arm includes a latch and the pull tab is a separate element from the removable arm.
  • 14. The reversible fiber optic connector of claim 12 wherein removable arm includes a recess and the pull tab is integrated with the removable arm.
  • 15. A reversible polarity fiber optic connector comprising: at least first and second optical ferrules; a connector housing at least partially surrounding the first and second optical ferrules and having a first exterior wall positioned above the first and second optical ferrules and a second exterior wall positioned beneath the first and second optical ferrules;a first aperture in the first exterior wall of the housing and a second aperture in the second exterior wall of the housing;a removable push-pull tab including a protrusion for positioning through either of the first or second apertures in the first and second exterior walls, respectively, of the connector housing;wherein positioning the removable push-pull tab with its protrusion in the first aperture of the first exterior wall of the connector housing yields a fiber optic connector with a first polarity and positioning the removable push-pull tab with its protrusion in the second aperture of the second exterior wall of the housing yields a fiber optic connector with a second polarity, the second polarity being opposite to the first polarity.
  • 16. The reversible polarity fiber optic connector of claim 15 further comprising first and second apertures respectively beneath the first and second exterior walls of the housing for receiving the protrusion.
  • 17. The reversible polarity fiber optic connector of claim 15, further comprising a spring to urge the push-pull tab forward.
  • 18. The reversible polarity fiber optic connector of claim 15, wherein the push-pull tab protrusion is retained by a housing latch, the housing latch being urged forward by a spring.
  • 19. A reversible polarity fiber optic connector comprising: at least first and second optical ferrules;a connector housing at least partially surrounding the first and second optical ferrules and having a first exterior wall positioned above the first and second optical ferrules and a second exterior wall positioned beneath the first and second optical ferrules;a first deformable region in the first exterior wall of the housing and a second deformable region in the second exterior wall of the housing;a removable push-pull tab including a protrusion for positioning within though either of the first or second deformable regions in the first and second exterior walls, respectively, of the connector housing;wherein positioning the removable push-pull tab with its protrusion through the first deformable region of the first exterior wall of the connector housing yields a fiber optic connector with a first polarity and positioning the removable push-pull tab with its protrusion through the second deformable region of the second exterior wall of the housing yields a fiber optic connector with a second polarity, the second polarity being opposite to the first polarity.
  • 20. The combination of the reversible polarity fiber optic connector of claim 19 and a tool for deforming the deformable region of either the first exterior wall of the housing or the second exterior wall of the housing.
  • 21. The reversible polarity fiber optic connector of claim 19, further comprising a spring to urge the push-pull tab forward.
  • 22. The reversible polarity fiber optic connector of claim 19 further comprising first and second apertures respectively beneath the first and second exterior walls of the housing for receiving the protrusion from the deformable region.
  • 23. A reversible polarity fiber optic connector comprising: at least first and second optical ferrules;a connector housing at least partially surrounding the first and second optical ferrules and having a first exterior wall positioned above the first and second optical ferrules and a second exterior wall positioned beneath the first and second optical ferrules;a removable push-pull tab;a first push-pull tab retainer positioned on the first exterior wall and a second push-pull tab retainer positioned on the second exterior wall;wherein positioning the removable push-pull tab in the retainer on the first exterior wall of the connector housing yields a fiber optic connector with a first polarity and positioning the removable push-pull tab in the retainer on the second exterior wall of the housing yields a fiber optic connector with a second polarity, the second polarity being opposite to the first polarity.
  • 24. The reversible polarity fiber optic connector of claim 23 wherein the first and second push-pull tab retainers each include a projection.
  • 25. The reversible polarity fiber optic connector of claim 23 wherein each projection is a clip for receiving a portion of the push-pull tab.
CROSS-REFERENCE TO RELATED PATENT APPLICATIONS

The present application claims priorities to U.S. Provisional Patent Applications No. 62/452,147 filed Jan. 30, 2017, No. 62/457,150 filed Feb. 9, 2017, No. 62/463,898 filed Feb. 27, 2017, No. 62/463,901 filed Feb. 27, 2017, No. 62/485,042 filed Apr. 13, 2017, No. 62/546,920, filed Aug. 17, 2017, and No. 62/581,961 filed Nov. 6, 2017; the disclosures of which are incorporated herein by reference in their entireties.

US Referenced Citations (219)
Number Name Date Kind
3721945 Hults Mar 1973 A
4327964 Haesly et al. May 1982 A
4478473 Frear Oct 1984 A
4762388 Tanaka et al. Aug 1988 A
4764129 Jones et al. Aug 1988 A
4840451 Sampson et al. Jun 1989 A
4872736 Myers et al. Oct 1989 A
4979792 Weber et al. Dec 1990 A
5026138 Boudreau Jun 1991 A
5041025 Haitmanek Aug 1991 A
D323143 Ohkura et al. Jan 1992 S
5212752 Stephenson et al. May 1993 A
5265181 Chang Nov 1993 A
5289554 Cubukciyan et al. Feb 1994 A
5317663 Beard et al. May 1994 A
5335301 Newman et al. Aug 1994 A
5348487 Marazzi et al. Sep 1994 A
5444806 de Marchi et al. Aug 1995 A
5481634 Anderson et al. Jan 1996 A
5506922 Grois et al. Apr 1996 A
5521997 Rovenolt et al. May 1996 A
5570445 Chou et al. Oct 1996 A
5588079 Tanabe et al. Dec 1996 A
5684903 Kyomasu et al. Nov 1997 A
5687268 Stephenson et al. Nov 1997 A
5781681 Manning Jul 1998 A
5937130 Amberg et al. Aug 1999 A
5956444 Ouda et al. Sep 1999 A
5971626 Knodell et al. Oct 1999 A
6041155 Anderson et al. Mar 2000 A
6049040 Biles et al. Apr 2000 A
6134370 Childers et al. Oct 2000 A
6178283 Weigel Jan 2001 B1
RE37080 Stephenson et al. Mar 2001 E
6206577 Hall Mar 2001 B1
6206581 Driscoll et al. Mar 2001 B1
6227717 Ott et al. May 2001 B1
6238104 Yamakawa et al. May 2001 B1
6247849 Liu Jun 2001 B1
6364537 Maynard Apr 2002 B1
6379052 de Jong Apr 2002 B1
6461054 Iwase Oct 2002 B1
6471412 Belenkiy et al. Oct 2002 B1
6478472 Anderson et al. Nov 2002 B1
6485194 Shirakawa Nov 2002 B1
6530696 Ueda Mar 2003 B1
6551117 Poplawski et al. Apr 2003 B2
6579014 Metlon et al. Jun 2003 B2
6623172 de Jong Sep 2003 B1
6634796 de Jong Oct 2003 B2
6634801 Waldron Oct 2003 B1
6648520 McDonald et al. Nov 2003 B2
6682228 Rathnam et al. Jan 2004 B2
6695486 Falkenberg et al. Feb 2004 B1
6854894 Yunker et al. Feb 2005 B1
6865362 Otsuka et al. Mar 2005 B2
6869227 Del Grosso Mar 2005 B2
6872039 Baus et al. Mar 2005 B2
6935789 Gross, III et al. Aug 2005 B2
7036993 Luther May 2006 B2
7077576 Luther Jul 2006 B2
7090406 Melton et al. Aug 2006 B2
7090407 Melton et al. Aug 2006 B2
7091421 Kukita et al. Aug 2006 B2
7111990 Melton et al. Sep 2006 B2
7113679 Melton et al. Sep 2006 B2
D533504 Lee Dec 2006 S
D534124 Taguchi Dec 2006 S
7150587 Luther et al. Dec 2006 B2
7153041 Mine et al. Dec 2006 B2
7198409 Smith et al. Apr 2007 B2
7207724 Gurreri Apr 2007 B2
D543146 Chen et al. May 2007 S
7258493 Milette Aug 2007 B2
7264402 Theuerkorn Sep 2007 B2
7281859 Mudd Oct 2007 B2
D558675 Chein et al. Jan 2008 S
7315682 En Lin et al. Jan 2008 B1
7325976 Gurreri et al. Feb 2008 B2
7325980 Pepe Feb 2008 B2
7329137 Martin et al. Feb 2008 B2
7331718 Yazaki et al. Feb 2008 B2
7354291 Caveney et al. Apr 2008 B2
7371082 Zimmel et al. May 2008 B2
7387447 Mudd Jun 2008 B2
7390203 Murano Jun 2008 B2
D572661 En Lin et al. Jul 2008 S
7431604 Waters et al. Oct 2008 B2
7463903 Cody Dec 2008 B2
7465180 Kusuda et al. Dec 2008 B2
7510335 Su et al. Mar 2009 B1
7513695 Lin et al. Apr 2009 B1
7540666 Luther Jun 2009 B2
7581775 Lin et al. Jul 2009 B2
7591595 Lu et al. Sep 2009 B2
7594766 Sasser Sep 2009 B1
7641398 O'Riorden et al. Jan 2010 B2
7695199 Teo et al. Apr 2010 B2
7699533 Milette Apr 2010 B2
7785019 Lewallen Aug 2010 B2
7824113 Wong et al. Nov 2010 B2
7867395 Ekholm et al. Jan 2011 B2
D641709 Yamauchi Jul 2011 S
8152385 de Jong Apr 2012 B2
8186890 Lu May 2012 B2
8192091 Hsu et al. Jun 2012 B2
8202009 Lin et al. Jun 2012 B2
8251733 Wu Aug 2012 B2
8267595 Lin et al. Sep 2012 B2
8270796 Nhep Sep 2012 B2
8408815 Lin et al. Apr 2013 B2
8465317 Gniadek et al. Jun 2013 B2
8534928 Cooke Sep 2013 B2
8622634 Arnold Jan 2014 B2
8636424 Kuffel et al. Jan 2014 B2
8651749 Dainese Junior et al. Feb 2014 B2
8676022 Jones Mar 2014 B2
8678670 takahashi Mar 2014 B2
8727638 Lee May 2014 B2
8770863 Cooke et al. Jul 2014 B2
9310569 Lee Apr 2016 B2
9366829 Czosnowski Jun 2016 B2
9465172 Shih Oct 2016 B2
9557495 Raven Jan 2017 B2
9658409 Gniadek May 2017 B2
9709753 Chang Jul 2017 B1
9778425 Nguyen Oct 2017 B2
9798084 Kuffel Oct 2017 B2
9829645 Good Nov 2017 B2
9880361 Childers Jan 2018 B2
9946035 Gustafson Apr 2018 B2
10031296 Good Jul 2018 B2
20010026661 de Jong Oct 2001 A1
20020191919 Nolan Dec 2002 A1
20030053787 Lee Mar 2003 A1
20040052473 Seo et al. Mar 2004 A1
20040136657 Ngo Jul 2004 A1
20040141693 Szilagyi et al. Jul 2004 A1
20040161958 Togami et al. Aug 2004 A1
20040184741 Del Grosso Sep 2004 A1
20040234209 Cox et al. Nov 2004 A1
20050111796 Matasek et al. May 2005 A1
20050141817 Yazaki et al. Jun 2005 A1
20050207709 Del Grosso Sep 2005 A1
20060089049 Sedor Apr 2006 A1
20060127025 Haberman Jun 2006 A1
20060269194 Luther et al. Nov 2006 A1
20060274411 Yamauchi Dec 2006 A1
20070025665 Dean Feb 2007 A1
20070079854 You Apr 2007 A1
20070098329 Shimoji et al. May 2007 A1
20070149062 Long Jun 2007 A1
20070028409 Yamada Aug 2007 A1
20070230874 Lin Oct 2007 A1
20070232115 Burke et al. Oct 2007 A1
20070243749 Wu Oct 2007 A1
20080008430 Kewitsch Jan 2008 A1
20080044137 Luther et al. Feb 2008 A1
20080069501 Mudd et al. Mar 2008 A1
20080101757 Lin et al. May 2008 A1
20080226237 O'Riorden et al. Sep 2008 A1
20080267566 Lin et al. Oct 2008 A1
20090022457 De Jong et al. Jan 2009 A1
20090028507 Jones et al. Jan 2009 A1
20090196555 Lin et al. Aug 2009 A1
20090214162 O'Riorden et al. Aug 2009 A1
20090220197 Gniadek Sep 2009 A1
20100034502 Lu et al. Feb 2010 A1
20100092136 Nhep Apr 2010 A1
20100220961 de Jong Sep 2010 A1
20100247041 Szilagyi Sep 2010 A1
20100322561 Lin et al. Dec 2010 A1
20110044588 Larson et al. Feb 2011 A1
20110131801 Nelson et al. Jun 2011 A1
20110177710 Tobey Jul 2011 A1
20120099822 Kuffel et al. Apr 2012 A1
20120189260 Kowalczyk et al. Jul 2012 A1
20120269485 Haley et al. Oct 2012 A1
20120301080 Gniadek Nov 2012 A1
20130071067 Lin Mar 2013 A1
20130089995 Gniadek et al. Apr 2013 A1
20130094816 Lin et al. Apr 2013 A1
20130121653 Shitama et al. May 2013 A1
20130170797 Ott Jul 2013 A1
20130183012 Cabanne Lopez et al. Jul 2013 A1
20130216185 Klavuhn et al. Aug 2013 A1
20130259429 Czosnowski et al. Oct 2013 A1
20130272671 Jones Oct 2013 A1
20130308915 Buff Nov 2013 A1
20130308916 Buff Nov 2013 A1
20130322825 Cooke et al. Dec 2013 A1
20140016901 Lambourn et al. Jan 2014 A1
20140050446 Chang Feb 2014 A1
20140133808 Hill et al. May 2014 A1
20140334780 Nguyen et al. Nov 2014 A1
20140348477 Chang Nov 2014 A1
20150212282 Lin Jul 2015 A1
20150241644 Lee Aug 2015 A1
20150277059 Raven Oct 2015 A1
20130378113 Good et al. Dec 2015
20150378113 Good et al. Dec 2015 A1
20160116685 Wong Apr 2016 A1
20160216458 Shih Jul 2016 A1
20160259135 Gniadek Sep 2016 A1
20170023746 Good Jan 2017 A1
20170176691 Childers Jun 2017 A1
20170254966 Gniadek Sep 2017 A1
20170293088 Manes Oct 2017 A1
20170293089 Gustafson Oct 2017 A1
20170293090 Hopper Oct 2017 A1
20180128987 Good May 2018 A1
20180156988 Gniadek Jun 2018 A1
20180156999 Buff Jun 2018 A1
20180164511 Childers Jun 2018 A1
20180172923 Bauco Jun 2018 A1
20180172924 Bauco Jun 2018 A1
20180172942 Bauco Jun 2018 A1
20180217339 Ma Aug 2018 A1
20180217340 Wong Aug 2018 A1
Foreign Referenced Citations (23)
Number Date Country
2495693 Apr 2004 CA
2836038 Nov 2006 CN
201383588 Jan 2010 CN
2026500189 Dec 2013 CN
202006011910 Mar 2007 DE
102006019335 Oct 2007 DE
1211537 Jun 2002 EP
1245980 Oct 2002 EP
1566674 Aug 2005 EP
2111240 Jun 1983 GB
2008229545 Oct 2009 JP
2009276493 Nov 2009 JP
200821653 May 2008 TW
200179904 Oct 2001 WO
2004027485 Apr 2004 WO
2008112986 Sep 2008 WO
2009135787 Nov 2009 WO
2010-024851 Mar 2010 WO
2012136702 Oct 2012 WO
2012162385 Nov 2012 WO
2013052070 Apr 2013 WO
2014028527 Feb 2014 WO
2014182351 Nov 2014 WO
Non-Patent Literature Citations (16)
Entry
EP Search Report and Opinion dated Mar. 2015 EP 14187661.
EP Search Report and Opinion dated Feb. 2015 EP 14168005.
Fiber Optic Connectors and Assemblies Catalog 2009 Huber&Suhner.
Fiber Optic Interconnect Solutions Tactical Fiber Optic Connectors, Cables and Termini Glenair, 2006.
Fiber Optic Products Catalog Nov. 2007 Tyco Electronics.
ISR and Opinion dated Apr. 2012, PCT/US2012/058799.
ISR and Opinion dated Aug. 2012, PCT/US2012/039126.
ISR and Opinion dated Jan. 2016, PCT/US2013/54784.
ISR and Opinion dated Aug. 2014, PCT/US2014/041500.
ISR and Opinion dated May 2014, PCT/US2014/012137.
ISR and Opinion dated Aug. 2008, PCT/US2008/057023.
International Preliminary Report on Patentability dated Sep. 2017 from US2015/059458, dated Nov. 6, 2015.
ISR and Opinion dated Apr. 13, 2018 PCT/US2018/016049.
ISR and Opinion dated Feb. 2017, PCT/US2017/13286.
ISR and Opinion dated Aug. 2017, PCT/US2017/40178.
AFOP to introduce LC Slimpac(TM) Uniboot Connectors as high density connector solutions Aug. 26, 2014.
Related Publications (1)
Number Date Country
20180217340 A1 Aug 2018 US
Provisional Applications (7)
Number Date Country
62581961 Nov 2017 US
62546920 Aug 2017 US
62485042 Apr 2017 US
62463901 Feb 2017 US
62463898 Feb 2017 US
62457150 Feb 2017 US
62452147 Jan 2017 US