Optical device arrays with optimized image resolution

Abstract
Optical devices comprising addressable pixels are tiled in an array configured for generating an image line. The addressable pixels are grouped into center pixels and addressable sub-pixels are grouped at the ends. The optical devices are tiled in staggered rows with addressable. sub-pixels and/or pixels overlapping along the array. To optimize the quality of the image, addressable sub-pixels are selectively operated and/or disabled to remove artifacts and maximize pixel density in the image line generated by the overlap regions. Arrays of optical devices, in accordance with the invention, are used generate image lines for display and print applications. The optical devices can be any light valve including MEM devices such as diffraction grating light valves and LCD devices.
Description




FIELD OF THE INVENTION




The present invention relates to the field of optical devices. More particularly, the present invention relates to tiling a plurality of arrays of optical devices configured for imaging with higher resolution than provided by a single array.




BACKGROUND OF THE INVENTION




Print and display resolution has become a critical parameter in the design of imaging systems. From paper print, photo print and display, industries are demanding higher and higher resolutions for a wide range of imaging applications. Besides the higher resolution, there is also a demand for reproducing images with minimal artifacts, distortions and/or other defects.




One solution for the demand of high fidelity and high resolution print and display imaging has been to use imaging systems capable of generating images with a greater number of smaller pixels. In certain applications, pixels are configured as a linear, or substantially linear, arrays of pixels for generating an image line on a display unit or print medium.




Optical MEM (micro-electro-mechanical) devices are useful in imaging technologies. Examples of optical MEM devices that can be used in imaging technologies are disclosed in the U.S. Pat. Nos. 5,311,360, 5,841,579 and 5,808,797, all issued to Bloom et al., the contents of which are hereby incorporated by reference.




Briefly, optical MEM devices described in the above referenced patents have one or more sets of movable ribbons that comprise a support layer and a reflective top-layer. The support layer is preferably a silicon nitride layer and the reflective top-layer is preferably an aluminum layer. The ribbons are coupled to a substrate at opposite ends of the ribbons, whereby center portions of the ribbons (active portions) move up and down to modulate an incident light source. Imaging with the aforementioned optical MEM devices offers the capability of generating high contrast, high resolution images efficiently within a compact circuit package. In certain applications, each pixel within an image is formed with three or more sets of ribbon pairs.




What is desired is a method of making an array of optical MEM devices for imaging which is capable of generating image lines with high resolution while minimizing artifacts, distortions, and/or other defects.




SUMMARY OF THE INVENTION




Embodiments of the invention are directed to optical devices, arrays of optical devices and related methods. In accordance with the embodiments of the invention, an optical device preferably comprises an array of addressable optical MEM devices having ribbon pairs for modulating a light source. The array of ribbon pairs are grouped into a center group and end groups. The center group has sets of ribbon pairs, such as three ribbon pairs per set, that are collectively addressed to image pixels. The end groups have fractional sets of ribbon pairs, such as one pair of ribbons per set, that are addressed to image sub-pixels. The optical MEM device preferably comprises bond pads corresponding to each set and fractional set of ribbon pairs for coupling to a driver circuit. It will be apparent to those of ordinary skill in the art that optical devices other than MEM devices can be used including arrays of liquid crystal display (LCD) pixels. In such a case, a sub-pixel of an LCD would be formed of a separately addressable LCD device which is reduced in size relative to an LCD pixel. The present invention can be implemented using an LCD formed using any conventional LCD technology.




The ribbons are preferably elongated ribbons formed from silicon-based materials, such as silicon-nitride, silicon-oxide and combinations thereof. The ribbons preferably have layers of reflective material, such as aluminum, for reflecting light from the top surfaces of the ribbons. The ribbons can have any dimension suitable for the applications at hand, but preferably have lengths in a range of about 50 to about 500 microns and widths in a range of about 4.0 to about 40 microns and are capable of modulating light having at least one wavelength in a range of about 300 to about 3000 nanometers.




An apparatus, in accordance with embodiments of the invention, comprises one or more linear arrays of optical MEM devices for generating pixels in an image line. The array comprises a first row of optical MEM devices and a second row of optical MEM devices that are tiled in a staggered configuration with respect to the first row, such that end groups of ribbons, as described above, form overlap regions for generating pixels in the image line. In accordance with further embodiments, the apparatus comprises a third row of optical MEM devices staggered relative to the first row and/or second row. In yet further embodiments, the apparatus comprises a display means, such as a screen or a monitor for displaying image lines and/or a print means for printing image lines onto a suitable print medium.




In accordance with the method of the invention, optical MEM devices configured for generating pixels and end sub-pixels are tiled (arranged) in an array, with the ends forming overlap regions, as described above. A test image is generated from the array and selected end sub-pixels, or sub-pixels and pixels, are disabled or suppressed to optimize the image quality and/or tailor the image quality for the intended application. Preferably, selected sub-pixels are disabled to remove artifacts and defects and to maximize pixel density of the image line corresponding to the overlap regions.











BRIEF DESCRIPTION OF THE DRAWINGS





FIG. 1

illustrates a schematic top-view of optical MEM devices tiled in an end-to-end configuration.





FIG. 2

illustrates a schematic top-view of optical MEM devices tiled in a staggered configuration and forming an overlap region.





FIG. 3

illustrates artifacts that can occur in an array of optical MEM devices tiled in a staggered configuration, as shown in FIG.


2


.





FIG. 4

illustrates a schematic top-view of optical MEM devices tiled in a staggered configuration with center pixels and end sub-pixels, in accordance with the invention.





FIG. 5

illustrates a schematic top-view of a overlap region modified in accordance with the invention.





FIG. 6

illustrates a schematic top-view of a overlap region modified in accordance with alternative embodiments of invention.





FIG. 7

illustrates a schematic top-view of an overlap region modified in accordance with further embodiments of the invention.





FIG. 8

illustrates a schematic top-view of an array of optical MEM devices tiled in accordance with the invention.











DETAILED DESCRIPTION OF THE EMBODIMENTS




In a preferred embodiment of the present invention, optical MEM devices are used to modulate one or more wavelengths of light. The optical MEM device preferably comprises an array of ribbon structures to modulate light, such as those disclosed in the U.S. Pat. Nos. 5,311,360, 5,841,579 and 5,808,797, and referenced previously. However, any number of different optical devices or light modulator devices, such as LCD-based light modulators, which can be tiled and fractionated in the manner described below are considered to be within the scope of the invention. It will be apparent to those of ordinary skill in the art that optical devices other than MEM devices can be used including LCD arrays. Where the invention is implemented using LCD technology, an LCD pixel is formed of a pixel sized LCD device. The size of the pixel could be that of a display or of a size that is optically manipulated to form a pixel. A sub-pixel of an LCD would be formed of a separately addressable LCD device which is reduced in size relative to an LCD pixel. The reduction in size of an LCD sub-pixel is relative to the degree of variability required for tiling according the specific implementation. The present invention can be implemented using an LCD formed using any conventional LCD technology. While the following discussion is made relative to the preferred optical MEM device, it will be apparent after reading this disclosure that other light modulators can be substituted.




An array of optical MEM devices can be fabricated on a single chip. However, the circuit requirements to minimize the number of bonding pads in such an integrated process is both costly and complex. Alternatively, an array of optical MEM devices can be tiled, or arranged, on a wafer or substrate that is configured to support and secure the optical MEM devices. The optical MEM devices are preferably tiled in a high density configuration to maximize the pixel density of an image line generated therefrom. Unfortunately, there are limitations to tiling processes and there are manufacturing tolerances associated with the fabrication of the optical MEM devices themselves, which can both lead of imaging artifacts and defects, as described below.





FIG. 1

schematic top-view of optical MEM devices


100


A and


100


B tiled in an end-to-end configuration is to generate an image line. Each block within each optical MEM device


100


A and


100


B schematically represents a pixel. However, it is understood that each block can represent multiple ribbon pairs that are collectively addressed to image a pixel on the image line.




Still referring to

FIG. 1

, one shortcoming with placing optical MEM devices


100


A and


100


B in the end-to-end configuration


10


is that pixels


11


do not extend to the edge of each of the optical MEM devices


100


A and


100


B, because support structures (not shown) and bonding pads (not shown) occupy the outside area surrounding the optical MEM devices


100


A and


100


B. Accordingly, a pixel, or pixels are not generated on the image line corresponding to the interface or overlap region


40


resulting in a visible defect (typically a stripe oriented along the scan axis).





FIG. 2

illustrates a schematic top-view optical MEM devices


100


A and


100


B tiled in a staggered configuration


20


and forming an overlap region


40


for generating an image line. Because the optical MEM devices


100


A and


100


B are placed in an offset, or staggered configuration, pixels


10


overlap in the overlap region


40


.




With the configuration


20


schematically shown in

FIG. 2

, the overlap region


40


corresponds to the width of a single pixel. Generally, each pixel in this configuration is designed to image a unique location on the image line to maximize the image fidelity and minimize artifacts and distortions. To achieve this condition, one of the pixels


11


A or


11


B can be disabled or suppressed to avoid having more than one pixel imaged on the image line; a condition which could cause a distortion in the image line. Unfortunately, tiling processes have tolerances that are on the order of a hundred microns or higher. Since the width of a pixel is on the order of a few microns, or less, the ideal alignment of a single end pixel, such as shown in

FIG. 2

, can not be consistently be achieved.





FIG. 3

schematically shows a pixel alignment which can result from tiling the optical MEM devices


100


A and


100


B in a staggered configuration


13


using current tiling methods. The pixels


11


B and


12


B both overlap with portions of pixel


11


A. Under these circumstances, the pixel


11


B can be disabled to avoid multiple pixels imaging the identical location of the image line. However, pixel


12


B and pixel


11


A both remain active to avoid a blank region on the image line, a distortion of the image line which is unacceptable for high resolution imaging applications.





FIG. 4

illustrates a schematic top-view of optical MEM device


200


A and


200


B tiled in a staggered configuration


210


, in accordance with the invention. For simplicity purposes, only two optical MEM devices are shown. However, arrays comprising any number of staggered optical MEM devices are considered to be within the scope of the invention. Each of the optical MEM devices


200


A and


200


B includes a plurality of ribbon pairs. Preferably, the ribbon pairs are arranged as a linear array, or substantially linear array for generating pixels on an image line. The optical MEM devices


200


A and


200


B preferably have an equal numbers of pixels and/or ribbons, or alternatively have different numbers of pixels and/or ribbons. The preferred number of pixels in each of the optical MEM devices


200


A and


200


B is determined by the intended application and the desired resolution.




Still referring to

FIG. 4

, the optical MEM devices


200


A and


200


B include central groups


213


of center pixels


214


, and end groups


217


of end pixels


215


A,


215


B,


216


A and


216


B. The optical MEM devices


200


A and


200


B are arranged in a staggered configuration such that end pixels


215


A and


216


B are at opposite ends of the array


210


and the end pixels


215


B and


216


A at least partially overlap in the overlap region


250


. The end pixels


215


A,


215


B,


216


A and


216


B are divided into sub-pixels


218


, each comprising one or more ribbon pairs. The sub-pixels


218


are configured to be individually addressed to optimize the image generated in the overlap region


250


of the array configuration


210


, as explained below. Accordingly, the optical MEM devices


200


A and


200


B require bonding pads for each center pixel


214


and each sub-pixel


218


, wherein individually controlled driver signals can be applied to selected ribbon corresponding to each center pixel


214


and each sub-pixel


218


.





FIG. 4

illustrates the end pixels


215


A,


215


B,


216


A and


216


B being divided into three sub-pixels


218


. However, the end pixels


215


A,


215


B,


216


A and


216


B can be divided into any number sub-pixels depending on the application at hand and the desired resolution. Preferably, however, the end-pixels


215


A,


215


B,


216


A and


216


B are divided into fractional sub-pixels, wherein a selected number of sub pixels represent one center pixel


214


.




As illustrated in

FIG. 4

, the optical MEM devices


200


A and


200


B are tiled into the array configuration


210


with an overlap region


250


which is dependent on manufacturing processes and tolerances. Accordingly, the overlap region


250


will vary from array to array and between adjacent optical MEM devices in an extended array configuration


250


, such as shown in FIG.


8


. As described below, sub-pixels


218


and pixels can be selectively controlled and/or suppressed to minimize artifacts and defects of the image line




While

FIG. 4

shows a single overlap region


250


the invention is particularly useful for optimizing the image quality generated from an extended linear array of densely tiled optical MEM devices, wherein the optical MEM devices are tiled in staggered rows. Also, the principles and applications of the invention can be readily extended larger two dimensional arrays of optical MEM devices.




Embodiments of the invention allow for optical MEM device arrays capable of generating high resolution image lines and which can be tailored to the specific imaging demands of a specific application. High resolution staggered arrays of optical MEM devices can generate image lines with resolution that approaches the sum of the resolutions afforded by each of the optical MEM devices


200


A and


200


B. For example, if each of the optical MEM devices


200


A and


200


B image 1000 pixels, the array


210


can image nearly 2000 pixels. In accordance with embodiments of the invention, variations in the overlap regions between optical MEM device tiled in staggered rows are compensated, adjusted or modified by selectively disabling selected sub-pixels and/or sub-pixels and pixels to minimize artifacts and defects in the overlap regions. Further, by selectively operating pixels and/or suppressing sub-pixels


218


and/or center pixels


214


, the image quality can be optimized, as described below.




With a staggered array of optical MEM devices, selective pixel and/or sub-pixel addressing can be used to compensate for a distribution of pixels generated from an extended array


230


of an optical MEM device tiled in a first row and a second row, such as shown in FIG.


8


. Selective addressing of pixels and/or sub-pixels can be done, for example, with selective timing adjustments of driver signals applied to the ribbons. Alternately, or in addition to timing adjustments of driver signals, optics can be used to correct for the fact that a single image line is being generated from two or more rows in the optical array. For example, a first optical system can be implemented for imaging pixels from the first row while a second optical system can be implemented for imaging pixels from the second row, wherein each optical system makes the necessary optical changes to compensate for pixels being generated from two or more rows in the extended optical array


230


.





FIG. 5

illustrates an overlap region


250


A after the overlap region has been arrangement modified to improve the image quality. Here, the overlap region


250


A includes a first end pixel


216


C and a second end pixel


215


D. The driver signals to the sub-pixels


218


C are suppressed so that these sub-pixels


218


C do not contribute the image formed in the overlap region


250


A, while the sub-pixels


218


A and


218


B remain active. There will still be distortion in the overlap region


250


A due to the fraction of the sub-pixel


245


A generated by both the sub-pixel


218


A and the sub-pixel


218


B. However, the distortion in the overlap region


250


A is minimized relative to the distortions that can result from the configuration


13


shown in FIG.


3


.





FIG. 6

illustrates a schematic top-view of an overlap region


250


B modified in accordance with an alternative embodiment of the invention. In this example, the overlap region


250


B comprises two end pixels


216


D from the device


200


E and two end-pixels


215


E from the device


200


F. Driver signals are suppressed to the sub-pixels


218


E, such that the sub-pixels


218


F do not contribute to the image formed by the overlap region


250


B. There will be distortion in the overlap lap region


250


B due to the fraction of the sub-pixel


245


B generated by both the sub pixel


218


D and the sub-pixel


218


E. However, the distorting in the overlap region


245


B is minimized relative the distortions that can result from configuration


13


shown in FIG.


3


.





FIG. 7

illustrates a schematic top-view of an overlap region


250


C modified in accordance with further embodiments of the invention. In this example, the overlap region


250


C comprises two end pixels


216


E from the device


200


G and two end-pixels


215


F from the device


200


H. The overlap region


250


C also includes a portion of a center pixel


222


A from the device


200


G. To optimize the image formed by the overlap region


250


C, the driver signals to all of the sub-pixels


218


G are disabled, such that the sub-pixels


218


G do not contribute to the image formed by the overlap region


250


C. Again, there is some distortion in the overlap region


250


C due to the fraction of the image


245


C generated by both the sub-pixel


218


H and the center pixel


222


A. However, the distorting in the overlap region


250


C is minimized relative the distortions that can result from the configuration


13


shown in FIG.


3


.




The selection of which driver signal to suppress and/or which pixels and sub-pixels to suppress can be judiciously made using any number of methods including physical inspection of a test image generated by an array. Other methods include computer enhanced methods, whereby images generated by a first row of optical MEM devices, a second row of optical MEM devices and the array of optical MEM devices comprising the first and the second rows, are captured and analyzed to identify the location of defects. Any number of image analysis methods and image manipulation techniques as applied to staggered array of optical MEM devices, are considered to be within the scope of the invention.





FIG. 8

illustrates a schematic top-view of an array of optical MEM devices


200


I,


200


J,


200


K,


200


L and


200


M that are tiled in a staggered configuration


230


for generating an image line, in accordance with the invention. Each of the optical MEM devices


200


L


200


J,


200


K,


200


L and


200


M comprise a liner arrangement of ribbon structures elongated in a direction that is substantially perpendicular to the length L of the array


230


. The optical MEM devices


200


I,


200


J,


200


K,


200


L and


200


M overlap to form the overlap regions


261


,


263


,


265


and


267


. The overlap regions


261


,


263


,


265


and


267


comprise end pixels device into sub-pixels and/or center pixels, as described above. The array configuration


230


can be extend to have any number of optical MEM devices suitable for the application at hand.




An imaging apparatus in accordance with embodiments of the invention comprises a light source for generating light having one or more wavelengths in a range of about 300 to about 3000 nanometers and suitable optics for generated image lines from the array of optical MEM devices. The imaging apparatus can also include a display unit, such a monitor and screen for displaying the image lines generated from the array of optical MEM devices. In yet further embodiments, an imaging apparatus comprises printer for printing image lines generated from the array of optical MEM devices onto a suitable print medium. The present invention has been described in terms of specific embodiments incorporating details to facilitate the understanding of the principles, the construction and the operation of the invention. Such reference herein to specific embodiments and details thereof is not intended to limit the scope of the claims appended hereto. It will be apparent to those skilled in the art that modifications may be made in the embodiments chosen for illustration without departing from the spirit and scope of the invention. In particular, eliminating the sub-pixels which are not part of an overlap region and which are located at opposite ends of an array of optical MEM devices is within the scope of the present invention. Further, tiling arrays of optical MEM devices in more than two rows is also contemplated.



Claims
  • 1. A light modulator comprising an array of pixels, the array comprising a center group, a first end group and a second end group, wherein the center group comprises a plurality of pixels and wherein the first end group and the second end group comprise fractional pixels configured to image sub-pixels.
  • 2. The light modulator of claim 1, further comprising driver circuits corresponding to each of the pixels and each of the sub-pixels.
  • 3. The light modulator of claim 2, wherein each sub-pixel comprises ribbon pairs and each pixel comprises sets of ribbon pairs.
  • 4. The light modulator of claim 3, wherein alternating ribbons from the ribbon pairs are addressable to image the pixels and the sub-pixels.
  • 5. The light modulator of claim 3, wherein the array of ribbons comprise silicon nitride with a reflective aluminum layer for modulating reflected light.
  • 6. The light modulator of claim 2, wherein each pixel comprises an LCD pixel and each sub-pixel comprises a predetermined fraction of a size of the LCD pixel.
  • 7. An apparatus comprising an array of optical MEM devices for generating pixels in an image line, the linear array of optical MEM devices comprising:a. a first row of the optical MEM devices; and b. a second row of the optical MEM devices, the first row of optical MEM devices and the second row of optical MEM devices being staggered with a portion of each row forming a first overlapping region, wherein the first and second row of optical MEM devices are configured for imaging sub-pixels in the first overlapping region for optimization pixels in the image line corresponding to the overlapping regions.
  • 8. The apparatus of claim 7, wherein the linear array further comprises a third row of optical MEM devices being staggered with respect to the second row of optical MEM devices, wherein a portion of the second row overlaps a portion of the third row in a second overlapping region and the second and third rows of optical MEM devices are configured for imaging sub-pixels in the second overlapping region.
  • 9. The apparatus of claim 7, wherein each of the optical MEM devices comprises an array of ribbon pairs.
  • 10. The apparatus of claim 9, wherein the array of ribbon pairs comprise a center group, a first end group and a second end group in the first overlapping region, wherein the center group comprises sets of addressable ribbon pairs and wherein the first end group and the second end group comprise fractional sets of addressable ribbon pairs.
  • 11. The apparatus of claim 7, further comprising a driver circuit for driving selected ribbons to image the pixels and the sub-pixels.
  • 12. The apparatus of claim 7, further comprises a display means for displaying the image line.
  • 13. The apparatus of claim 7, further comprising a print means for printing the image line.
  • 14. The apparatus of claim 7, wherein each pixel comprises an LCD pixel and each sub-pixel comprises a predetermined fraction of a sub-pixel.
  • 15. A method comprising:a. tiling an array of optical MEM devices in at least two rows with overlapping regions, wherein the optical MEM devices are configured to image pixels and subpixels in overlapping regions; b. generating an image from the array of optical MEM devices; and c. disabling selected sub-pixels in the overlapping regions to enhance the image.
  • 16. The method of claim 15, wherein the optical MEM devices comprise ribbon pairs elongated perpendicular to the at least two rows.
  • 17. The method of claim 15, wherein generating the image comprises illuminating the ribbons with a light source and selectively moving at least one ribbon in each of the ribbon pairs.
  • 18. The method of claim 16, wherein each image pixel is generated with a number of ribbons collectively addressed and wherein each sub-pixel is generated with a fraction of the number of ribbons.
  • 19. The method of claim 15, wherein generating the image comprises activating a display medium.
  • 20. The method of claim 15, wherein generating the image comprises activating a print medium.
US Referenced Citations (684)
Number Name Date Kind
1525550 Jenkins Feb 1925 A
1548262 Freedman Aug 1925 A
1814701 Ives Jul 1931 A
2415226 Sziklai Feb 1947 A
2783406 Vanderhooft Feb 1957 A
2920529 Blythe Jan 1960 A
2991690 Grey et al. Jul 1961 A
3256465 Weissenstern et al. Jun 1966 A
3388301 James Jun 1968 A
3443871 Chitayat May 1969 A
3553364 Lee Jan 1971 A
3576394 Lee Apr 1971 A
3600798 Lee Aug 1971 A
3656837 Sandbank Apr 1972 A
3657610 Yamamoto et al. Apr 1972 A
3693239 Dix Sep 1972 A
3743507 Ih et al. Jul 1973 A
3752563 Torok et al. Aug 1973 A
3781465 Ernstoff et al. Dec 1973 A
3783184 Ernstoff et al. Jan 1974 A
3792916 Sarna Feb 1974 A
3802769 Rotz et al. Apr 1974 A
3811186 Larnerd et al. May 1974 A
3861784 Torok Jan 1975 A
3862360 Dill et al. Jan 1975 A
3871014 King et al. Mar 1975 A
3886310 Guldberg et al. May 1975 A
3896338 Nathanson et al. Jul 1975 A
3915548 Opittek Oct 1975 A
3935499 Oess Jan 1976 A
3935500 Oess et al. Jan 1976 A
3938881 Biegelsen et al. Feb 1976 A
3941456 Schilz et al. Mar 1976 A
3942245 Jackson et al. Mar 1976 A
3943281 Keller et al. Mar 1976 A
3947105 Smith Mar 1976 A
3969611 Fonteneau Jul 1976 A
3980476 Wysocki Sep 1976 A
3991416 Byles et al. Nov 1976 A
4001663 Bray Jan 1977 A
4004849 Shattuck Jan 1977 A
4006968 Ernstoff et al. Feb 1977 A
4009939 Okano Mar 1977 A
4011009 Lama et al. Mar 1977 A
4012116 Yevick Mar 1977 A
4012835 Wallick Mar 1977 A
4017158 Booth Apr 1977 A
4020381 Oess et al. Apr 1977 A
4021766 Aine May 1977 A
4034211 Horst et al. Jul 1977 A
4034399 Drukier et al. Jul 1977 A
4035068 Rawson Jul 1977 A
4067129 Abramson et al. Jan 1978 A
4084437 Finnegan Apr 1978 A
4090219 Ernstoff et al. May 1978 A
4093346 Nishino et al. Jun 1978 A
4093921 Buss Jun 1978 A
4093922 Buss Jun 1978 A
4100579 Ernstoff Jul 1978 A
4103273 Keller Jul 1978 A
4126380 Borm Nov 1978 A
4127322 Jacobson et al. Nov 1978 A
4135502 Peck Jan 1979 A
4139257 Matsumoto Feb 1979 A
4143943 Rawson Mar 1979 A
4163570 Greenaway Aug 1979 A
4184700 Greenaway Jan 1980 A
4185891 Kaestner Jan 1980 A
4190855 Inoue Feb 1980 A
4195915 Lichty et al. Apr 1980 A
4205428 Ernstoff et al. Jun 1980 A
4211918 Nyfeler et al. Jul 1980 A
4223050 Nyfeler et al. Sep 1980 A
4225913 Bray Sep 1980 A
4249796 Sincerbox et al. Feb 1981 A
4250217 Greenaway Feb 1981 A
4250393 Greenaway Feb 1981 A
4256787 Shaver et al. Mar 1981 A
4257016 Kramer, Jr. et al. Mar 1981 A
4290672 Whitefield Sep 1981 A
4295145 Latta Oct 1981 A
4311999 Upton et al. Jan 1982 A
4327411 Turner Apr 1982 A
4327966 Bloom May 1982 A
4331972 Rajchman May 1982 A
4336982 Rector, Jr. Jun 1982 A
4338660 Kelley et al. Jul 1982 A
4343535 Bleha, Jr. Aug 1982 A
4346965 Sprague et al. Aug 1982 A
4348079 Johnson Sep 1982 A
4355463 Burns Oct 1982 A
4361384 Bosserman Nov 1982 A
4369524 Rawson et al. Jan 1983 A
4374397 Mir Feb 1983 A
4389096 Hori et al. Jun 1983 A
4391490 Hartke Jul 1983 A
4396246 Holman Aug 1983 A
4398798 Krawczak et al. Aug 1983 A
4400740 Traino et al. Aug 1983 A
4408884 Kleinknecht et al. Oct 1983 A
4414583 Hooker, III Nov 1983 A
4417386 Exner Nov 1983 A
4418397 Brantingham et al. Nov 1983 A
4420717 Wallace et al. Dec 1983 A
4422099 Wolfe Dec 1983 A
4426768 Black et al. Jan 1984 A
4430584 Someshwar et al. Feb 1984 A
4435041 Torok et al. Mar 1984 A
4440839 Mottier Apr 1984 A
4443819 Funada et al. Apr 1984 A
4443845 Hamilton et al. Apr 1984 A
4447881 Brantingham et al. May 1984 A
4454591 Lou Jun 1984 A
4456338 Gelbart Jun 1984 A
4460907 Nelson Jul 1984 A
4462046 Spight Jul 1984 A
4467342 Tower Aug 1984 A
4468725 Venturini Aug 1984 A
4483596 Marshall Nov 1984 A
4484188 Ott Nov 1984 A
4487677 Murphy Dec 1984 A
4492435 Banton et al. Jan 1985 A
4503494 Hamilton et al. Mar 1985 A
4511220 Scully Apr 1985 A
4538883 Sprague et al. Sep 1985 A
4545610 Lakritz et al. Oct 1985 A
4556378 Nyfeler et al. Dec 1985 A
4558171 Gantley et al. Dec 1985 A
4561044 Ogura et al. Dec 1985 A
4566935 Hornbeck Jan 1986 A
4567585 Gelbart Jan 1986 A
4571041 Gaudyn Feb 1986 A
4571603 Hornbeck et al. Feb 1986 A
4577932 Gelbart Mar 1986 A
4577933 Yip et al. Mar 1986 A
4588957 Balant et al. May 1986 A
4590548 Maytum May 1986 A
4594501 Culley et al. Jun 1986 A
4596992 Hornbeck Jun 1986 A
4615595 Hornbeck Oct 1986 A
4623219 Trias Nov 1986 A
4636039 Turner Jan 1987 A
4636866 Hattori Jan 1987 A
4641193 Glenn Feb 1987 A
4645881 LeToumelin et al. Feb 1987 A
4646158 Ohno et al. Feb 1987 A
4649085 Landram Mar 1987 A
4649432 Watanabe Mar 1987 A
4652932 Miyajima et al. Mar 1987 A
4655539 Caulfield et al. Apr 1987 A
4660938 Kazan Apr 1987 A
4661828 Miller, Jr. et al. Apr 1987 A
4662746 Hornbeck May 1987 A
4663670 Ito et al. May 1987 A
4687326 Corby, Jr. Aug 1987 A
4698602 Armitage Oct 1987 A
4700276 Freyman et al. Oct 1987 A
4707064 Dobrowolski et al. Nov 1987 A
4709995 Kuribayashi et al. Dec 1987 A
4710732 Hornbeck Dec 1987 A
4711526 Hennings et al. Dec 1987 A
4714326 Usui et al. Dec 1987 A
4717066 Goldenberg et al. Jan 1988 A
4719507 Bos Jan 1988 A
4721629 Sakai et al. Jan 1988 A
4722593 Shimazaki Feb 1988 A
4724467 Yip et al. Feb 1988 A
4728185 Thomas Mar 1988 A
4743091 Gelbart May 1988 A
4744633 Sheiman May 1988 A
4747671 Takahashi et al. May 1988 A
4751509 Kubota et al. Jun 1988 A
4761253 Antes Aug 1988 A
4763975 Scifres et al. Aug 1988 A
4765865 Gealer et al. Aug 1988 A
4772094 Sheiman Sep 1988 A
4797694 Agostinelli et al. Jan 1989 A
4797918 Lee et al. Jan 1989 A
4801194 Agostinelli et al. Jan 1989 A
4803560 Matsunaga et al. Feb 1989 A
4804641 Arlt et al. Feb 1989 A
4807021 Okumura Feb 1989 A
4807965 Garakani Feb 1989 A
4809078 Yabe et al. Feb 1989 A
4811082 Jacobs et al. Mar 1989 A
4811210 McAulay Mar 1989 A
4814759 Gombrich et al. Mar 1989 A
4817850 Wiener-Avnear et al. Apr 1989 A
4824200 Isono et al. Apr 1989 A
4827391 Sills May 1989 A
4829365 Eichenlaub May 1989 A
4856863 Sampsell et al. Aug 1989 A
4856869 Sakata et al. Aug 1989 A
4859012 Cohn Aug 1989 A
4859060 Katagiri et al. Aug 1989 A
4866488 Frensley Sep 1989 A
4882683 Rupp et al. Nov 1989 A
4893509 MacIver et al. Jan 1990 A
4896325 Coldren Jan 1990 A
4896948 Dono et al. Jan 1990 A
4897708 Clements Jan 1990 A
4902083 Wells Feb 1990 A
4915463 Barbee, Jr. Apr 1990 A
4915479 Clarke Apr 1990 A
4924413 Suwannukul May 1990 A
4926241 Carey May 1990 A
4930043 Wiegand May 1990 A
4934773 Becker Jun 1990 A
4940309 Baum Jul 1990 A
4943815 Aldrich et al. Jul 1990 A
4945773 Sickafus Aug 1990 A
4949148 Bartelink Aug 1990 A
4950890 Gelbart Aug 1990 A
4952925 Haastert Aug 1990 A
4954789 Sampsell Sep 1990 A
4956619 Hornbeck Sep 1990 A
4961633 Ibrahim et al. Oct 1990 A
4970575 Soga et al. Nov 1990 A
4978202 Yang Dec 1990 A
4982184 Kirkwood Jan 1991 A
4982265 Watanabe et al. Jan 1991 A
4984824 Antes et al. Jan 1991 A
4999308 Nishiura et al. Mar 1991 A
5003300 Wells Mar 1991 A
5009473 Hunter et al. Apr 1991 A
5013141 Sakata May 1991 A
5018256 Hornbeck May 1991 A
5022750 Flasck Jun 1991 A
5023905 Wells et al. Jun 1991 A
5024494 Williams et al. Jun 1991 A
5028939 Hornbeck et al. Jul 1991 A
5035473 Kuwayama et al. Jul 1991 A
5037173 Sampsell et al. Aug 1991 A
5039628 Carey Aug 1991 A
5040052 McDavid Aug 1991 A
5041395 Steffen Aug 1991 A
5041851 Nelson Aug 1991 A
5043917 Okamoto Aug 1991 A
5048077 Wells et al. Sep 1991 A
5049901 Gelbart Sep 1991 A
5058992 Takahashi Oct 1991 A
5060058 Goldenberg et al. Oct 1991 A
5061049 Hornbeck Oct 1991 A
5066614 Dunnaway et al. Nov 1991 A
5068205 Baxter et al. Nov 1991 A
5072239 Mitcham et al. Dec 1991 A
5072418 Boutaud et al. Dec 1991 A
5074947 Estes et al. Dec 1991 A
5075940 Kuriyama et al. Dec 1991 A
5079544 DeMond et al. Jan 1992 A
5081617 Gelbart Jan 1992 A
5083857 Hornbeck Jan 1992 A
5085497 Um et al. Feb 1992 A
5089903 Kuwayama et al. Feb 1992 A
5093281 Eshima Mar 1992 A
5096279 Hornbeck et al. Mar 1992 A
5099353 Hornbeck Mar 1992 A
5101184 Antes Mar 1992 A
5101236 Nelson et al. Mar 1992 A
5103334 Swanberg Apr 1992 A
5105207 Nelson Apr 1992 A
5105299 Anderson et al. Apr 1992 A
5105369 Nelson Apr 1992 A
5107372 Gelbart et al. Apr 1992 A
5112436 Bol May 1992 A
5113272 Reamey May 1992 A
5113285 Franklin et al. May 1992 A
5115344 Jaskie May 1992 A
5119204 Hashimoto et al. Jun 1992 A
5121343 Faris Jun 1992 A
5126812 Greiff Jun 1992 A
5126826 Kauchi et al. Jun 1992 A
5126836 Um Jun 1992 A
5128660 DeMond et al. Jul 1992 A
5129716 Holakovszky et al. Jul 1992 A
5132723 Gelbart Jul 1992 A
5132812 Takahashi et al. Jul 1992 A
5136695 Goldshlag et al. Aug 1992 A
5137836 Lam Aug 1992 A
5142303 Nelson Aug 1992 A
5142405 Hornbeck Aug 1992 A
5142677 Ehlig et al. Aug 1992 A
5144472 Sang, Jr. et al. Sep 1992 A
5147815 Casto Sep 1992 A
5148157 Florence Sep 1992 A
5148506 McDonald Sep 1992 A
5149405 Bruns et al. Sep 1992 A
5150205 Um et al. Sep 1992 A
5151718 Nelson Sep 1992 A
5151724 Kikinis Sep 1992 A
5151763 Marek et al. Sep 1992 A
5153770 Harris Oct 1992 A
5155604 Miekka et al. Oct 1992 A
5155615 Tagawa Oct 1992 A
5155778 Magel et al. Oct 1992 A
5155812 Ehlig et al. Oct 1992 A
5157304 Kane et al. Oct 1992 A
5159485 Nelson Oct 1992 A
5161042 Hamada Nov 1992 A
5162787 Thompson et al. Nov 1992 A
5164019 Sinton Nov 1992 A
5165013 Faris Nov 1992 A
5168401 Endriz Dec 1992 A
5168406 Nelson Dec 1992 A
5170156 DeMond et al. Dec 1992 A
5170269 Lin et al. Dec 1992 A
5170283 O'Brien et al. Dec 1992 A
5172161 Nelson Dec 1992 A
5172262 Hornbeck Dec 1992 A
5177724 Gelbart Jan 1993 A
5178728 Boysel et al. Jan 1993 A
5179274 Sampsell Jan 1993 A
5179367 Shimizu Jan 1993 A
5181231 Parikh et al. Jan 1993 A
5182665 O'Callaghan et al. Jan 1993 A
5185660 Um Feb 1993 A
5188280 Nakao et al. Feb 1993 A
5189404 Masimo et al. Feb 1993 A
5189505 Bartelink Feb 1993 A
5191405 Tomita et al. Mar 1993 A
5192864 McEwen et al. Mar 1993 A
5192946 Thompson et al. Mar 1993 A
5198895 Vick Mar 1993 A
5202785 Nelson Apr 1993 A
5206629 DeMond et al. Apr 1993 A
5208818 Gelbart et al. May 1993 A
5208891 Prysner May 1993 A
5210637 Puzey May 1993 A
5212115 Cho et al. May 1993 A
5212555 Stoltz May 1993 A
5212582 Nelson May 1993 A
5214308 Nishiguchi et al. May 1993 A
5214419 DeMond et al. May 1993 A
5214420 Thompson et al. May 1993 A
5216537 Hornbeck Jun 1993 A
5216544 Horikawa et al. Jun 1993 A
5219794 Satoh et al. Jun 1993 A
5220200 Blanton Jun 1993 A
5221400 Staller et al. Jun 1993 A
5221982 Faris Jun 1993 A
5224088 Atiya Jun 1993 A
5226099 Mignardi et al. Jul 1993 A
5229597 Fukatsu Jul 1993 A
5230005 Rubino et al. Jul 1993 A
5231363 Sano et al. Jul 1993 A
5231388 Stoltz Jul 1993 A
5231432 Glenn Jul 1993 A
5233456 Nelson Aug 1993 A
5233460 Partlo et al. Aug 1993 A
5233874 Putty et al. Aug 1993 A
5311360 Bloom et al. May 1994 A
5313648 Ehlig et al. May 1994 A
5313835 Dunn May 1994 A
5315418 Sprague et al. May 1994 A
5315423 Hong May 1994 A
5315429 Abramov May 1994 A
5319214 Gregory et al. Jun 1994 A
5319668 Luecke Jun 1994 A
5319789 Ehlig et al. Jun 1994 A
5319792 Ehlig et al. Jun 1994 A
5321416 Bassett et al. Jun 1994 A
5323002 Sampsell et al. Jun 1994 A
5323051 Adams et al. Jun 1994 A
5325116 Sampsell Jun 1994 A
5327286 Sampsell et al. Jul 1994 A
5329289 Sakamoto et al. Jul 1994 A
5330301 Brancher Jul 1994 A
5330878 Nelson Jul 1994 A
5331454 Hornbeck Jul 1994 A
5334991 Wells et al. Aug 1994 A
5339116 Urbanus et al. Aug 1994 A
5339177 Jenkins et al. Aug 1994 A
5340772 Rosotker Aug 1994 A
5345521 McDonald et al. Sep 1994 A
5347321 Gove Sep 1994 A
5347378 Handschy et al. Sep 1994 A
5347433 Sedlmayr Sep 1994 A
5348619 Bohannon et al. Sep 1994 A
5349687 Ehlig et al. Sep 1994 A
5351052 D'Hont et al. Sep 1994 A
5352926 Andrews Oct 1994 A
5354416 Okudaira Oct 1994 A
5357369 Pilling et al. Oct 1994 A
5357803 Lane Oct 1994 A
5359349 Jambor et al. Oct 1994 A
5359451 Gelbart et al. Oct 1994 A
5361131 Tekemori et al. Nov 1994 A
5363220 Kuwayama et al. Nov 1994 A
5365283 Doherty et al. Nov 1994 A
5367585 Ghezzo et al. Nov 1994 A
5371543 Anderson Dec 1994 A
5371618 Tai et al. Dec 1994 A
5382961 Gale, Jr. Jan 1995 A
5387924 Gale, Jr. et al. Feb 1995 A
5389182 Mignardi Feb 1995 A
5391881 Jeuch et al. Feb 1995 A
5392140 Ezra et al. Feb 1995 A
5392151 Nelson Feb 1995 A
5394303 Yamaji Feb 1995 A
5398071 Gove et al. Mar 1995 A
5399898 Rostoker Mar 1995 A
5404365 Hiiro Apr 1995 A
5404485 Ban Apr 1995 A
5408123 Murai Apr 1995 A
5410315 Huber Apr 1995 A
5411769 Hornbeck May 1995 A
5412186 Gale May 1995 A
5412501 Fisli May 1995 A
5418584 Larson May 1995 A
5420655 Shimizu May 1995 A
5420722 Bielak May 1995 A
5426072 Finnila Jun 1995 A
5427975 Sparks et al. Jun 1995 A
5430524 Nelson Jul 1995 A
5435876 Alfaro et al. Jul 1995 A
5438477 Pasch Aug 1995 A
5439731 Li et al. Aug 1995 A
5442411 Urbanus et al. Aug 1995 A
5442414 Janssen et al. Aug 1995 A
5444566 Gale et al. Aug 1995 A
5445559 Gale et al. Aug 1995 A
5446479 Thompson et al. Aug 1995 A
5447600 Webb Sep 1995 A
5448314 Heimbuch et al. Sep 1995 A
5448546 Pauli Sep 1995 A
5450088 Meier et al. Sep 1995 A
5450219 Gold et al. Sep 1995 A
5451103 Hatanaka et al. Sep 1995 A
5452024 Sampsell Sep 1995 A
5452138 Mignardi et al. Sep 1995 A
5453747 D'Hont et al. Sep 1995 A
5453778 Venkateswar et al. Sep 1995 A
5453803 Shapiro et al. Sep 1995 A
5454160 Nickel Oct 1995 A
5454906 Baker et al. Oct 1995 A
5455445 Kurtz et al. Oct 1995 A
5455455 Badehi Oct 1995 A
5455602 Tew Oct 1995 A
5457493 Leddy et al. Oct 1995 A
5457566 Sampsell et al. Oct 1995 A
5457567 Shinohara Oct 1995 A
5458716 Alfaro et al. Oct 1995 A
5459492 Venkateswar Oct 1995 A
5459528 Pettitt Oct 1995 A
5459592 Shibatani et al. Oct 1995 A
5459610 Bloom et al. Oct 1995 A
5461197 Hiruta et al. Oct 1995 A
5461410 Venkateswar et al. Oct 1995 A
5461411 Florence et al. Oct 1995 A
5461547 Ciupke et al. Oct 1995 A
5463347 Jones et al. Oct 1995 A
5463497 Muraki et al. Oct 1995 A
5465175 Woodgate et al. Nov 1995 A
5467106 Salomon Nov 1995 A
5467138 Gove Nov 1995 A
5467146 Huang et al. Nov 1995 A
5469302 Lim Nov 1995 A
5471341 Warde et al. Nov 1995 A
5473512 Degani et al. Dec 1995 A
5475236 Yoshizaki Dec 1995 A
5480839 Ezawa et al. Jan 1996 A
5481118 Tew Jan 1996 A
5481133 Hsu Jan 1996 A
5482564 Douglas et al. Jan 1996 A
5482818 Nelson Jan 1996 A
5483307 Anderson Jan 1996 A
5485172 Sawachika et al. Jan 1996 A
5485304 Kaeriyama Jan 1996 A
5485354 Ciupke et al. Jan 1996 A
5486698 Hanson et al. Jan 1996 A
5486841 Hara et al. Jan 1996 A
5486946 Jachimowicz et al. Jan 1996 A
5488431 Gove et al. Jan 1996 A
5489952 Gove et al. Feb 1996 A
5490009 Venkateswar et al. Feb 1996 A
5491510 Gove Feb 1996 A
5491612 Nicewarner, Jr. Feb 1996 A
5491715 Flaxl Feb 1996 A
5493177 Muller et al. Feb 1996 A
5493439 Engle Feb 1996 A
5497172 Doherty et al. Mar 1996 A
5497197 Gove et al. Mar 1996 A
5497262 Kaeriyama Mar 1996 A
5499060 Gove et al. Mar 1996 A
5499062 Urbanus Mar 1996 A
5500761 Goossen et al. Mar 1996 A
5502481 Dentinger et al. Mar 1996 A
5504504 Markandey et al. Apr 1996 A
5504514 Nelson Apr 1996 A
5504575 Stafford Apr 1996 A
5504614 Webb et al. Apr 1996 A
5506171 Leonard et al. Apr 1996 A
5506597 Thompson et al. Apr 1996 A
5506720 Yoon Apr 1996 A
5508558 Robinette, Jr. et al. Apr 1996 A
5508561 Tago et al. Apr 1996 A
5508565 Hatakeyama et al. Apr 1996 A
5508750 Hewlett et al. Apr 1996 A
5508840 Vogel et al. Apr 1996 A
5508841 Lin et al. Apr 1996 A
5510758 Fujita et al. Apr 1996 A
5510824 Nelson Apr 1996 A
5512374 Wallace et al. Apr 1996 A
5512748 Hanson Apr 1996 A
5515076 Thompson et al. May 1996 A
5516125 McKenna May 1996 A
5517340 Doany et al. May 1996 A
5517347 Sampsell May 1996 A
5517357 Shibayama May 1996 A
5517359 Gelbart May 1996 A
5519251 Sato et al. May 1996 A
5519450 Urbanus et al. May 1996 A
5521748 Sarraf May 1996 A
5523619 McAllister et al. Jun 1996 A
5523628 Williams et al. Jun 1996 A
5523803 Urbanus et al. Jun 1996 A
5523878 Wallace et al. Jun 1996 A
5523881 Florence et al. Jun 1996 A
5523920 Machuga et al. Jun 1996 A
5524155 Weaver Jun 1996 A
5534107 Gray et al. Jul 1996 A
5534883 Koh Jul 1996 A
5539422 Heacock et al. Jul 1996 A
5544306 Deering et al. Aug 1996 A
5554304 Suzuki Sep 1996 A
5576878 Henck Nov 1996 A
5602671 Hornbeck Feb 1997 A
5606181 Sakuma et al. Feb 1997 A
5606447 Asada et al. Feb 1997 A
5610438 Wallace et al. Mar 1997 A
5623361 Engle Apr 1997 A
5629566 Doi et al. May 1997 A
5629801 Staker et al. May 1997 A
5640216 Hasegawa et al. Jun 1997 A
5658698 Yagi et al. Aug 1997 A
5661593 Engle Aug 1997 A
5663817 Frapin et al. Sep 1997 A
5668611 Ernstoff et al. Sep 1997 A
5673139 Johnson Sep 1997 A
5677783 Bloom et al. Oct 1997 A
5689361 Damen et al. Nov 1997 A
5691836 Clark Nov 1997 A
5694740 Martin et al. Dec 1997 A
5696560 Songer Dec 1997 A
5699740 Gelbart Dec 1997 A
5704700 Kappel et al. Jan 1998 A
5707160 Bowen Jan 1998 A
5712649 Tosaki Jan 1998 A
5713652 Zavracky et al. Feb 1998 A
5726480 Pister Mar 1998 A
5731802 Aras et al. Mar 1998 A
5734224 Tagawa et al. Mar 1998 A
5742373 Alvelda Apr 1998 A
5744752 McHerron et al. Apr 1998 A
5745271 Ford et al. Apr 1998 A
5757354 Kawamura May 1998 A
5757536 Ricco et al. May 1998 A
5764280 Bloom et al. Jun 1998 A
5768009 Little Jun 1998 A
5773473 Green et al. Jun 1998 A
5793519 Furlani et al. Aug 1998 A
5798743 Bloom Aug 1998 A
5798805 Ooi et al. Aug 1998 A
5801074 Kim et al. Sep 1998 A
5802222 Rasch et al. Sep 1998 A
5808323 Spaeth et al. Sep 1998 A
5808797 Bloom et al. Sep 1998 A
5815126 Fan et al. Sep 1998 A
5825443 Kawasaki et al. Oct 1998 A
5835255 Miles Nov 1998 A
5835256 Huibers Nov 1998 A
5837562 Cho Nov 1998 A
5841579 Bloom et al. Nov 1998 A
5844711 Long, Jr. Dec 1998 A
5847859 Murata Dec 1998 A
5862164 Hill Jan 1999 A
5868854 Kojima et al. Feb 1999 A
5886675 Aye et al. Mar 1999 A
5892505 Tropper Apr 1999 A
5895233 Higashi et al. Apr 1999 A
5898515 Furlani et al. Apr 1999 A
5903243 Jones May 1999 A
5903395 Rallison et al. May 1999 A
5910856 Ghosh et al. Jun 1999 A
5912094 Aksyuk et al. Jun 1999 A
5912608 Asada Jun 1999 A
5914801 Dhuler et al. Jun 1999 A
5915168 Salatino et al. Jun 1999 A
5919548 Barron et al. Jul 1999 A
5920411 Duck et al. Jul 1999 A
5920418 Shiono et al. Jul 1999 A
5926309 Little Jul 1999 A
5926318 Hebert Jul 1999 A
5942791 Shorrocks et al. Aug 1999 A
5949390 Nomura et al. Sep 1999 A
5949570 Shiono et al. Sep 1999 A
5953161 Troxell et al. Sep 1999 A
5955771 Kurtz et al. Sep 1999 A
5963788 Barron et al. Oct 1999 A
5978127 Berg Nov 1999 A
5982553 Bloom et al. Nov 1999 A
5986634 Alioshin Nov 1999 A
5986796 Miles Nov 1999 A
5995303 Honguh et al. Nov 1999 A
5999319 Castracane Dec 1999 A
6004912 Gudeman Dec 1999 A
6016222 Setani et al. Jan 2000 A
6025859 Ide et al. Feb 2000 A
6038057 Brazas, Jr. et al. Mar 2000 A
6040748 Gueissaz Mar 2000 A
6046840 Huibers Apr 2000 A
6055090 Miles Apr 2000 A
6057520 Goodwin-Johansson May 2000 A
6061166 Furlani et al. May 2000 A
6061489 Ezra May 2000 A
6062461 Sparks et al. May 2000 A
6064404 Aras et al. May 2000 A
6069392 Tai et al. May 2000 A
6071652 Feldman et al. Jun 2000 A
6075632 Braun Jun 2000 A
6088102 Manhart Jul 2000 A
6090717 Powell et al. Jul 2000 A
6096576 Corbin et al. Aug 2000 A
6097352 Zavracky et al. Aug 2000 A
6101036 Bloom Aug 2000 A
6115168 Zhao et al. Sep 2000 A
6122299 DeMars et al. Sep 2000 A
6123985 Robinson et al. Sep 2000 A
6124145 Stemme et al. Sep 2000 A
6130770 Bloom Oct 2000 A
6144481 Kowarz et al. Nov 2000 A
6147789 Gelbart Nov 2000 A
6154259 Hargis et al. Nov 2000 A
6163026 Bawolek et al. Dec 2000 A
6163402 Chou et al. Dec 2000 A
6169624 Godil et al. Jan 2001 B1
6172797 Huibers Jan 2001 B1
6177980 Johnson Jan 2001 B1
6188519 Johnson Feb 2001 B1
6195196 Kimura et al. Feb 2001 B1
6197610 Toda Mar 2001 B1
6210988 Howe et al. Apr 2001 B1
6215579 Bloom et al. Apr 2001 B1
6219015 Bloom et al. Apr 2001 B1
6222954 Riza Apr 2001 B1
6229650 Reznichenko et al. May 2001 B1
6229683 Goodwin-Johansoon May 2001 B1
6241143 Kuroda Jun 2001 B1
6251842 Gudeman Jun 2001 B1
6252697 Hawkins et al. Jun 2001 B1
6254792 Van Buskirk et al. Jul 2001 B1
6261494 Zavracky et al. Jul 2001 B1
6268952 Godil et al. Jul 2001 B1
6271145 Toda Aug 2001 B1
6271808 Corbin Aug 2001 B1
6274469 Yu Aug 2001 B1
6290859 Fleming et al. Sep 2001 B1
6290864 Patel et al. Sep 2001 B1
6300148 Birdsley et al. Oct 2001 B1
6303986 Shook Oct 2001 B1
6310018 Behr et al. Oct 2001 B1
6323984 Trisnadi Nov 2001 B1
6342960 McCullough Jan 2002 B1
6356577 Miller Mar 2002 B1
6356689 Greywall Mar 2002 B1
6359333 Wood et al. Mar 2002 B1
6384959 Furlani et al. May 2002 B1
6387723 Payne et al. May 2002 B1
6392309 Wataya et al. May 2002 B1
6396789 Guerra et al. May 2002 B1
6445502 Islam et al. Sep 2002 B1
6452260 Corbin et al. Sep 2002 B1
6466354 Gudeman Oct 2002 B1
6497490 Miller et al. Dec 2002 B1
6504644 Sandstrom Jan 2003 B1
6525863 Riza Feb 2003 B1
6563974 A. Riza May 2003 B2
20010019454 Tadic-Galeb et al. Sep 2001 A1
20020015230 Pilossof et al. Feb 2002 A1
20020021485 Pilossof Feb 2002 A1
20020079432 Lee et al. Jun 2002 A1
20020105725 Sweatt et al. Aug 2002 A1
20020112746 DeYoung et al. Aug 2002 A1
20020131230 Potter Sep 2002 A1
Foreign Referenced Citations (1)
Number Date Country
0 322 714 Jul 1989 EP
Non-Patent Literature Citations (5)
Entry
Apte et al., “Deformable Grating Light Valves for High Resolution Displays,” Solid State Actuator Workshop, Hilton Head, South Carolina, Jun. 13-16, 1994.
Sene et al., “Polysilicon micromechanical gratings for optical modulation,” Sensors and Actuators, vol. A57, pp. 145-151, 1996.
Amm et al., “Invited Paper: Grating Light Valve™ Technology: Update and Novel Applications,” SID Digest, vol. 29, 1998.
“Micromachined Opto/Electro/Mechanical Systems,” Electronic Systems, NASA Tech Briefs, Mar. 1997, pp. 50 & 52.
David M. Burns et al., “Development of Microelectromechanical Variable Blaze Gratings,” Sensors and Actuators A 64 (1998), pp. 7-15.