The present invention relates to light-emitting diodes (LEDs), particularly optical means for producing various far-field light intensity distributions for LEDs.
Conventional incandescent lamps of less than 100 lumens output can be matched by the latest white LEDs, albeit at a higher price. At this low end of the lumen range, the majority of incandescent applications are battery-powered. It is desirable to have an LED suitable for direct installation in the place of a burnt-out flashlight bulb.
LED's can offer superior luminous efficacy over the conventional incandescent lamps used in battery-operated flashlights. Moreover, LEDs are far more tolerant of shock, vibration, and crush-stress. Although they currently cost more to produce than the incandescents, their lifetimes are ten thousand times longer. For the sake of efficacy flashlight bulbs are run hot so they typically last only a few hours until filament failure. Also, the prices of LEDs continue to fall, along with those of the control-electronics to handle variations in battery voltage.
Indeed, LED flashlights are commercially available already, but their optics have to be adapted to the geometry of light-emitting diodes, which only emit into a hemisphere. Conventional LED lamps are unsuitable for direct installation into conventional flashlights, both electrically and optically. LED lamps are electrically unsuitable because they are current-driven devices, whereas batteries are voltage sources. Typical variations in the voltage of fresh batteries are enough to exceed an LED's tolerable operating-voltage range. This causes such high currents that the Ohmic heating within the die exceeds the ability of thermal conduction to remove it, causing a runaway temperature-rise that destroys the die. Therefore, a current-control device must accompany the lamp.
Conventional LED lamps are optically unsuitable for direct installation into the parabolic reflectors of flashlights. This is because their bullet-lens configuration forms a narrow beam that would completely miss a nearby parabola. Using instead a hemispherically emitting non-directional dome, centered on the luminous die, gives the maximum spread commercially available, a Lambertian pattern, with a sin2θ dependence of encircled flux on angle θ from the lamp axis. Since θ for a typical parabolic flashlight reflector extends from 45° to 135°, an LED with a hemispheric pattern is mismatched because it's emission falls to zero at only θ=90°. This would result in a beam that was brightest on the outside and completely dark halfway in. Worse yet, even this inferior beam pattern from a hemispheric LED would require that it be held up at the parabola's focal point, several millimeters above the socket wherein a conventional incandescent bulb is installed.
Another type of battery-powered lamp utilizes cylindrical fluorescent lamps. Although LEDs do not yet offer better luminous efficacy, fluorescent lamps nonetheless are relatively fragile and require unsafely high voltages. A low-voltage, cylindrical LED-based lamp could advantageously provide the same luminous output as a fluorescent lamp.
Addressing the needs above, U.S. patent application Ser. No. 10/461,557, OPTICAL DEVICE FOR LED-BASED LIGHT-BULB SUBSTITUTE, filed Jun. 12, 2003, which is hereby incorporated by reference in its entirety, discloses such LED-based lamps with which current fluorescent and incandescent bulb flashlights can be retrofitted. It often desirable, however, for LED lamps such as those described in U.S. patent application Ser. No. 10/461,557 to have other far-field intensity distributions of interest. Also, U.S. patent application Ser. No. 10/461,557 touched on the function of color mixing, to make the different wavelengths of chips 23, 24, and 25 of FIG. 2 of U.S. patent application Ser. No. 10/461,557 have the same relative strengths throughout the light coming out of ejector section 12. This assures that viewers will see only the intended metameric hue and not any colors of the individual chips. Previously, rectangular mixing rods have been used to transform the round focal spot of an ellipsoidal lamp into a uniformly illuminated rectangle, typically in cinema projectors. Generally, polygonal mixing rods worked best with an even number of sides, particularly four and six. With color mixing for LEDs, however, such rods are inefficient because half of an LED's Lambertian emission will escape from the base of the rod.
There is thus a need in the art for effective and optically suitable LED lamps with various far-field intensity distributions and have proper shaping of their transfer sections enabling polygonal cross-sections to be used.
The present invention advantageously addresses the needs above as well as other needs by providing an optical device for LED-based lamps with configurations for various far-field intensity distributions.
In some embodiments, an optical device for use in distributing radiant emission of a light emitter is provided. The optical device can comprise a lower transfer section, and an upper ejector section situated upon the lower transfer section. The lower transfer section is operable for placement upon the light emitter and further operable to transfer the radiant emission to said upper ejector section. The upper ejector section can be shaped such that the emission is redistributed externally into a substantial solid angle. In some preferred embodiments, the transfer section is a solid of revolution having a profile in the shape of an equiangular spiral displaced laterally from an axis of said solid of revolution so as to place a center of the equiangular spiral on an opposite side of the axis therefrom.
In some embodiments, an optical device for distributing the radiant emission of a light emitter is provided. The optical device can comprise a lower transfer section, and an upper ejector section situated upon the lower transfer section. The lower transfer section can be operable for placement upon the light emitter and operable to transfer the radiant emission to the upper ejector section. The upper ejector section can be shaped such that the emission is redistributed externally into a substantial solid angle. The ejector section can further comprise lower and connecting upper portions.
Some preferred embodiments provide an optical device for distributing radiant emissions of a light emitter. The optical device can comprise a transfer section, and an ejector section situated upon the transfer section. The transfer section is operable for placement adjacent with a light emitter and operable to transfer radiant emission from the light emitter to the ejector section. The ejector section is shaped such that the emission is redistributed externally into a substantial solid angle. In some embodiments, the ejector section has an upper surface with a profile of an equiangular spiral with a center at an upper edge of said transfer section. Some embodiments further provide for the ejector section to include a surface comprised of a radial array of V-grooves. Still further embodiments provide that a surface of said transfer section is comprised of an array of V-grooves. Further, the transfer section can be a polygonal, can be faceted and/or have other configurations.
In one embodiment, the invention can be characterized as an optical device for distributing radiant emission of a light emitter comprising a lower transfer section and an upper ejector section situated upon the lower transfer section. The lower transfer section is operable for placement upon the light emitter and operable to transfer the radiant emission to the upper ejector section. The upper ejector section is shaped such that the light within it is redistributed out an external surface of the upper ejector section into a solid angle substantially greater than a hemisphere, and approximating that of an incandescent flashlight bulb. The ejector section is positioned at the same height as the glowing filament of the light bulb it replaces. It is easier to optically move this emission point, using the transfer section, than to put the LED itself at such a height, which would make heat transfer difficult, among other problems that the present invention advantageously addresses.
In another embodiment, this invention comprises a multiplicity of such transfer sections joined end-to-end, with two LED sources at opposite ends of this line-up. These transfer sections have slightly roughened surfaces to promote diffuse emission, so that the entire device acts as a cylindrical emitter, and approximating the luminous characteristics of a fluorescent flashlight bulb.
A better understanding of the features and advantages of the present invention will be obtained by reference to the following detailed description of the invention and accompanying drawings, which set forth an illustrative embodiment in which the principles of the invention are utilized.
The above and other aspects, features and advantages of the present invention will be more apparent from the following more particular description thereof, presented in conjunction with the following drawings wherein:
a through 38b are cross sectional views of LED lamps having various configurations of transfer and ejector lens sections (hereafter called virtual filaments) according to the present invention, with each cross sectional view accompanied, respectively, by the individual configuration's far field pattern.
a is a perspective view of the configuration of
b is a perspective view showing the vector triad on the configuration of
a and 47b is a side and perspective view, respectively, of a sixteen-sided virtual filament according to the present invention.
c-e show blue (465 nanometers), green (520 nanometers) and red (620 nanometers) emission patterns, respectively, of the embodiments of
a and 48b is a side and perspective view, respectively, of another sixteen-sided virtual filament, with a slotted ejector section according to the present invention.
c depicts a 300° emission pattern produced by the collar of
a and 49b is a side and perspective view, respectively, of a faceted virtual filament that mixes the disparate wavelengths of a tricolor LED according to the present invention.
Corresponding reference characters indicate corresponding components throughout the several views of the drawings, especially the explicit label in
The following description of the presently contemplated best mode of practicing the invention is not to be taken in a limiting sense, but is made merely for the purpose of describing the general principles of the invention. The scope of the invention should be determined with reference to the claims.
The present embodiments provide light sources with predefined far-field intensities. The present embodiments can be utilized in numerous applications. For example, in some applications, the embodiments can be utilized to replace and/or substitute for other types of light sources, such as compact light sources, incandescent light sources, florescent light sources and other light sources. As a further example, the present embodiments can be utilized in replacing incandescent light sources in flight lights and other devices using incandescent light sources.
The present embodiments can also be utilized with the embodiments described in co-pending U.S. Provisional Patent application No. 60/520,951, filed Nov. 17, 2003, incorporated herein by reference in its entirety. The surface faceting configuration presented herein in
The present embodiments can further be utilized with the embodiments of and in the applications described in U.S. Provisional Patent Application No. 60/470,691, filed May 13, 2003, and U.S. patent application Ser. No. 10/461,557, filed Jun. 12, 2003, incorporated herein by reference in their entirety. For example, the present embodiments can be utilized in the light sources described in U.S. Provisional Patent Application No. 60/470,691, filed May 13, 2003, and U.S. patent application Ser. No. 10/461,557, filed Jun. 12, 2003.
a through 38b are cross sectional views of LED lamps having various configurations of transfer and ejector lens sections (hereafter called virtual filaments) according to some present embodiments, with each cross sectional view accompanied, respectively, by the individual configuration's far field pattern.
Only
In
Similarly in
a shows virtual filament 270 comprising compound elliptical concentrator (hereinafter CEC) transfer section 271, and an ejector section comprising outward slanting lower cone 272 and inward slanting upper cone 273.
a shows virtual filament 280 comprising CEC transfer section 281, multiple stacked toroids 282, and ejector section 283, shaped as an equiangular spiral with origin at point 283f.
a shows virtual filament 290, comprising CEC transfer section 291, cones 292 and 293, and equiangular spirals 294 and 295. Predominantly horizontal equiangular spiral 294 has its center at central point 294f. Equiangular spiral profile 295 has oppositely situated center 295f.
a shows virtual filament 300 comprising CEC section 301, flat 302, sideways equiangular spiral 303 with center at point 303f, and top equiangular spiral 304 with center at point 304f.
a shows virtual filament 310 with CEC transfer section 311, planar annulus 312, equiangular spiral 313 with center at axial point 313f, and upper equiangular spiral 314 with center at opposite point 314f. In addition to elements in correspondence with those of
Delving further on the theme of minor modifications,
a depicts a preferred embodiment that is the result of small modifications of virtual filament 320 of
Continuing the theme of component modifications,
a depicts virtual filament 350 comprising CEC transfer section 351, dual conical flanges 352, and upper conic indentation 353.
a depicts virtual filament 360 comprising CEC transfer section 361, conical flange 362, upper equiangular spiral indentation 363 with center at proximal point 363f, and cylindrical flange 364.
a depicts another variation of
a depicts a variation of component proportions in the preferred embodiment of
a depicts virtual filament 390 comprising CEC transfer section 391, spheric section 392, and central conic indentation 393. In similarity to spheric ejector section 72 of FIG. 7 of U.S. patent application Ser. No. 10/461,557, both surfaces 392 and 393 are diffusing, in that rays from within and going through them are scattered diffusely into air.
a depicts virtual filament 400 comprising CEC transfer section 401, steeply slanting cone 402, outer equiangular spiral 403 with axially located center 403f, and inner equiangular spiral 404 with center at proximal point 404f. As shown in
In a variant of the previous figure,
a depicts virtual filament 420, comprising CEC transfer section 421, cylinder 422, conical indentation 423 in shallower top cone 424.
a depicts virtual filament 430, comprising CEC transfer section 431, outer cone 432, and inner conical indentation 433. In spite of the small differences from FIG. 16a, the far-field pattern of
a depicts virtual filament 440, comprising CEC transfer section 441, outer cone 442, and inner conical indentation 443. In spite of the small differences of this preferred embodiment from that of from
a depicts virtual filament 450 comprising CEC transfer section 451, spline curve 452, central equiangular spiral 453 with center at proximal point 453f, and surrounding top conic indentation 454.
a depicts virtual filament 460 comprising CEC transfer section 461, spheric section 462 with radius 462r that equals 0.38 times the height of section 461, and central equiangular spiral 463 with center at proximal point 463f.
a depicts another similar configuration, virtual filament 470 comprising CEC transfer section 471, spheric section 472 with radius 472r that is 0.7 times the height of section 471, and central equiangular spiral 473 with center at proximal point 473f.
a depicts another similar configuration, virtual filament 480 comprising CEC transfer section 481, spheric section 482 with radius 482r that is 0.8 times the height of section 481, and central equiangular spiral 483 with center at proximal point 483f. Spheric section 482 is partially covered with multiple convex toroidal lenslets 482t.
a depicts virtual filament 490 comprising CEC transfer section 491, spheric section 492 with radius 492r that is 0.62 times the height of section 491, section 492 being fully surfaced by multiple toroidal lenslets 492t, and central equiangular spiral 493 with center at proximal point 493f.
a depicts virtual filament 500 comprising CEC transfer section 501, spheric section 502 with radius 502r that is 0.76 times the height of section 501, section 502 being surfaced by multiple convex toroidal lenslets 502t, and central equiangular spiral 503 with center at proximal point 503f.
a depicts virtual filament 510 comprising CEC transfer section 511, spheric section 512 with radius 512r that is equal to the height of section 511, section 512 surfaced by multiple convex toroidal lenslets 512t, and central equiangular spiral 513 with center at proximal point 513f.
a depicts virtual filament 520 comprising CEC transfer section 521, lower spline section 522, central equiangular spiral 523 with center at proximal point 523f, and outer cylindrical section 524 covered with multiple convex toroidal lenslets 524t.
a depicts virtual filament 530 comprising CEC transfer section 531, conical section 532, central equiangular spiral 533 with center at proximal point 533f, and cylindrical stack 534 surfaced by multiple convex toroidal lenslets 534t.
a depicts virtual filament 540 comprising CEC transfer section 541, conic section 542, central equiangular spiral 543 with center at proximal point 543f, and outer cylinder 544.
a depicts virtual filament 550 comprising CEC transfer section 551, shallow upward cone 552, central equiangular spiral 553 with center at proximal point 553f, and outer concave spline 554.
a depicts virtual filament 560 comprising CEC transfer section 561, planar annulus 562, central equiangular spiral 563 with center at proximal point 563f, and outer cylinder 564.
a depicts virtual filament 580 comprising CEC transfer section 581, planar annulus 582, upper equiangular spiral 583 with center at proximal point 583f, outer cylinder 584 surfaced with concave toroidal lenslets 584t, and central upper cone 585.
a depicts virtual filament 590 comprising equiangular-spiral transfer section 591 with center at opposite point 591f, outward cone 592, central indentation 593 shaped as a higher-order polynomial, and steep outer cone 594, and surfaces 595, 596, and 597 forming a slot. Its far-field pattern is shown in
a depicts virtual filament 600 comprising equiangular-spiral transfer section 601 with center on opposite point 601f, protruding cubic spline 602, and central equiangular spiral 603 with center at proximal point 603f. Its far field pattern is shown in
a depicts virtual filament 610 comprising equiangular-spiral transfer section 611 with center at opposite point 611f, protruding cubic spline 612, and central equiangular spiral 613 with center at proximal point 613f.
a depicts virtual filament 620 comprising equiangular-spiral transfer section 621 with center at opposite point 621f, protruding cubic spline 622, and central equiangular spiral 623 with center at proximal point 623f.
a depicts virtual filament 630 comprising equiangular-spiral transfer section 631 with center at opposite point 631f, planar annulus 632, central equiangular spiral 633 with center at proximal point 633f, and outer cylinder 634.
a depicts virtual filament 640 comprising equiangular-spiral transfer section 641 with center at opposite point 641f, lower conical section 642, upper conical section 643, and outer spline curve 644.
Previous embodiments have complete circular symmetry, since they are formed by a 360° cylindrical profile-sweep. Thus they have no azimuthal shape variation, only the radial variation of the profile. This is because real-world 360° output patterns do not call for azimuthal variation. There is one type of azimuthal shape variation, however, having no azimuthal intensity variations in its light output. This is the V-groove.
The geometry of a linear array of V-grooves is shown in
The configuration pertinent to the present invention is when surface 650 is the interface between a transparent dielectric, such as acrylic or polycarbonate, lying above the surface (i.e. positive z) and air below it. The particular case shown in
|cos−1q|<45°−θc
which amounts to a vertical width of ±2.80 for acrylic (n=1.492) and ±60 for polycarbonate (n=1.585). These small angles are how much such incoming rays are not in plane 651.
More pertinent to the present invention is radial V-groove array 670 shown in
In
a is a perspective view of the preferred embodiment of
b is another perspective view of the same preferred embodiment, but with surfaces 683 and 684 of
In modifying surface 683 of
(X−P(t))·(n(t)±b(t))=0 (1)
with the ‘±’ referring to there being two such 45° planes corresponding to the walls of a 90 V-groove. Varying t gives a family of such planes. In order to calculate the envelope surface to this family of planes, differentiate Equation (1) with respect to parameter t, giving
The orthogonal vector triad formed by the parametrically specified unit vectors t(t), n(t), and b(t) is called the Frenet frame of the curve it follows as t varies. Each of these three vectors has a definition based on various derivatives of the equation for P(t). Differentiating these definitions with respect to t gives the Frenet equations, well-known in differential geometry. A laborious combination of the Frenet equations with Equation (2), and eliminating t, finally yields
(X−P(t))·t(t)=0 (3)
Equation (3) and Equation (1) must be fulfilled simultaneously for each point X of the envelope surface. Equation (3) establishes that the same vector X−P is normal to tangent vector t, while Equation (1) implies that the vector X−P is normal to n±b. Thus X−P, for a point satisfying equations (1) and (3), must be in the direction n-b, because n and b are orthogonal unit vectors so that (n−b) ·(n+b)=0, i.e.,
X−P(t)=s(−n(t)±b(t)) (4)
This is the parametric equation of the two envelope surfaces of the ridge. The radial parameter is t and transverse parameter is s, with one ridge for +b(t) and the other for −b(t). Curves 683c of
X(t,s)=P(t)+s(−n(t)±b(t)) (5)
is the equation of the envelope surface as a function of the crest equation P(t), and its normal and binormal vectors. The parameter s extends to the value of s that at the bottom of the groove, where it meets the corresponding point on the next ridge.
The upshot of this differential-geometry proof is that each of the planes of
The discussion of FIG. 2 of U.S. patent application Ser. No. 10/461,557 touched on the function of color mixing, to make the different wavelengths of chips 23, 24, and 25 have the same relative strengths throughout the light coming out of ejector section 12. This assures that viewers will see only the intended metameric hue and not any colors of the individual chips. Previously, rectangular mixing rods have been used to transform the round focal spot of an ellipsoidal lamp into a uniformly illuminated rectangle, typically in cinema projectors. Generally, polygonal mixing rods worked best with an even number of sides, particularly four and six. With color mixing for LEDs, however, such rods are inefficient because half of an LED's Lambertian emission will escape from the base of the rod.
The following preferred embodiments of the present invention remedy this deficit by proper shaping of its transfer section. This shaping enables polygonal cross-sections to be used in the present invention.
a is a side view of virtual filament 730 comprising sixteen-sided off-axis ellipsoid 731, conical ejector section 732, and mounting feet 734.
a is a side view of virtual filament 740 comprising sixteen-sided off-axis ellipsoid 741, conical ejector section 742, conical collar 744, and cylindrical connector 745.
a is an exploded side view of faceted virtual filament 750 and tricolor LED package 755 being inserted into and optically coupled to the filament 750. Beyond polygonally-shaped transfer sections are more complex departures from circular symmetry. Virtual filament 750 comprises an output section spanned by arrow 751, transfer section 752, and mounting feet 753. Faceted virtual filament 750 is a single piece of plastic, such as acrylic, the surface of which is covered by planar facets 754. The two mounting feet 753 are designed to be proximate to the outer surfaces of LED package 755, to aid in alignment and bonding of virtual filament 750 to package 755. In one embodiment of the invention, adhesive is applied to the inner sidewalls of feet 753 for bonding to LED package 755. In this instance the inner sidewall of each leg 753 has a surface that is substantially parallel to the proximate edge surface of LED package 755. Optical coupling of the bottom of virtual filament 750 to the top surface of LED package 755 can be achieved by several means, such as use of optical adhesives, non-curing and curing optical gels (such as available from Nye Optical Products of Fairhaven, Ma) or index matching liquids (such as available from Cargille Laboratories of Cedar Grove, N.J.).
b is an exploded-part perspective view showing rectangular LED package 755 as removed from virtual filament 750. Within reflector cup 757 are red chip 758r, green chip 758g, and blue chip 758b. Cup 757 is filled with transparent epoxy (not shown) up to top 756 of package 755. Top 756 is optically bonded to the bottom of faceted virtual filament 750. This three-chip configuration is an example of the present invention incorporating multiple light sources. The three chips shown could also be amber, red, and infrared, suitable for illuminators compatible with night-vision devices, and other combinations.
Typically the base of a mixing virtual filament is larger than the emitting surface of the RGB LED illuminating it. In one preferred embodiment the inner diameter of the sixteen-sided polygonal shaped base of the mixing optic 750 is 20% larger than the diameter of the circular exit aperture of the RGB LED 755. In the case where the RGB LED 755 has a non-circular exit aperture, the base of the virtual filament is made sufficiently large to completely cover the exit aperture of the LED.
While the invention herein disclosed has been described by means of specific embodiments and applications thereof, numerous modifications and variations could be made thereto by those skilled in the art without departing from the scope of the invention as set forth in the claims.
This application is a continuation-in-part of Application No. ______, filed Mar. 30, 2004, which is incorporated herein by reference in its entirety. The present embodiments may be further understood and/or can also be utilized with the embodiments described in co-pending U.S. Provisional Patent Application No. 60/470,691, filed May 13, 2003, U.S. patent application Ser. No. 10/461,557, filed Jun. 12, 2003, and U.S. Provisional Patent Application No. 60/520,951, filed Nov. 17, 2003, each being incorporated herein by reference in their entirety.
Number | Date | Country | |
---|---|---|---|
Parent | 10814598 | Mar 2004 | US |
Child | 10816228 | Mar 2004 | US |