Near-eye displays (NEDs) have been widely used in a variety of applications, such as video playback, gaming, and sports. NEDs have been used to realize virtual reality (VR), augmented reality (AR) or mixed reality (MR). Some VR, AR or MR applications require an eye tracking function that monitors the eyes of a user and/or the region surrounding the eyes of a user. By monitoring the eyes and/or the surrounding region, the NED can determine a gaze direction of the user, which can be used for improving display quality, performance, and/or user experience, and can be used to address vergence/accommodation conflict. Further, by monitoring the eyes and/or the surrounding region, the NED can estimate the psychological state and/or changes in the psychological state of the user, as well as physical characteristics of the user. However, diffractive structures presented in an eye-tracking device, such as an eye-tracking combiner, may diffract visible light coming from a real world causing a multicolored glare in a see-through view especially when the NED is for AR or MR applications. Such a see-through artifact is often called as a “rainbow effect”, which may degrade the image quality of the see-through view. To suppress the rainbow effect, conventional dimming elements have been used to dim a real-world light that is incident onto right-eye and left-eye display windows at different incidence angles, thereby dimming the undesired rainbow. However, the brightness of the desired see-through image may be reduced simultaneously.
One aspect of the present disclosure provides an optical system. The grating includes at least one substrate and a grating structure coupled to the at least one substrate. The grating structure is configured to diffract an infrared light beam and transmit a visible light beam with a diffraction efficiency less than a predetermined threshold.
Another aspect of the present disclosure provides an eye-tracking system. The eye-tracking system includes a light source configured to emit a light to illuminate an eye of a user. The eye-tracking system includes a grating disposed facing the eye and including at least one substrate and a grating structure coupled to the at least one substrate. The grating structure is configured to diffract an infrared light beam and transmit a visible light beam with a diffraction efficiency less than a predetermined threshold. The eye-tracking system includes an optical sensor configured to receive the diffracted infrared light beam, and generate an image of the eye based on the diffracted infrared light beam.
Other aspects of the present disclosure can be understood by those skilled in the art in light of the description, the claims, and the drawings of the present disclosure.
The following drawings are provided for illustrative purposes according to various disclosed embodiments and are not intended to limit the scope of the present disclosure.
Hereinafter, embodiments consistent with the disclosure will be described with reference to drawings, which are merely examples for illustrative purposes and are not intended to limit the scope of the disclosure. In the drawings, the shape and size may be exaggerated, distorted, or simplified for clarity. Wherever possible, the same reference numbers will be used throughout the drawings to refer to the same or like parts, and a detailed description thereof may be omitted.
Further, in the present disclosure, the disclosed embodiments and the features of the disclosed embodiments may be combined under conditions without conflicts. The described embodiments are some but not all of the embodiments of the present disclosure. Based on the disclosed embodiments, persons of ordinary skill in the art may derive other embodiments consistent with the present disclosure, all of which are within the scope of the present disclosure.
The present disclosure provides an optical system and an eye-tracking system capable of suppressing the rainbow effect in a see-through view. The optical device may include a grating. The grating may include at least one substrate and a grating structure coupled to the at least one substrate. The grating structure may be configured to diffract an infrared light beam and transmit a visible light beam with a diffraction efficiency less than a predetermined threshold, for example, 0.5%, 0.1%, 0.05% or 0.01%. In some embodiments, the grating may include a polarization volume hologram (PVH) film. In some embodiments, PVH film may be configured to have a uniform birefringence lower than or equal to a predetermined number, for example, 0.1. In some embodiments, the PVH film may be configured to have a birefringence gradient along a thickness direction of the PVH film. Along the thickness direction of the PVH film, a birefringence of the PVH film may decreases from a predetermined portion (e.g., a center portion) to both end portions of the PVH film. In some embodiments, the PVH film may be fabricated by a liquid crystalline polymer with a photo-cross-linkable mesogenic side group. The birefringence gradient along the thickness direction of the PVH film may be attainable by varying an exposure energy at different portions of a film of the liquid crystalline polymer.
The present disclosure provides an eye-tracking system including the abovementioned optical device. The eye-tracking system may include a light source configured to emit a light to illuminate an eye of a user. The eye-tracking system may include a grating disposed facing the eye and including at least one substrate and a grating structure coupled to the at least one substrate. The grating structure may be configured to diffract an infrared light and transmit a visible light with a diffraction efficiency less than a predetermined threshold. The eye-tracking system may include an optical sensor configured to receive the diffracted infrared light, and generate an image of the eye based on the diffracted infrared light.
As shown in
In some embodiments, the light emitted by the light source 115 may include a narrow spectrum or a relatively broad spectrum, and one or more wavelengths of the light may be in the infrared (IR) spectrum, i.e., the spectrum of the light source 115 may be within, overlap, or encompass the IR spectrum. In some embodiments, the light source 115 may emit light in the near infrared (NIR) band (about 750 nm to 1250 nm), or some other portion of the electromagnetic spectrum. NIR spectrum light may be advantageous in some embodiments because the NIR spectrum light is not visible to the human eye and thus, does not distract the user wearing the NED during operation. The infrared light may be reflected by a pupil area, of the eye 120, the entire eye 120 of the user, an area near, such as above, below, left to, or right to, the eye 120 of the user, or an area including the eye 120 and the area near the eye 120.
The eye-tracking system may include a grating 125 configured to guide the light reflected by the eye 120 towards an optical sensor 130. The optical sensor 130 may be arranged relative to the grating 125, thereby receiving the light guided by the grating 125 and generating a signal for eye-tracking. For example, an image of the eye 120 may be generated based on the eye-tracking signal. The optical sensor 130 may be sensible to light having a wavelength within a spectrum that includes IR spectrum. In some embodiments, the optical sensor 130 may be sensible to IR light but not visible light. In some embodiments, the optical sensor 130 may include a camera, such as a charge-coupled device (CCD) camera, a complementary metal-oxide-semiconductor (CMOS) sensor, an N-type metal-oxide-semiconductor (NMOS) sensor, a pixelated camera, or any other suitable cameras.
In some embodiments, the optical sensor 130 may be mounted at any suitable part of the eye-tracking system, as long as the optical sensor 130 may be arranged to face the grating 125 to receive reflected light guided by the grating 125. In some embodiments, the optical sensor 130 may be mounted on the frame 102 of the NED 100. Further, the optical sensor 130 may include a processor configured to process the received IR light, to generate an image of the eye 120, and/or to analyze the image of the eye 120 to obtain information that may be used for eye-tracking and other subsequent operations, such as for determining what information to present to the user or the layout of the presentation of the information, etc. In some embodiments, the optical sensor 130 may also include a non-transitory computer-readable storage medium (e.g., a computer-readable memory) configured to store data, such as the generated images. In some embodiments, the non-transitory computer-readable storage medium may store codes or instructions that may be executable by the processor to perform various steps of any method disclosed herein. In some embodiments, the processor and the non-transitory computer-readable medium may be provided separately from the optical sensor 130. For example, the eye-tracking system may include a controller communicatively connected with the optical sensor 130 and configured to receive data from the optical sensor 130. The controller may be configured to analyze the data (e.g., images of the eye 120) received from the optical sensor 130 to obtain information for eye-tracking or other purposes.
The grating 125 may be configured to diffract an IR light 131 reflected by the eye 120 (referred to as reflected light in the following) towards the optical sensor 130. The reflected IR light 131 may be incident onto the grating 125 with various incidence angles, such as 0 degree (i.e., perpendicular to the surface of the grating 125), 30 degrees, 45 degrees, 60 degrees, 70 degrees, etc., then diffracted by the grating 125 to a diffracted IR light 132 when the Bragg condition is satisfied. The optical sensor 130 may be positioned to receive the diffracted IR light 132, and generate an image of the eye 120 based on the diffracted light IR 132. The grating 125 may also be configured to transmit a visible light 160 from a real world towards the eye 120, such that the eye 120 of the user may see a virtual object (generated by the right-eye and left-eye display systems 104 in
As discussed in the background, an eye-tracking combiner may diffract visible light coming from a real world due to the diffractive structures, causing a rainbow effect in a see-through view especially when the user wearing the NED looks at a bright light source from certain angles. Such see-through artifacts may degrade the image quality of the see-through view. In view of this, the present discourse provides a grating configured to diffract the IR light 131 reflected from the eye 120 when the Bragg condition is satisfied and transmit the visible light 160 from a real world with negligible diffraction. A diffraction efficiency of the grating for the visible light 160 may be less than a predetermined threshold, such as 0.5%, 0.1%, 0.05% or 0.01%. Thus, the rainbow effect caused by the diffractive structures in the eye-tracking system may be observed to be significantly reduced, while the brightness of the desired see-through image may be only slightly affected.
As shown in
The grating structures 210 may be any suitable grating structures. In some embodiments, the grating structures 210 may be in a form of a polarization volume hologram (PVH) film, e.g., a reflective three-dimensional (3D) volumetric PVH film. The grating structures 210 are also referred to as a PVH film, and the grating 220 is also referred to a PVH grating, a polarization sensitive grating, a polarization sensitive optical element, or a chiral liquid crystal (LC) element. The PVH film 210 may be a birefringent material film that includes a plurality of birefringent material molecules, for example, liquid crystal (LC) molecules, and/or reactive mesogens that are polymerizable molecules with similar optical properties to LCs. The birefringent material molecules may be spatially orientated to realize an optical function of the PVH film 210.
The PVH film 210 may be configured to diffract an incident light via Bragg diffraction. The PVH film may be categorized into a left-handed PVH film and a right-handed PVH film. For example, a left-handed PVH film may diffract a left-handed circularly polarized (LCP) light and transmit a right-handed circularly polarized (RCP) light, while a right-handed PVH film may diffract an RCP light and transmit an LCP light. Note an unpolarized light can be decomposed into an LCP light and an RCP light. In some embodiments, depending on the alignment of the birefringent molecules in the PVH film, the PVH film may further converge or diverge the incident light. Generally speaking, both reflective and transmissive PVH films (i.e., reflective and transmissive PVH gratings) can be fabricated, depending on the direction of the incident and diffracted beams. For a reflective PVH film, an incident beam and a diffracted beam may be at the same side of the PVH film. For a transmissive PVH film, an incident beam and a diffracted beam may be at the opposite sides of the PVH film. It should be noted that, a PVH film may have both transmitting orders and reflecting orders of diffracted light. In a reflective PVH film, the diffraction efficiency of the transmitting orders may be desired to be significantly suppressed as compared to the reflecting orders, while in a transmissive PVH film, the diffraction efficiency of the reflecting orders may be desired to be significantly suppressed as compared to the transmitting orders.
In the disclosed embodiments, the PVH film 210 may be configured to diffract the IR light 225 that is emitted from the light source 115 and reflected by the eye 120 when the Bragg condition is satisfied. The PVH film 210 may also be configured transmit the visible light 250 from a real world with negligible diffraction, e.g., a diffraction efficiency lower than a predetermined threshold. In some embodiments, the predetermined threshold may be about 0.5%. In some embodiments, the predetermined threshold may be about 0.1%. In some embodiments, the predetermined threshold may be about 0.05%. In some embodiments, the predetermined threshold may be about 0.01%.
For discussion purposes, the PVH film 210 may be a right-handed PVH film that diffracts an RCP light and transmits an LCP light. The IR light 225 reflected by the eye 120 towards the PVH film 210 may be a unpolarized light. The RCP portion of the unpolarized IR light 225 may be deflected by the PVH film 210 to be an RCP light 230 towards the bottom substrate 205, and the LCP portion of the unpolarized IR light 225 may be transmitted through the PVH film 210 to be an LCP light 235 towards the top substrate 205. The RCP light 230 may be refracted at an outside surface of the bottom substrate 205 to be a light 240, which is received by the optical sensor 130. An eye-tracking signal may be generated based on the received light 240.
In some embodiments, to enable the PVH film 210 to diffract the IR light 225 reflected from the eye 120 when the Bragg condition is satisfied and transmit the visible light 250 from a real world with negligible diffraction, the PVH film 210 may be configured with a birefringence (i.e., PVH birefringence Δn) smaller than or equal to a predetermined value. The PVH birefringence Δn may be uniform across the entire PVH film 210. In some embodiments, the predetermined value of the PVH birefringence Δn may be about 0.1. In some embodiments, the predetermined value of the PVH birefringence Δn may be about 0.07. In some embodiments, the predetermined value of the PVH birefringence Δn may be about 0.05.
In some embodiments, to enable the PVH film 210 to diffract the IR light 225 reflected from the eye 120 when the Bragg condition is satisfied and transmit the visible light 250 from a real world with negligible diffraction, the PVH film 210 may be configured with gradient birefringence (i.e., gradient PVH birefringence Δn) or a birefringence gradient along a thickness direction of the PVH film 210, e.g., z-axis direction in
In some embodiments, along the thickness direction of the PVH film 210, the PVH birefringence Δn of the PVH film 210 may gradually decrease from a predetermined portion to both end portions of the PVH film 210. The PVH birefringence Δn of the PVH film 210 may be a function of the height of the PVH film 210. In some embodiments, at the same height, the PVH birefringence Δn of the PVH film 210 may be uniform in a longitudinal direction of the PVH film 210. In some embodiments, the predetermined portion may be a substantial center of the PVH film 210. In some embodiments, the predetermined portion may be different from the center of the PVH film 210.
It should be noted that,
In some embodiments, the PVH film 300 may be fabricated by a liquid crystalline polymer with photo-cross-linkable mesogenic side groups, where a large optical anisotropy may be generated by irradiating with polarized laser (e.g., UV, violet or blue) and a subsequent heat treatment (e.g., annealing). In some embodiments, the liquid crystalline polymer with photo-cross-linkable mesogenic side groups may include liquid crystalline polymethacrylates or any other polymer having the same function. In some embodiments, the PVH film may be fabricated by a polymethacrylate with 4-(4-methoxycinnamoyloxy) biphenyl (MCB) side groups that exhibits an efficient in-plane molecular reorientation. Polymethacrylate with 4-(4-methoxycinnamoyloxy) biphenyl (MCB) side groups has a chemical formula of
and is referred to as M1 in the following description. The irradiating with a polarized laser (e.g., UV, violet or blue) to a thin film of M1 (or a M1 film) may induce an optical anisotropy due to an axis-selective photo-cross-linking reaction, and a subsequent annealing may enhance the photoinduced optical anisotropy. The photoinduced optical anisotropy (or photoinduced birefringence) of the M1 film may be a function of exposure energy.
As shown in
As indicated by a curve 400 showing exposure energy dependent retardation of the M1 film, the M1 film does not exhibit an obvious retardation until the exposure has been going on for about 4 seconds. That is, the optical anisotropy is not induced to the M1 film at the first 4 seconds of the exposure. As the exposure time gradually increases from 4 seconds to 8 seconds, the M1 film exhibits a substantially constant retardation with about 0.013 retardation per micron φ/d. That is, the photoinduced optical anisotropy (or photoinduced birefringence Δnp) of the M1 film is substantially constant as the exposure time goes from t=4 s to t=8 s. When the exposure keeps going on, the retardation per micron φ/d of the M1 film linearly increases to a peak of about 0.016 at t=12 s, then linearly decreases in a relatively fast speed to about 0.011 at t=15 s, and linearly decreases in a relatively slow speed to about 0.005 at t=24 s. That is, as the exposure time keeps increasing, the photoinduced birefringence Δnp of the M1 film gradually increases to a maximum value at t=12 s then gradually decreases.
The interference pattern generated by the two polarized beams 515 may have an intensity gradient along a thickness direction of the M1 film 505, e.g., z-axis in
Through configuring an appropriate exposure intensity gradient along the thickness direction of the M1 film 505, the photoinduced birefringence Δnp in the exposed M1 film may gradually decrease from a predetermined direction (e.g., a center position) to both end portions in the thickness direction of the M1 film. For example, referring to
Referring to
When the exposure time (Tp) of the different portions of the M1 film 505 is the same, the exposure intensity experienced by the upper surface 505_1, the middle layer 505_3 and the lower surface 505_2 may be configured to be about 14φ/Tp, 12φ/Tp and 8φ/Tp, respectively. The exposed M1 film may have the largest photoinduced birefringence Δnp at the center of the film and the smallest photoinduced birefringence Δnp at both end portions of the film, and the photoinduced birefringence Δnp may gradually decrease from the center to both end portions of the film. Such an exposure intensity gradient along the thickness direction of the M1 film 505 may be realized by, for example, adjusting the light intensity of one or two polarized beams 515, adjusting the relative position of the beams 515 and the M1 film 505, and/or adjusting the film thickness of the M1 film, etc.
To evaluate the capability of suppressing the rainbow effect, the diffraction efficiency of PVH films with a birefringence gradient in the thickness direction or uniform birefringence across the film are simulated and compared over the visible spectrum (about 400 nm-700 nm).
Among the four PVH films, the fourth PVH film having a birefringence gradient in the thickness direction may have the smallest average +1st transmitting order diffraction efficiency as compared to the other three PVH films having uniform birefringence, and a maximum value of the +1st transmitting order diffraction efficiency of the fourth PVH film may be about 0.05% at a wavelength of 700 nm. Among the first to the third PVH films having uniform birefringence, the third PVH film having the lowest birefringence (0.07) may have the smallest average +1st transmitting order diffraction efficiency, the second PVH film having the medium birefringence (0.1) may have the medium average +1st transmitting order diffraction efficiency, and the first PVH film having the highest birefringence (0.15) may have the largest average +1st transmitting order diffraction efficiency. A maximum value of the +st transmitting order diffraction efficiency of the third to the first PVH films may be about 0.075%, 0.175% and 0.42% at a wavelength of 700 nm, respectively. That is, in the visible spectrum, the +1st transmitting order diffraction efficiency of the fourth PVH film having a birefringence gradient in the thickness direction may be significantly reduced as compared to the other three PVH films having uniform birefringence. The PVH film having a lower uniform birefringence may have a smaller +1st transmitting order diffraction efficiency. When the birefringence of the PVH film is substantially low, for example, lower than 0.1, the +1st transmitting order diffraction efficiency of the PVH film may also be substantially small.
Among the four PVH films, the fourth PVH film having a birefringence gradient in the thickness direction may have the smallest average −1st transmitting order diffraction efficiency as compared to the other three PVH films having uniform birefringence, and a maximum value of the −1st transmitting order diffraction efficiency of the fourth PVH film may be about 0.15% at a wavelength of 400 nm. Among the first to the third PVH films having the uniform birefringence, the third PVH film having the lowest birefringence (0.07) may have the smallest average −1st transmitting order diffraction efficiency, the second PVH film having the medium birefringence (0.1) may have the medium average −1st transmitting order diffraction efficiency, and the first PVH film having the highest birefringence (0.15) may have the largest average −1st transmitting order diffraction efficiency. A maximum value of the −1st transmitting order diffraction efficiency of the third to the first PVH films may be about 0.25% at a wavelength of 400 nm, 0.48% at a wavelength of 400 nm, and 0.85% at a wavelength of 425 nm, respectively. That is, in the visible spectrum, the −1st transmitting order diffraction efficiency of the fourth PVH film having a birefringence gradient in the thickness direction may be significantly reduced as compared to the other three PVH films having uniform birefringence. The PVH film having a lower uniform birefringence may have a smaller −1st transmitting order diffraction efficiency. When the birefringence of the PVH film is substantially low, for example, lower than 0.1, the −1st transmitting order diffraction efficiency of the PVH film may also be substantially small.
According to
In some embodiments, a PVH film having substantially low birefringence (e.g., lower than 0.1) may also be able to reduce the diffraction efficiency of the ±1st transmitting orders and ±1st reflecting orders for a normally incident light over the visible spectrum. Thus, the rainbow effect caused by the diffractive structures in the PVH film having substantially low birefringence may be reduced. A PVH film having lower birefringence may have smaller diffraction efficiency of the ±1st transmitting orders and ±1st reflecting orders than a PVH film having higher birefringence. That is, the PVH film having lower birefringence may have the suppressed rainbow effect as compared to the PVH film having higher birefringence. Accordingly, an eye-tracking combiner based on the PVH film having substantially low birefringence may be able to enhance the image quality of a see-through view in addition to guiding an IR light reflected from the eye to an optical sensor via diffraction.
As shown in
The foregoing description of the embodiments of the disclosure have been presented for the purpose of illustration. It is not intended to be exhaustive or to limit the disclosure to the precise forms disclosed. Persons skilled in the relevant art can appreciate that many modifications and variations are possible in light of the above disclosure.
Some portions of this description describe the embodiments of the disclosure in terms of algorithms and symbolic representations of operations on information. These algorithmic descriptions and representations are commonly used by those skilled in the data processing arts to convey the substance of their work effectively to others skilled in the art. These operations, while described functionally, computationally, or logically, are understood to be implemented by computer programs or equivalent electrical circuits, microcode, or the like. Furthermore, it has also proven convenient at times, to refer to these arrangements of operations as modules, without loss of generality. The described operations and their associated modules may be embodied in software, firmware, hardware, or any combinations thereof.
Any of the steps, operations, or processes described herein may be performed or implemented with one or more hardware or software modules, alone or in combination with other devices. In one embodiment, a software module is implemented with a computer program product comprising a computer-readable medium containing computer program code, which can be executed by a computer processor for performing any or all of the steps, operations, or processes described.
Embodiments of the disclosure may also relate to an apparatus for performing the operations herein. This apparatus may be specially constructed for the required purposes, and/or it may comprise a general-purpose computing device selectively activated or reconfigured by a computer program stored in the computer. Such a computer program may be stored in a non-transitory, tangible computer readable storage medium, or any type of media suitable for storing electronic instructions, which may be coupled to a computer system bus. Furthermore, any computing systems referred to in the specification may include a single processor or may be architectures employing multiple processor designs for increased computing capability.
Embodiments of the disclosure may also relate to a product that is produced by a computing process described herein. Such a product may comprise information resulting from a computing process, where the information is stored on a non-transitory, tangible computer readable storage medium and may include any embodiment of a computer program product or other data combination described herein.
Finally, the language used in the specification has been principally selected for readability and instructional purposes, and it may not have been selected to delineate or circumscribe the inventive subject matter. It is therefore intended that the scope of the disclosure be limited not by this detailed description, but rather by any claims that issue on an application based hereon. Accordingly, the disclosure of the embodiments is intended to be illustrative, but not limiting, of the scope of the disclosure, which is set forth in the following claims.
Number | Name | Date | Kind |
---|---|---|---|
6621607 | Odhner | Sep 2003 | B1 |
6672109 | Hiraiwa | Jan 2004 | B1 |
6769273 | Nakagawa | Aug 2004 | B1 |
10600352 | Wheelwright | Mar 2020 | B1 |
10634907 | Geng | Apr 2020 | B1 |
10725302 | Sharma | Jul 2020 | B1 |
10725304 | Ratnam | Jul 2020 | B1 |
10838132 | Calafiore | Nov 2020 | B1 |
10852817 | Ouderkirk | Dec 2020 | B1 |
20040081043 | Nishiwaki | Apr 2004 | A1 |
20060280106 | 'T Hooft | Dec 2006 | A1 |
20130077049 | Bohn | Mar 2013 | A1 |
20160085300 | Robbins | Mar 2016 | A1 |
20190041634 | Popovich | Feb 2019 | A1 |
20190317261 | Dimov | Oct 2019 | A1 |
20190353906 | Collier | Nov 2019 | A1 |
20200043391 | Maimone | Feb 2020 | A1 |
20200050031 | Lu | Feb 2020 | A1 |
20200064633 | Maimone | Feb 2020 | A1 |
20200081398 | Yaroshchuk | Mar 2020 | A1 |
20200257119 | Lu | Aug 2020 | A1 |
20200271936 | Leibovici | Aug 2020 | A1 |
20200355862 | Lane | Nov 2020 | A1 |
20200356049 | Lane | Nov 2020 | A1 |
20200356050 | Lane | Nov 2020 | A1 |
20200371282 | Geng | Nov 2020 | A1 |
20200371370 | Ouderkirk | Nov 2020 | A1 |
20200371389 | Geng | Nov 2020 | A1 |
20200371474 | Ouderkirk | Nov 2020 | A1 |
20200371475 | Ouderkirk | Nov 2020 | A1 |
20200393690 | Lee | Dec 2020 | A1 |
20210011284 | Andreev | Jan 2021 | A1 |
20210011290 | Maimone | Jan 2021 | A1 |
20210011303 | Andreev | Jan 2021 | A1 |
20210041948 | Berkner-Cieslicki | Feb 2021 | A1 |
Entry |
---|
Van Nostrum et al., “Photoinduced opposite diffusion of nematic and isotropic monomers during patterned photopolymerization,” Chemistry of Materials, vol. 10, No. 1, 1998, pp. 135-145 (11 pages). |