Optical device structure using GaN substrates and growth structures for laser applications

Information

  • Patent Grant
  • 10374392
  • Patent Number
    10,374,392
  • Date Filed
    Wednesday, March 28, 2018
    6 years ago
  • Date Issued
    Tuesday, August 6, 2019
    4 years ago
Abstract
Optical devices having a structured active region configured for selected wavelengths of light emissions are disclosed.
Description
BACKGROUND OF THE INVENTION

This invention is directed to optical devices and related methods. More particularly, the invention provides a method of manufacture and a device for emitting electromagnetic radiation using semipolar or non-polar gallium containing substrates such as GaN, MN, InN, InGaN, AlGaN, and AlInGaN, and others. Merely by way of example, the invention can be applied to optical devices, lasers, light emitting diodes, solar cells, photoelectrochemical water splitting and hydrogen generation, photodetectors, integrated circuits, and transistors, among other devices.


In the late 1800's, Thomas Edison invented the light bulb. The conventional light bulb, commonly called the “Edison bulb,” has been used for over one hundred years for a variety of applications including lighting and displays. The conventional light bulb uses a tungsten filament enclosed in a glass bulb sealed in a base, which is screwed into a socket. The socket is coupled to an AC or DC power source. The conventional light bulb can be found commonly in houses, buildings, and outdoor lightings, and other areas requiring light or displays.


Unfortunately, drawbacks exist with the conventional Edison light bulb. First, the conventional light bulb dissipates much thermal energy. More than 90% of the energy used for the conventional light bulb dissipates as thermal energy. Second, reliability is less than desired—the conventional light bulb routinely fails due to thermal expansion and contraction of the filament element. In addition, conventional light bulbs emit light over a broad spectrum, much of which does not result in illumination at wavelengths of spectral sensitivity to the human eye. Finally, conventional light bulbs emit light in all directions. They therefore are not ideal for applications requiring strong directionality or focus, such as projection displays, optical data storage, or specialized directed lighting.


In 1960, the laser was first demonstrated by Theodore H. Maiman at Hughes Research Laboratories in Malibu. This laser utilized a solid-state flashlamp-pumped synthetic ruby crystal to produce red laser light at 694 nm. By 1964, blue and green laser output was demonstrated by William Bridges at Hughes Aircraft utilizing a gas Argon ion laser. The Ar-ion laser utilized a noble gas as the active medium and produced laser light output in the UV, blue, and green wavelengths including 351 nm, 454.6 nm, 457.9 nm, 465.8 nm, 476.5 nm, 488.0 nm, 496.5 nm, 501.7 nm, 514.5 nm, and 528.7 nm. The Ar-ion laser had the benefit of producing highly directional and focusable light with a narrow spectral output, but the wall plug efficiency was less than 0.1%. The size, weight, and cost of the laser was undesirable as well.


As laser technology evolved, more efficient lamp pumped solid state laser designs were developed for the red and infrared wavelengths, but these technologies remained a challenge for blue and green lasers. As a result, lamp pumped solid state lasers were developed in the infrared, and the output wavelength was converted to the visible using specialty crystals with nonlinear optical properties. A green lamp pumped solid state laser had 3 stages: electricity powers lamp, lamp excites gain crystal which lases at 1064 nm, 1064 nm goes into frequency conversion crystal which converts to visible 532 nm. The resulting green and blue lasers were called “lamped pumped solid state lasers with second harmonic generation” (LPSS with SHG). These had wall plug efficiency of ˜1%, and were more efficient than Ar-ion gas lasers, but were still too inefficient, large, expensive, and fragile for broad deployment outside of specialty scientific and medical applications. Additionally, the gain crystal used in the solid state lasers typically had energy storage properties which made the lasers difficult to modulate at high speeds, limiting broader deployment.


To improve the efficiency of these visible lasers, high power diode (or semiconductor) lasers were utilized. These “diode pumped solid state lasers with SHG” (DPSS with SHG) had 3 stages: electricity powers 808 nm diode laser, 808 nm excites gain crystal which lases at 1064 nm, 1064 nm goes into frequency conversion crystal which converts to visible 532 nm. The DPSS laser technology extended the life and improved the wall plug efficiency of the LPSS lasers to 5-10%. This sparked further commercialization into specialty industrial, medical, and scientific applications. The change to diode pumping, however, increased the system cost and required precise temperature controls, leaving the laser with substantial size and power consumption. The result did not address the energy storage properties which made the lasers difficult to modulate at high speeds.


As high power laser diodes evolved and new specialty SHG crystals were developed, it became possible to directly convert the output of the infrared diode laser to produce blue and green laser light output. These “directly doubled diode lasers” or SHG diode lasers had 2 stages: electricity powers 1064 nm semiconductor laser, 1064 nm goes into frequency conversion crystal which converts to visible 532 nm green light. These lasers designs are intended to provide improved efficiency, cost and size compared to DPSS-SHG lasers, but the specialty diodes and crystals required make this challenging today. Additionally, while the diode-SHG lasers have the benefit of being directly modulated, they suffer from sensitivity to temperature which limits their application. Further, the spectral linewidth of SHG-based lasers is typically very narrow at about 0.1 nm, which can lead to a severe image distortion called speckle in display applications.


BRIEF SUMMARY OF THE INVENTION

This invention provides a manufacturing method and a device for emitting electromagnetic radiation using semipolar or non-polar gallium containing substrates such as GaN, MN, InN, InGaN, AlGaN, and AlInGaN, and others. Merely by way of example the invention can be applied to the non-polar m-plane or to the semipolar (11-22), (30-31), (30-3-1), (20-21), (20-2-1), (30-32), or (30-3-2), or offcuts thereof. Merely by way of example, the invention can be applied to optical devices, lasers, light emitting diodes, solar cells, photoelectrochemical water splitting and hydrogen generation, photodetectors, integrated circuits, and transistors, among other devices. Laser diodes according to this invention can offer improved efficiency, cost, temperature sensitivity, and ruggedness over lasers based on SHG technology. Moreover, laser diodes according to this invention can provide an output with a spectral linewidth of 0.5 to 2 nm, which is advantageous in display applications where speckle must be considered.


This invention provides an optical device, which includes a gallium nitride substrate having a semipolar or nonpolar crystalline surface region. The device also has an n-type cladding layer overlying the substrate surface. In a preferred embodiment, the n-type GaN cladding layer has a thickness from 100 nm to 5000 nm with a silicon doping level of 1E17 to 5E18 cm−3. The device has an n-side SCH layer overlying the n-type cladding layer. Preferably, the n-side SCH layer is comprised of InGaN with molar fraction of indium of between 1% and 7% and has a thickness from 40 to 150 nm. The optical device also has a multiple quantum well active region overlying the n-side SCH layer. Preferably, the multiple quantum well active region is comprised of two to five 2.5-4.5 nm InGaN quantum wells separated by 3.7-5.5 nm or 7.5 to 20 nm gallium and nitrogen containing barriers such as GaN. Preferably the optical device has a p-side guide layer overlying the multiple quantum well active region. In a preferred embodiment, the p-side guide layer comprises GaN or InGaN and has a thickness from 20 nm to 100 nm. The optical device has an electron blocking layer overlying the p-side guide layer. Preferably, the electron blocking layer comprises a magnesium doped AlGaN layer with molar fraction of aluminum of between 6% and 22% at a thickness from 10 nm to 25 nm. Preferably the optical device also has a p-type cladding layer overlying the electronic blocking layer. The p-type cladding layer has a thickness from 300 nm to 1000 nm with a magnesium doping level of 2E17 cm−3 to 1E19 cm−3 according to one or more embodiments. The device also has a p++-gallium and nitrogen contact layer overlying the p-type cladding layer. The P++-gallium and nitrogen containing layer typically has a thickness from 10 nm to 120 nm with a Mg doping level of 1E19 cm−3 to 1E21 cm−3.


The present invention enables a cost-effective optical device for laser applications. In a specific embodiment, the optical device can be manufactured in a relatively simple and cost effective manner. Depending upon the embodiment, the present apparatus and method can be manufactured using conventional materials and/or methods. The laser device uses a semipolar or non-polar gallium nitride material capable of providing green laser light. In some embodiments, the laser is capable of emitting long wavelengths, for example, those ranging from about 470 nm to greater than about 535 nm, as well as others. A further understanding of the nature and advantages of the present invention may be appreciated by reference to the following portions of the specification and the accompanying drawings.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1A is a simplified perspective view of a laser device fabricated on a semipolar substrate according to an embodiment of the present invention.



FIG. 1B is a simplified perspective view of a laser device fabricated on a non-polar substrate according to an embodiment of the present invention.



FIG. 2 is a detailed cross-sectional view of a laser device fabricated on a non-polar substrate according to an embodiment of the present invention.



FIG. 3 is a simplified diagram illustrating an epitaxial laser structure according to a preferred embodiment of the present invention.



FIGS. 4 through 6 are simplified diagrams illustrating a laser device for a laser device according to a first embodiment of the present invention.



FIGS. 7 through 8 are simplified diagrams illustrating a laser device for a laser device according to a second embodiment of the present invention.



FIGS. 9 through 10 are simplified diagrams illustrating a laser device for a laser device according to a third embodiment of the present invention.



FIGS. 11 through 13 are simplified diagrams illustrating a laser device for a laser device according to a fourth embodiment of the present invention.





DETAILED DESCRIPTION OF THE INVENTION

According to the present invention, techniques related generally to optical devices are provided. More particularly, the present invention provides a method and device for emitting electromagnetic radiation using semipolar or non-polar gallium containing substrates such as GaN, MN, InN, InGaN, AlGaN, and AlInGaN, and others. Merely by way of example the invention can be applied to the non-polar m-plane or to the semipolar (11-22), (30-31), (30-3-1), (20-21), (20-2-1), (30-32), or (30-3-2), or offcuts thereof. Merely by way of example, the invention can be applied to optical devices, lasers, light emitting diodes, solar cells, photoelectrochemical water splitting and hydrogen generation, photodetectors, integrated circuits, and transistors, among other devices. In a specific embodiment, the present laser device can be employed in either a semipolar or non-polar gallium containing substrate, as described below. Laser diodes according to this invention can offer improved efficiency, cost, temperature sensitivity, and ruggedness over lasers based on SHG technology. Moreover, laser diodes according to this invention can provide an output with a spectral linewidth of 0.5 to 2 nm, which is advantageous in display applications where speckle must be considered.



FIG. 1A is a simplified perspective view of a laser device 100 fabricated on a semipolar substrate according to an embodiment of the present invention. This diagram is merely an example, which should not unduly limit the scope of the claims herein. One of ordinary skill in the art would recognize other variations, modifications, and alternatives. As shown, the optical device includes a gallium nitride substrate member 101 having a semipolar or non-polar crystalline surface region. In a specific embodiment, the gallium nitride substrate member is a bulk GaN substrate characterized by having a semipolar or non-polar crystalline surface region, but can be others. In a specific embodiment, the bulk nitride GaN substrate comprises nitrogen and has a surface dislocation density below 107 cm−2 or 105 cm−2. The nitride crystal or wafer may comprise AlxInyGa1-x-yN, where 0≤x, y, x+y≤1. In one specific embodiment, the nitride crystal comprises GaN. In one or more embodiments, the GaN substrate has threading dislocations, at a concentration between about 105 cm−2 and about 108 cm−2, in a direction that is substantially orthogonal or oblique with respect to the surface. As a consequence of the orthogonal or oblique orientation of the dislocations, the surface dislocation density is below about 107 cm−2 or below about 105 cm−2. In a specific embodiment, the device can be fabricated on a slightly off-cut semipolar substrate as described in U.S. application Ser. No. 12/749,466, which claims priority to U.S. Provisional No. 61/164,409 filed on Mar. 28, 2009, commonly assigned, and hereby incorporated by reference herein.


In a specific embodiment on semipolar GaN, the device has a laser stripe region formed overlying a portion of the semi polar crystalline orientation surface region. In a specific semipolar GaN embodiment, the laser stripe region is characterized by a cavity orientation is substantially parallel to the m-direction. In a specific embodiment, the laser strip region has a first end 107 and a second end 109.


In a specific embodiment on nonpolar GaN, the device has a laser stripe region formed overlying a portion of the semi or non-polar crystalline orientation surface region, as illustrated by FIG. 1B. The laser stripe region is characterized by a cavity orientation which is substantially parallel to the c-direction. The laser strip region has a first end and a second end. Typically, the non-polar crystalline orientation is configured on an m-plane, which leads to polarization ratios parallel to the a-direction. In some embodiments, the m-plane is the (10-10) family. Of course, the cavity orientation can also be substantially parallel to the a-direction as well. In the specific nonpolar GaN embodiment having the cavity orientation substantially parallel to the c-direction is further described in “Laser Device and Method Using Slightly Miscut Non-Polar GaN Substrates,” in the names of Raring, James W. and Pfister, Nick listed as U.S. application Ser. No. 12/759,273, which claims priority to U.S. Provisional Ser. No. 61/168,926 filed on Apr. 13, 2009, commonly assigned, and hereby incorporated by reference for all purposes.


In a preferred semipolar embodiment, the device has a first cleaved semipolar facet provided on the first end of the laser stripe region and a second cleaved semipolar facet provided on the second end of the laser stripe region. The first cleaved semipolar facet is substantially parallel with the second cleaved semipolar facet. In a specific embodiment, the semipolar substrate is configured on a (30-31), (30-3-1), (20-21), (20-2-1), (30-32), (30-3-2) or offcut. The laser waveguide cavity is aligned in the projection of the c-direction. Mirror surfaces are formed on each of the cleaved surfaces. The first cleaved semipolar facet comprises a first mirror surface, typically provided by a scribing and breaking process. The scribing process can use any suitable technique, such as a diamond scribe or laser scribe or combinations. In a specific embodiment, the first mirror surface comprises a reflective coating. The reflective coating is selected from silicon dioxide, hafnia, and titania, tantalum pentoxide, zirconia, aluminum oxide, including combinations, and the like. Depending upon the embodiment, the first mirror surface can be provided by an anti-reflective coating. Of course, there can be other variations, modifications, and alternatives.


Also in a preferred semipolar embodiment, the second cleaved semipolar facet comprises a second mirror surface. The second mirror surface can be provided by a scribing and breaking process. Preferably, the scribing is performed by diamond or laser scribing. In a specific embodiment, the second mirror surface comprises a reflective coating, such as silicon dioxide, hafnia, and titania, tantalum pentoxide, zirconia, aluminum oxide, combinations, and the like. In a specific embodiment, the second mirror surface comprises an anti-reflective coating. Of course, there can be other variations, modifications, and alternatives.


In an alternative preferred semipolar embodiment, the device has a first cleaved m-face facet provided on the first end of the laser stripe region and a second cleaved m-face facet provided on the second end of the laser stripe region. The first cleaved m-facet is substantially parallel with the second cleaved m-facet. In a specific embodiment, the semipolar substrate is configured on (11-22) series of planes, enabling the formation of m-facets for laser cavities oriented in the m-direction. Mirror surfaces are formed on each of the cleaved surfaces. The first cleaved m-facet comprises a first mirror surface, typically provided by a scribing and breaking process. The scribing process can use any suitable technique, such as a diamond scribe or laser scribe or combinations. In a specific embodiment, the first mirror surface comprises a reflective coating. The reflective coating is selected from silicon dioxide, hafnia, and titania, tantalum pentoxide, zirconia, aluminum oxide, including combinations, and the like. Depending upon the embodiment, the first mirror surface can be provided by an anti-reflective coating. Of course, there can be other variations, modifications, and alternatives.


In an embodiment, the device includes a {30-31} crystalline surface region having gallium and nitrogen. A laser stripe region overlies a portion of the {30-31} crystalline surface region. The laser stripe region is characterized by a cavity orientation substantially parallel to a projection of the c-direction. The laser stripe region has a first end and a second end. The first end includes a first facet and the second end includes a second facet. The {30-31} crystalline surface region is off-cut less than +/−8 degrees towards a c-plane and/or an a-plane.


In a preferred nonpolar embodiment, the device has a first cleaved c-face facet provided on the first end of the laser stripe region and a second cleaved c-face facet provided on the second end of the laser stripe region. In one or more embodiments, the first cleaved c-facet is substantially parallel with the second cleaved c-facet. In a specific embodiment, the nonpolar substrate is configured on (10-10) series of planes, which enables the formation of c-facets for laser cavities oriented in the c-direction. Mirror surfaces are formed on each of the cleaved surfaces. The first cleaved c-facet comprises a first mirror surface. In a preferred embodiment, the first mirror surface is provided by a scribing and breaking process. The scribing process can use any suitable techniques, such as a diamond scribe or laser scribe or combinations. In a specific embodiment, the first mirror surface comprises a reflective coating. The reflective coating is selected from silicon dioxide, hafnia, and titania, tantalum pentoxide, zirconia, aluminum oxide including combinations, and the like. Depending upon the embodiment, the first mirror surface can also comprise an anti-reflective coating. Of course, there can be other variations, modifications, and alternatives.


Also in a preferred nonpolar embodiment, the second cleaved c-facet comprises a second mirror surface. The second mirror surface can be provided by a scribing and breaking process, for example, diamond or laser scribing or the like. In a specific embodiment, the second mirror surface comprises a reflective coating, such as silicon dioxide, hafnia, and titania, tantalum pentoxide, zirconia, aluminum oxide, combinations, and the like. In a specific embodiment, the second mirror surface comprises an anti-reflective coating. Of course, there can be other variations, modifications, and alternatives.


In a specific embodiment, the laser stripe has a length and width. The length ranges from about 250 microns to about 3000 microns. The strip also has a width ranging from about 0.5 microns to about 50 microns, but can be other dimensions. In a specific embodiment, the width is substantially constant in dimension, although there may be slight variations. The width and length are often formed using a masking and etching process, such as commonly used in the art.


In a specific semipolar embodiment, the device is also characterized by a spontaneously emitted light that is polarized in substantially parallel to the projection of the c-direction. That is, the device performs as a laser or the like. In a preferred embodiment, the spontaneously emitted light is characterized by a polarization ratio of greater than about 0.2 and less than about 1 parallel to the projection of the c-direction. In a preferred embodiment, the spontaneously emitted light is characterized by a wavelength ranging from about 500 to about 580 nanometers to yield a green laser. The spontaneously emitted light is highly polarized and is characterized by a polarization ratio parallel to the projection of the c-direction of greater than 0.4. Of course, there can be other variations, modifications, and alternatives.


In a specific nonpolar embodiment, the device is also characterized by a spontaneously emitted light that is polarized parallel to the a-direction. That is, the device performs as a laser or the like. In a preferred embodiment, the spontaneously emitted light is characterized by a polarization ratio of greater than about 0.1 and less than about 1 parallel to the projection of the c-direction. In a preferred embodiment, the spontaneously emitted light characterized by a wavelength ranging from about 475 to about 540 nanometers to yield a blue-green or green laser and others and the spontaneously emitted light is highly polarized and is characterized by a polarization ratio parallel to the a-direction of greater than 0.5. Of course, there can be other variations, modifications, and alternatives.



FIG. 2 is a detailed cross-sectional view of a laser device 200 fabricated on a non-polar substrate according to one embodiment of the present invention. As shown, the laser device includes gallium nitride substrate 203, which has an underlying n-type metal back contact region 201. The metal back contact region preferably is made of a suitable material such as those noted below.


In a specific embodiment, the device also has an overlying n-type gallium nitride layer 205, an active region 207, and an overlying p-type gallium nitride layer structured as a laser stripe region 209. In a specific embodiment, each of these regions is formed using an epitaxial deposition technique of metal organic chemical vapor deposition (MOCVD), molecular beam epitaxy (MBE), or other epitaxial growth techniques suitable for GaN growth. In a specific embodiment, the epitaxial layer is a high quality epitaxial layer overlying the n-type gallium nitride layer. In some embodiments the high quality layer is doped, for example, with Si or O to form n-type material, with a dopant concentration between about 1016 cm−3 and 1020 cm−3.


In a specific embodiment, an n-type AluInvGa1-u-vN layer, where 0≤u, v, u+v≤1, is deposited on the substrate. In a specific embodiment, the carrier concentration may lie in the range between about 1016 cm−3 and 1020 cm−3. The deposition may be performed using metalorganic chemical vapor deposition (MOCVD) or molecular beam epitaxy (MBE).


As an example, the bulk GaN substrate is placed on a susceptor in an MOCVD reactor. After closing, evacuating, and back-filling the reactor (or using a load lock configuration) to atmospheric pressure, the susceptor is heated to a temperature between about 800 and about 1100 degrees Celsius in the presence of a nitrogen-containing gas. In one specific embodiment, the susceptor is heated to approximately 1000 degrees Celsius under flowing ammonia. A flow of a gallium-containing metalorganic precursor, such as trimethylgallium (TMG) or triethylgallium (TEG) is initiated, in a carrier gas, at a total rate between approximately 1 and 50 standard cubic centimeters per minute (sccm). The carrier gas may comprise hydrogen, helium, nitrogen, or argon. The ratio of the flow rate of the group V precursor (ammonia) to that of the group III precursor (trimethylgallium, triethylgallium, trimethylindium, trimethylaluminum) during growth is between about 2000 and about 12000. A flow of disilane in a carrier gas, with a total flow rate of between about 0.1 and 10 sccm, is initiated.


In a specific embodiment, the laser stripe region is made of the p-type gallium nitride layer 209. In a specific embodiment, the laser stripe is provided by an etching process selected from dry etching or wet etching. In a preferred embodiment, the etching process is dry, but other processes can be used. As an example, the dry etching process is an inductively coupled process using chlorine bearing species or a reactive ion etching process using similar chemistries. The chlorine bearing species are commonly derived from chlorine gas or the like. The device also has an overlying dielectric region, which exposes 213 contact region. In a specific embodiment, the dielectric region is an oxide such as silicon dioxide or silicon nitride. The contact region is coupled to an overlying metal layer 215. The overlying metal layer is a multilayered structure containing gold and nickel (Ni/Au), gold and palladium (Pd/Au), gold and platinum (Pt/Au), but can be others.


In a specific embodiment, the laser device has active region 207. The active region can include one to twenty quantum well regions according to one or more embodiments. As an example following deposition of the n-type AluInvGa1-u-vN layer for a predetermined period of time, so as to achieve a predetermined thickness, an active layer is deposited. The active layer may comprise a single quantum well or a multiple quantum well, with 1-10 quantum wells. The quantum wells may comprise InGaN wells and GaN barrier layers. In other embodiments, the well layers and barrier layers comprise AlwInxGa1-w-xN and AlyInzGa1-y-zN, respectively, where 0≤w, x, y, z, w+x, y+z≤1, where w<u, y and/or x>v, z so that the bandgap of the well layer(s) is less than that of the barrier layer(s) and the n-type layer. The well layers and barrier layers may each have a thickness between about 1 nm and about 40 nm. In another embodiment, the active layer comprises a double heterostructure, with an InGaN or AlwInxGa1-w-xN layer about 10 nm to 100 nm thick surrounded by GaN or AlyInzGa1-y-zN layers, where w<u, y and/or x>v, z. The composition and structure of the active layer are chosen to provide light emission at a preselected wavelength. The active layer may be left undoped (or unintentionally doped) or may be doped n-type or p-type.


In a specific embodiment, the active region can also include an electron blocking region, and a separate confinement heterostructure. In some embodiments, an electron blocking layer is preferably deposited. The electron-blocking layer may comprise AlsIntGa1-s-tN, where 0≤s, t, s+t≤1, with a higher bandgap than the active layer, and may be doped p-type. In one specific embodiment, the electron blocking layer comprises AlGaN. In another embodiment, the electron blocking layer comprises an AlGaN/GaN super-lattice structure, comprising alternating layers of AlGaN and GaN, each with a thickness between about 0.2 nm and about 5 nm.


As noted, the p-type gallium nitride structure, which can be a p-type doped AlqInrGa1-q-rN, where 0≤q, r, q+r≤1, layer is deposited above the active layer. The p-type layer may be doped with Mg, to a level between about 1016 cm−3 and 1022 cm−3, and may have a thickness between about 5 nm and about 1000 nm. The outermost 1-50 nm of the p-type layer may be doped more heavily than the rest of the layer, so as to enable an improved electrical contact. In a specific embodiment, the laser stripe is provided by a dry etching process, but wet etching may also be used. The device also has an overlying dielectric region, which exposes contact region 213. In a specific embodiment, the dielectric region is an oxide such as silicon dioxide.


In a specific embodiment, the metal contact is made of suitable material. The reflective electrical contact may comprise at least one of silver, gold, aluminum, nickel, platinum, rhodium, palladium, chromium, or the like. The electrical contact may be deposited by thermal evaporation, electron beam evaporation, electroplating, sputtering, or another suitable technique. In a preferred embodiment, the electrical contact serves as a p-type electrode for the optical device. In another embodiment, the electrical contact serves as an n-type electrode for the optical device. Of course, there can be other variations, modifications, and alternatives. Further details of the cleaved facets appear below.



FIG. 3 is a simplified diagram illustrating a laser structure according to a preferred embodiment of the present invention. This diagram is merely an example, which should not unduly limit the scope of the claims herein. One of ordinary skill in the art would recognize other variations, modifications, and alternatives. In a specific embodiment, the device includes a starting material such as a bulk nonpolar or semipolar GaN substrate, but can be others. In a specific embodiment, the device is configured to achieve emission wavelength ranges of 390 nm to 420 nm, 420 nm to 440 nm, 440 nm to 470 nm, 470 nm to 490 nm, 490 nm to 510 nm, 510 nm to 530 nm, and 530 nm to 550 nm, but can be others.


In a preferred embodiment, the growth structure is configured using between 2 and 4 or 5 and 7 quantum wells positioned between n-type and p-type gallium and nitrogen containing cladding layers such as GaN, AlGaN, or InAlGaN. In a specific embodiment, the n-type cladding layer ranges in thickness from 500 nm to 5000 nm and has an n-type dopant such as Si with a doping level of between 1E18 cm−3 and 3E18 cm−3. In a specific embodiment, the p-type cladding layer ranges in thickness from 300 nm to 1000 nm and has a p-type dopant such as Mg with a doping level of between 1E17 cm−3 and 5E19 cm−3. In a specific embodiment, the Mg doping level is graded such that the concentration would be lower in the region closer to the quantum wells.


In a specific preferred embodiment, the quantum wells have a thickness of between 2.0 nm and 4.0 nm or 4.0 nm and 7.0 nm, but can be others. In a specific embodiment, the quantum wells would be separated by barrier layers with thicknesses between 4 nm and 8 nm or 8 nm and 18 nm. The quantum wells and the barriers together comprise a multiple quantum well (MQW) region.


In a preferred embodiment, the device has barrier layers formed from GaN or InGaN. In a specific embodiment using InGaN, the indium contents range from 1% to 5% (molar percent).


An InGaN separate confinement heterostructure layer (SCH) could be positioned between the n-type cladding and the MQW region according to one or more embodiments. Typically, such separate confinement layer is commonly called the n-side SCH. The n-side SCH layer ranges in thickness from 10 nm to 50 nm or 50 nm to 150 nm and ranges in indium composition from 1% to 8% (mole percent), but can be others. In a specific embodiment, the n-side SCH layer may or may not be doped with an n-type dopant such as Si.


In yet another preferred embodiment, an InGaN separate confinement heterostructure layer (SCH) is positioned between the p-type cladding layer and the MQW region, which is called the p-side SCH. In a specific embodiment, the p-side SCH layer ranges in thickness from 10 nm to 50 nm or 50 nm to 100 nm and ranges in indium composition from 1% to 7% (mole percent), but can be others. The p-side SCH layer may or may not be doped with a p-type dopant such as Mg. In another embodiment, the structure would contain both an n-side SCH and a p-side SCH.


In a specific preferred embodiment, an AlGaN electron blocking layer, with an aluminum content of between 6% and 22% (mole percent), is positioned between the MQW and the p-type cladding layer either within the p-side SCH or between the p-side SCH and the p-type cladding. The AlGaN electron blocking layer ranges in thickness from 10 nm to 30 nm and is doped with a p-type dopant such as Mg from 1E18 cm−3 and 1E20 cm−3 according to a specific embodiment.


Preferably, a p-contact layer positioned on top of and is formed overlying the p-type cladding layer. The p-contact layer would be comprised of a gallium and nitrogen containing layer such as GaN doped with a p-dopant such as Mg at a level ranging from 1E19 cm−3 to 1E22 cm−3.


Several more detailed embodiments, not intended to limit the scope of the claims, are described below.


In a specific embodiment, the present invention provides a laser device capable of emitting 474 nm and also 485 nm, or 470 nm to 490 nm, or 510 nm to 535 nm wavelength light. The device is provided with one or more of the following elements, as also referenced in FIGS. 4 through 6:


an n-type cladding layer with a thickness from 1000 nm to 5000 nm with Si doping level of 1E17 cm−3 to 3E18 cm−3;


an n-side SCH layer comprised of InGaN with molar fraction of indium of between 1.5% and 6% and thickness from 35 to 125 nm;


a multiple quantum well active region layers comprised of three to five 2.5-5.0 nm InGaN quantum wells separated by six 4.5-5.5 nm GaN barriers;


a p-side SCH layer comprised of InGaN with molar fraction of indium of between 1.5% and 5% and thickness from 15 nm to 85 nm;


an electron blocking layer comprised of AlGaN with molar fraction of aluminum of between 6% and 22% and thickness from 10 nm to 15 nm and doped with Mg;


a p-type cladding layer with a thickness from 300 nm to 1000 nm with Mg doping level of 5E17 cm−3 to 1E19 cm−3; and


a p++-GaN contact layer with a thickness from 20 nm to 55 nm with Mg doping level of 1E20 cm−3 to 1E21 cm−3.


In a specific embodiment, the above laser device is fabricated on a nonpolar oriented surface region. Preferably, the 474 nm configured laser device uses a nonpolar (10-10) substrate with a miscut or off cut of −0.3 to 0.3 degrees towards (0001) and −0.3 to 0.3 degrees towards (11-20). In a specific embodiment, the n-GaN/p-GaN is grown using an N2 subflow and N2 carrier gas.


In yet an alternative specific embodiment, the present invention provides a laser device capable of emitting 486 nm wavelength light, among others, in a ridge laser embodiment. The device is provided with one or more of the following elements, as also referenced in FIGS. 8 through 9:


an n-GaN cladding layer with a thickness from 100 nm to 5000 nm with Si doping level of 5E17 cm−3 to 3E18 cm−3;


an n-side SCH layer comprised of InGaN with molar fraction of indium of between 3% and 5% and thickness from 40 to 60 nm;


a multiple quantum well active region layers comprised of seven 4.5-5.5 nm InGaN quantum wells separated by eight 4.5-5.5 nm GaN barriers;


a p-side guide layer comprised of GaN with a thickness from 40 nm to 50 nm;


an electron blocking layer comprised of AlGaN with molar fraction of aluminum of between 15% and 22% and thickness from 10 nm to 15 nm and doped with Mg;


a p-GaN cladding layer with a thickness from 400 nm to 1000 nm with Mg doping level of 5E17 cm−3 to 1E19 cm−3; and


p++-GaN contact layer with a thickness from 20 nm to 40 nm with Mg doping level of 2E19 cm−3 to 1E21 cm−3.


In a specific embodiment, the laser device is fabricated on a non-polar (10-10) oriented surface region (m-plane). In a preferred embodiment, the non-polar substrate has a miscut or off cut of −0.8 to −1.2 degrees towards (0001) and −0.3 to 0.3 degrees towards (11-20). In a specific embodiment, the non-polar oriented surface region has an overlying n-GaN/p-GaN grown with H2/N2 subflow and H2 carrier gas.


In a specific embodiment, the present invention provides an alternative device structure capable of emitting 481 nm light, among others, in a ridge laser embodiment. The device is provided with one or more of the following elements, as also referenced in FIGS. 9 through 10;


an n-GaN cladding layer with a thickness from 100 nm to 3000 nm with Si doping level of 5E17 cm−3 to 3E18 cm−3;


an n-side SCH layer comprised of InGaN with molar fraction of indium of between 3% and 6% and thickness from 45 to 80 nm;


a multiple quantum well active region layers comprised of five 4.5-5.5 nm InGaN quantum wells separated by four 9.5 nm to 10.5 nm InGaN barriers with an indium molar fraction of between 1.5% and 3%;


a p-side guide layer comprised of GaN with molar a thickness from 10 nm to 20 nm;


an electron blocking layer comprised of AlGaN with molar fraction of aluminum of between 6% and 22% and thickness from 10 nm to 15 nm and doped with Mg.


a p-GaN cladding layer with a thickness from 400 nm to 1000 nm with Mg doping level of 2E17 cm−3 to 4E19 cm−3; and


a p++-GaN contact layer with a thickness from 20 nm to 40 nm with Mg doping level of 5E19 cm−3 to 1E21 cm−3.


In a specific embodiment, the laser device is fabricated on a non-polar oriented surface region (m-plane). In a preferred embodiment, the non-polar substrate has a miscut or off cut of −0.8 to −1.2 degrees towards (0001) and −0.3 to 0.3 degrees towards (11-20). In a specific embodiment, the non-polar oriented surface region has an overlying n-GaN/p-GaN grown with H2/N2 subflow and H2 carrier gas.


In a specific embodiment, the present invention provides an alternative device structure capable of emitting 501 nm light in a ridge laser embodiment. The device is provided with one or more of the following elements, as also referenced in FIGS. 11 through 13:


an n-GaN cladding layer with a thickness from 100 nm to 3000 nm with Si doping level of 5E17 to 3E18 cm−3;


an n-side SCH layer comprised of InGaN with molar fraction of indium of between 3% and 7% and thickness from 40 to 60 nm;


a multiple quantum well active region layers comprised of seven 3.5-4.5 nm InGaN quantum wells separated by eight 9.5 nm to 10.5 nm GaN barriers;


a p-side SCH layer comprised of InGaN with molar a fraction of indium of between 2% and 5% and a thickness from 15 nm to 25 nm;


an electron blocking layer comprised of AlGaN with molar fraction of aluminum of between 8% and 22% and thickness from 10 nm to 15 nm and doped with Mg;


a p-GaN cladding layer with a thickness from 400 nm to 1000 nm with Mg doping level of 5E17 cm−3 to 1E19 cm−3; and


a p++-GaN contact layer with a thickness from 20 nm to 40 nm with Mg doping level of 1E20 cm−3 to 1E21 cm−3.


In a specific embodiment, the laser device is fabricated on a non-polar (10-10) oriented surface region (m-plane). In a preferred embodiment, the non-polar substrate has a miscut or off cut of −0.8 to −1.2 degrees towards (0001) and −0.3 to 0.3 degrees towards (11-20). In a specific embodiment, the non-polar oriented surface region has an overlying n-GaN/p-GaN grown with H2/N2 subflow and H2 carrier gas. In a preferred embodiment, the laser device configured for a 500 nm laser uses well regions and barriers fabricated using slow growth rates of between 0.3 and 0.6 angstroms per second, but can be others. In a specific embodiment, the slow growth rate is believed to maintain the quality of the InGaN at longer wavelengths.


In a specific embodiment, the present invention includes the following device structure.


An optical device comprising:


a gallium nitride substrate member having a semipolar crystalline surface region, the substrate member having a thickness of less than 500 microns, the gallium and nitride substrate member characterized by a dislocation density of less than 107 cm−2;


a semipolar surface region having a root mean square surface roughness of 10 nm and less over a 5 micron by 5 micron analysis area;


an offcut characterizing the surface region;


a gallium and nitrogen containing n-type cladding layer overlying the surface region, the n-type cladding layer having a thickness from 300 nm to 6000 nm with an n-type doping level of 1E17 cm−3 to 3E18 cm−3;


an n-side separate confining heterostructure (SCH) waveguiding layer overlying the n-type cladding layer, the n-side SCH waveguide layer comprising at least gallium, indium, and nitrogen with a molar fraction of InN of between 1% and 8% and having a thickness from 20 nm to 150 nm;


a multiple quantum well active region overlying the n-side SCH waveguide layer, the multiple quantum well active region comprising two to five 2.0 nm to 4.5 nm InGaN quantum wells separated by 3.5 nm to 20 nm gallium and nitrogen containing barrier layers;


a p-side guide layer overlying the multiple quantum well active region, the p-side guide layer comprising GaN or InGaN with a molar fraction of InN of between 1% and 8% and having a thickness from 10 nm to 120 nm;


a p-type gallium and nitrogen containing cladding layer overlying the multiple quantum well active region, the p-type cladding layer having a thickness from 300 nm to 1000 nm with a p-type doping level of 1E17 cm−3 to 5E19 cm−3;


a p++ gallium and nitrogen containing contact layer overlying the p-type cladding layer, the p++ gallium and nitrogen containing contact layer having a thickness from 10 nm to 120 nm with a p-type doping level of 1E19 cm−3 to 1E22 cm−3;


a waveguide member, the waveguide member being aligned substantially in a projection of the c-direction, the waveguide region comprising a first end and a second end;


a first facet formed on the first end; and


a second facet formed on the second end.


Depending upon the embodiment, the present device structure can be made according to the steps outlined below.


In a specific embodiment, the present invention also includes the following device structure, and its variations in an optical device, and in particular a laser device. In this example, the optical device includes one more of the following elements:


a gallium nitride substrate member having a semipolar crystalline surface region, the substrate member having a thickness of less than 500 microns, the gallium and nitride substrate member characterized by a dislocation density of less than 107 cm−2;


a semipolar surface region having an root mean square surface roughness of 10 nm and less over a 5 micron by 5 micron analysis area;


an offcut characterizing the surface region;


a surface reconstruction region configured overlying the semipolar surface region and the n-type cladding layer and at an interface within a vicinity of the semipolar surface region, the surface reconstruction region having an oxygen bearing concentration of greater than 1E17 cm−3;


an n-type cladding layer comprising a first quaternary alloy, the first quaternary alloy comprising an aluminum bearing species, an indium bearing species, a gallium bearing species, and a nitrogen bearing species overlying the surface region, the n-type cladding layer having a thickness from 100 nm to 5000 nm with an n-type doping level of 1E17 cm−3 to 6E18 cm−3;


a first gallium and nitrogen containing epitaxial material comprising a first portion characterized by a first indium concentration, a second portion characterized by a second indium concentration, and a third portion characterized by a third indium concentration overlying the n-type cladding layer;


an n-side separate confining heterostructure (SCH) waveguiding layer overlying the n-type cladding layer, the n-side SCH waveguide layer comprised of InGaN with molar fraction of InN of between 1% and 8% and having a thickness from 30 nm to 150 nm;


a multiple quantum well active region overlying the n-side SCH waveguide layer, the multiple quantum well active region comprising two to five 2.0 nm to 4.5 nm InGaN quantum wells separated by 5 nm to 20 nm gallium and nitrogen containing barrier layers;


a p-side guide layer overlying the multiple quantum well active region, the p-side guide layer comprising GaN or InGaN with a molar fraction of InN of between 1% and 5% and having a thickness from 20 nm to 100 nm;


a second gallium and nitrogen containing material overlying the p-side guide layer;


a p-type cladding layer comprising a second quaternary alloy overlying the second gallium and nitrogen containing material, the p-type cladding layer having a thickness from 300 nm to 1000 nm with a magnesium doping level of 1E17 cm−3 to 4E19 cm−3;


a plurality of hydrogen species, the plurality of hydrogen species spatially disposed within the p-type cladding layer;


a p++ gallium and nitrogen containing contact layer overlying the p-type cladding layer, the p++ gallium and nitrogen containing contact layer having a thickness from 10 nm to 140 nm with a magnesium doping level of 1E19 cm−3 to 1E22 cm−3; and


a waveguide member, the waveguide member being aligned substantially in a projection of the c-direction, the waveguide region comprising a first end and a second end;


a first facet formed on the first end;


a first semipolar characteristic configured on the first facet;


a second facet formed on the second end;


a second semipolar characteristic configured on the second facet;


a first edge region formed on a first side of the waveguide member;


a first etched surface formed on the first edge region;


a second edge region formed on a second side of the waveguide member; and


a second etched surface formed on the second edge region.


In this example, the waveguide member is provided between the first facet and the second facet, e.g., semipolar facets having a scribe region and cleave region. In this example, the scribe region is less than thirty percent of the cleave region to help facilitate a clean break via a skip scribing techniques where the skip is within a vicinity of the ridge. The waveguide member has a length of greater than 300 microns and is configured to emit substantially polarized electromagnetic radiation such that a polarization is substantially orthogonal to the waveguide cavity direction and the polarized electromagnetic radiation having a wavelength of 500 nm and greater and a spontaneous emission spectral full width at half maximum of less than 50 nm in a light emitting diode mode of operation or a spectral line-width of a laser output of greater than 0.4 nm. The wavelength is preferably 520 nm and greater. The wall plug efficiency is 5 percent and greater. Depending upon the embodiment, the present device structure can be made according to the steps outlined below.


In this example, the present method includes providing a gallium nitride substrate member having a semipolar crystalline surface region. The substrate member has a thickness of less than 500 microns, which has been thinned to less than 100 microns by way of a thinning process, e.g., grinding polishing. The gallium and nitride substrate member is characterized by a dislocation density of less than 107 cm−2. The semipolar surface region is characterized by an off-set of +/−3 degrees from a (20-21) semipolar plane toward a c-plane. As an example, the gallium nitride substrate can be made using bulk growth techniques such as ammonothermal based growth or HVPE growth with extremely high quality seeds to reduce the dislocation density to below 1E5 cm−2, below 1E3 cm−2, or eventually even below 1E1 cm−2.


In this example, the method also includes forming the surface reconstruction region overlying the semipolar surface region. The reconstruction region is formed by heating the substrate in the growth reactor to above 1000° C. with an ammonia (e.g., NH3) and hydrogen (e.g., H2) over pressure, e.g., atmospheric. The heating process flattens and removes micro-scratches and other imperfections on the substrate surface that lead to detrimental device performance. The micro-scratches and other imperfections are often caused by substrate preparation, including grinding, lapping, and polishing, among others.


In this example, the present method also forms an n-type cladding layer by introducing gaseous species of at least ammonia with nitrogen or hydrogen and an n-type dopant bearing species. The n-type cladding layer comprises silicon as the n-type dopant. The method also includes forming of the first gallium and nitrogen containing epitaxial material comprises n-type GaN and underlies the n-type quaternary cladding. The cladding layer includes aluminum, indium, gallium, and nitrogen in a wurtzite-crystalline structure. Preferably, the quaternary cladding region facilitates substantial lattice matching to the primary lattice constant of the substrate to achieve an increased aluminum content and a lower index cladding region. The lower index cladding layer enables better confine optical confinement within the active region leading to improved efficiency and gain within the laser device. The cladding layer is made with sufficient thickness to facilitate optical confinement, among other features.


The method includes forming the n-side separate confining heterostructure (SCH) waveguiding layer comprises processing at a deposition rate of less than 1.5 angstroms per second and an oxygen concentration of less than 8E17 cm−3. In this example, the n-side SCH is an InGaN material having a thickness and an oxygen concentration. The oxygen concentration is preferably below a predetermined level within a vicinity of the multiple quantum well regions to prevent any detrimental influences therein. Further details of the multiple quantum well region are provided below.


In this example, the method includes forming the multiple quantum well active region by processing at a deposition rate of less than 1 angstroms per second and an oxygen concentration of less than 8E17 cm−3. The method also includes forming the p-side guide layer overlying the multiple quantum well active region by depositing an InGaN SCH layer with an InN molar fraction of between 1% and 5% and a thickness ranging from 10 nm to 100 nm. The method forms the second gallium and nitrogen-containing material overlying the p-side guide layer by a process comprising a p-type GaN guide layer with a thickness ranging from 50 nm to 300 nm. As an example, the quantum well region can include two to four well regions, among others. Each of the quantum well layers is substantially similar to each other for improved device performance, or may be different.


In this example, the method includes forming an electron blocking layer overlying the p-side guide layer, the electron blocking layer comprising AlGaN with a molar fraction of AlN of between 6% and 22% and having a thickness from 5 nm to 25 nm and doped with a p-type dopant such as magnesium. The method includes forming the p-type cladding layer comprising a hydrogen species that has a concentration that tracks relatively with the p-type dopant concentration. The method includes forming a p++-gallium and nitrogen containing contact layer comprising a GaN material formed with a growth rate of less than 2.5 angstroms per second and characterized by a magnesium concentration of greater than 5E19 cm−3. Preferably, the electron-blocking layer redirects electrons from the active region back into the active region for radiative recombination.


In this example, the present method includes an etching process for forming the waveguide member. The etching process includes using a dry etch technique such as inductively coupled plasma etching or reactive ion etching to etch to a depth that does not penetrate through the quantum well region to maintain the multiple quantum well active region substantially free from damage. In this example, the etching process may be timed or maintained to stop the etching before any damage occurs to the multiple quantum well region. The method includes forming the first facet on the first end and forming the second facet on the second end comprising a scribing and breaking process.


In this example, the present method is generally performed in a MOCVD process. The MOCVD process preferably includes; (1) cleaning (via removal of quartz ware, vacuum, and other cleaning process); (2) subjecting the MOCVD chamber into a plurality of growth species; and (3) removing an impurity to a predetermined level. In this example, the impurity may be an oxygen bearing impurity, among others. In a specific example, the present method is performed using an atmospheric MOCVD tool configured to deposit epitaxial materials at atmospheric pressure, e.g., 700 Torr to 900 Torr.


While the above has been a full description of the specific embodiments, various modifications, alternative constructions and equivalents can be used. Therefore, the above description and illustrations should not be taken as limiting the scope of the present invention which is defined by the appended claims.

Claims
  • 1. An optical device comprising: a gallium nitride substrate member having a semipolar or nonpolar crystalline surface region;an n-type gallium nitride region overlying the surface region;an n-side SCH layer comprising InGaN overlying the n-type gallium nitride region;an active region overlying the n-side SCH layer, the active region comprising multiple quantum wells each having InGaN;a p-side SCH layer comprising InGaN overlying the active region;a laser stripe region formed overlying the p-side SCH layer, the laser stripe region characterized by a cavity orientation substantially parallel to a first-direction, the laser stripe region having a first end and a second end, the laser stripe region comprising a p-type gallium nitride region;an n-type metal region overlying a backside of the gallium nitride substrate member;an overlying p-type metal region overlying an upper portion of the laser stripe region;a first cleaved m-face facet provided on the first end of the laser stripe region; anda second cleaved m-face facet provided on the second end of the laser stripe region, wherein the first cleaved m-face facet is substantially parallel with the second cleaved m-face facet.
  • 2. The device of claim 1 wherein the first cleaved m-face facet comprises a first mirror surface.
  • 3. The device of claim 2 wherein the second cleaved m-face facet comprises a second mirror surface.
  • 4. The device of claim 1 wherein the n-type gallium nitride region comprises a silicon entity.
  • 5. The device of claim 1 wherein the p-type gallium nitride region comprises a magnesium entity.
  • 6. The device of claim 1 wherein the multiple quantum wells comprise one or more barrier layers.
  • 7. The device of claim 1 further comprising an electron blocking layer comprising aluminum disposed between the active region and the p-type gallium nitride region.
  • 8. The device of claim 1 further comprising a spontaneously emitted light characterized by a wavelength ranging 390 nm to 420 nm, 420 nm to 440 nm, 440 nm to 470 nm, 470 nm to 490 nm, 490 nm to 510 nm, and 510 nm to 530 nm.
  • 9. The device of claim 1 wherein the laser stripe region is provided by an etching process selected from dry etching or wet etching.
  • 10. The device of claim 1 wherein the laser stripe region comprises an overlying dielectric layer exposing an upper portion of the laser stripe region.
  • 11. The device of claim 1 wherein the p-type metal region comprises gallium nitride comprising magnesium entities.
  • 12. An optical device comprising: a gallium nitride substrate member having a semipolar or nonpolar crystalline surface region;an n-type GaN cladding layer overlying the surface region;an n-side SCH layer overlying the n-type GaN cladding layer, the n-side SCH layer comprised of InGaN;a multiple quantum well active region overlying the n-side SCH layer, the multiple quantum well active region comprised of InGaN quantum wells separated by GaN barriers;a p-side SCH layer overlying the multiple quantum well active region, the p-side SCH layer comprised of InGaN;an electron blocking layer overlying the p-side SCH layer, the electron blocking layer comprised of AlGaN doped with magnesium;a p-type GaN cladding layer overlying the electronic blocking layer, the p-type GaN cladding layer having a magnesium doping;a p++-type GaN contact layer with a magnesium doping;a laser stripe region having a first end and a second end;a first cleaved m-face facet provided on the first end of the laser stripe region; anda second cleaved m-face facet provided on the second end of the laser stripe region.
  • 13. The device of claim 12 wherein the first cleaved m-face facet and the second cleaved m-face facet comprise mirror surfaces.
  • 14. The device of claim 12 wherein the n-type GaN cladding layer comprises a silicon doping.
  • 15. The device of claim 12 wherein the laser stripe region comprises an overlying dielectric layer exposing an upper portion of the laser stripe region.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. application Ser. No. 15/671,384, filed Aug. 8, 2017, which is a continuation of U.S. application Ser. No. 15/380,156, filed Dec. 15, 2016, which is a continuation of U.S. application Ser. No. 15/155,947, filed May 16, 2016, which is a continuation of U.S. application Ser. No. 14/754,043, filed Jun. 29, 2015, which is a division of U.S. application Ser. No. 14/601,651, filed Jan. 21, 2015, which is a continuation of U.S. application Ser. No. 14/229,738, filed Mar. 28, 2014, which is a division of U.S. application Ser. No. 13/549,335, filed Jul. 13, 2012, which is a continuation-in-part of U.S. application Ser. No. 12/884,993, filed Sep. 17, 2010, which claims priority from U.S. Provisional Application No. 61/249,568, filed Oct. 7, 2009 and from U.S. Provisional Application No. 61/243,502, filed Sep. 17, 2009; and U.S. application Ser. No. 13/549,335 is a continuation-in-part of U.S. application Ser. No. 12/778,718 filed on May 12, 2010, which claims priority from U.S. Provisional Application No. 61/177,317 filed on May 12, 2009; and U.S. application Ser. No. 13/549,335 is a continuation-in-part of U.S. application Ser. No. 12/762,269 filed on Apr. 16, 2010, which claims priority from U.S. Provisional Application No. 61/243,502 filed on Sep. 17, 2009, from U.S. Provisional Application No. 61/177,218 filed on May 11, 2009, from U.S. Provisional Application No. 61/170,550 filed on Apr. 17, 2009, and from U.S. Provisional Application No. 61/170,553 filed on Apr. 17, 2009; and U.S. application Ser. No. 13/549,335 is a continuation-in-part of U.S. application Ser. No. 12/762,271 filed on Apr. 16, 2010, which claims priority from U.S. Provisional Application No. 61/243,502 filed on Sep. 17, 2009, from U.S. Provisional Application No. 61/177,227 filed on May 11, 2009, from U.S. Provisional Application No. 61/170,550 filed on Apr. 17, 2009, and from U.S. Provisional Application No. 61/170,553 filed on Apr. 17, 2009; and U.S. application Ser. No. 13/549,335 is a continuation-in-part of U.S. application Ser. No. 12/759,273 filed on Apr. 13, 2010, which claims priority from U.S. Provisional Application No. 61/243,502 filed on Sep. 17, 2009, and from U.S. Provisional Application No. 61/168,926 filed on Apr. 13, 2009; each of which is incorporated by reference herein in its entirety.

US Referenced Citations (276)
Number Name Date Kind
4318058 Mito et al. Mar 1982 A
4341592 Shortes et al. Jul 1982 A
4860687 Frijlink Aug 1989 A
4911102 Manabe et al. Mar 1990 A
5331654 Jewell et al. Jul 1994 A
5334277 Nakamura Aug 1994 A
5366953 Char et al. Nov 1994 A
5527417 Iida et al. Jun 1996 A
5607899 Yoshida et al. Mar 1997 A
5632812 Hirabayashi May 1997 A
5647945 Matsuse et al. Jul 1997 A
5696389 Ishikawa et al. Dec 1997 A
5760484 Lee et al. Jun 1998 A
5821555 Saito et al. Oct 1998 A
5888907 Tomoyasu et al. Mar 1999 A
5926493 O'brien et al. Jul 1999 A
5951923 Horie et al. Sep 1999 A
6069394 Hashimoto May 2000 A
6072197 Horino et al. Jun 2000 A
6147953 Duncan Nov 2000 A
6153010 Kiyoku et al. Nov 2000 A
6195381 Botez et al. Feb 2001 B1
6239454 Glew et al. May 2001 B1
6379985 Cervantes et al. Apr 2002 B1
6451157 Hubacek Sep 2002 B1
6489636 Goetz et al. Dec 2002 B1
6586762 Kozaki Jul 2003 B2
6635904 Goetz et al. Oct 2003 B2
6639925 Niwa et al. Oct 2003 B2
6680959 Tanabe et al. Jan 2004 B2
6734461 Shiomi et al. May 2004 B1
6755932 Masuda et al. Jun 2004 B2
6809781 Setlur et al. Oct 2004 B2
6814811 Ose Nov 2004 B2
6833564 Shen et al. Dec 2004 B2
6858081 Biwa et al. Feb 2005 B2
6858882 Tsuda et al. Feb 2005 B2
6920166 Akasaka et al. Jul 2005 B2
7009199 Hall Mar 2006 B2
7019325 Li et al. Mar 2006 B2
7033858 Chai et al. Apr 2006 B2
7053413 D'Evelyn et al. May 2006 B2
7063741 D'Evelyn et al. Jun 2006 B2
7128849 Setlur et al. Oct 2006 B2
7220324 Baker et al. May 2007 B2
7303630 Motoki et al. Dec 2007 B2
7312156 Granneman et al. Dec 2007 B2
7323723 Ohtsuka et al. Jan 2008 B2
7338828 Imer et al. Mar 2008 B2
7358542 Radkov et al. Apr 2008 B2
7358543 Chua et al. Apr 2008 B2
7390359 Miyanaga et al. Jun 2008 B2
7470555 Matsumura Dec 2008 B2
7483466 Uchida et al. Jan 2009 B2
7483468 Tanaka Jan 2009 B2
7489441 Scheible et al. Feb 2009 B2
7491984 Koike et al. Feb 2009 B2
7555025 Yoshida Jun 2009 B2
7598104 Teng et al. Oct 2009 B2
7691658 Kaeding et al. Apr 2010 B2
7709284 Iza et al. May 2010 B2
7727332 Habel et al. Jun 2010 B2
7733571 Li Jun 2010 B1
7749326 Kim et al. Jul 2010 B2
7806078 Yoshida Oct 2010 B2
7858408 Mueller et al. Dec 2010 B2
7862761 Okushima et al. Jan 2011 B2
7923741 Zhai et al. Apr 2011 B1
7939354 Kyono et al. May 2011 B2
7968864 Akita et al. Jun 2011 B2
7976630 Poblenz et al. Jul 2011 B2
8017932 Okamoto et al. Sep 2011 B2
8044412 Murphy et al. Oct 2011 B2
8124996 Raring et al. Feb 2012 B2
8126024 Raring Feb 2012 B1
8143148 Raring et al. Mar 2012 B1
8242522 Raring Aug 2012 B1
8247887 Raring et al. Aug 2012 B1
8254425 Raring Aug 2012 B1
8259769 Raring et al. Sep 2012 B1
8284810 Sharma et al. Oct 2012 B1
8294179 Raring Oct 2012 B1
8314429 Raring et al. Nov 2012 B1
8350273 Vielemeyer Jan 2013 B2
8351478 Raring et al. Jan 2013 B2
8355418 Raring et al. Jan 2013 B2
8416825 Raring Apr 2013 B1
8422525 Raring et al. Apr 2013 B1
8427590 Raring et al. Apr 2013 B2
8451876 Raring et al. May 2013 B1
8634442 Raring et al. Jan 2014 B1
8837545 Raring Sep 2014 B2
8969113 Raring Mar 2015 B2
9071039 Raring et al. Jun 2015 B2
9099844 Raring Aug 2015 B2
9356430 Raring May 2016 B2
9531164 Raring et al. Dec 2016 B2
9553426 Raring Jan 2017 B1
9722398 Raring et al. Aug 2017 B2
9735547 Raring Aug 2017 B1
9941665 Raring Apr 2018 B1
20010048114 Morita et al. Dec 2001 A1
20020027933 Tanabe et al. Mar 2002 A1
20020050488 Nikitin et al. May 2002 A1
20020085603 Okumura Jul 2002 A1
20020105986 Yamasaki Aug 2002 A1
20020171092 Goetz et al. Nov 2002 A1
20030000453 Unno et al. Jan 2003 A1
20030001238 Ban Jan 2003 A1
20030012243 Okumura Jan 2003 A1
20030020087 Goto et al. Jan 2003 A1
20030129810 Barth et al. Jul 2003 A1
20030140846 Biwa et al. Jul 2003 A1
20030178617 Appenzeller et al. Sep 2003 A1
20030200931 Goodwin Oct 2003 A1
20030216011 Nakamura et al. Nov 2003 A1
20040025787 Selbrede et al. Feb 2004 A1
20040060518 Nakamura et al. Apr 2004 A1
20040099213 Adomaitis et al. May 2004 A1
20040104391 Maeda et al. Jun 2004 A1
20040151222 Sekine Aug 2004 A1
20040196877 Kawakami et al. Oct 2004 A1
20040222357 King et al. Nov 2004 A1
20040233950 Furukawa et al. Nov 2004 A1
20040247275 Vakhshoori et al. Dec 2004 A1
20040262624 Akita et al. Dec 2004 A1
20050040384 Tanaka et al. Feb 2005 A1
20050072986 Sasaoka Apr 2005 A1
20050168564 Kawaguchi et al. Aug 2005 A1
20050214992 Chakraborty et al. Sep 2005 A1
20050218413 Matsumoto et al. Oct 2005 A1
20050224826 Keuper et al. Oct 2005 A1
20050229855 Raaijmakers Oct 2005 A1
20050230701 Huang Oct 2005 A1
20050247260 Shin et al. Nov 2005 A1
20050285128 Scherer et al. Dec 2005 A1
20050286591 Lee Dec 2005 A1
20060030738 Vanmaele et al. Feb 2006 A1
20060033009 Kobayashi et al. Feb 2006 A1
20060037529 D'Evelyn et al. Feb 2006 A1
20060038193 Wu et al. Feb 2006 A1
20060060131 Atanackovic Mar 2006 A1
20060066319 Dallenbach et al. Mar 2006 A1
20060077795 Kitahara et al. Apr 2006 A1
20060078022 Kozaki et al. Apr 2006 A1
20060078024 Matsumura et al. Apr 2006 A1
20060079082 Bruhns et al. Apr 2006 A1
20060086319 Kasai et al. Apr 2006 A1
20060118799 D'Evelyn et al. Jun 2006 A1
20060126688 Kneissl Jun 2006 A1
20060144334 Yim et al. Jul 2006 A1
20060175624 Sharma et al. Aug 2006 A1
20060189098 Edmond Aug 2006 A1
20060193359 Kuramoto Aug 2006 A1
20060205199 Baker et al. Sep 2006 A1
20060213429 Motoki et al. Sep 2006 A1
20060216416 Sumakeris et al. Sep 2006 A1
20060256482 Araki et al. Nov 2006 A1
20060288928 Eom et al. Dec 2006 A1
20070081857 Yoon Apr 2007 A1
20070086916 LeBoeuf et al. Apr 2007 A1
20070093073 Farrell, Jr. et al. Apr 2007 A1
20070101932 Schowalter et al. May 2007 A1
20070110112 Sugiura May 2007 A1
20070120141 Moustakas et al. May 2007 A1
20070153866 Shchegrov et al. Jul 2007 A1
20070163490 Habel et al. Jul 2007 A1
20070166853 Guenther et al. Jul 2007 A1
20070184637 Haskell et al. Aug 2007 A1
20070217462 Yamasaki Sep 2007 A1
20070242716 Samal et al. Oct 2007 A1
20070252164 Zhong et al. Nov 2007 A1
20070259464 Bour et al. Nov 2007 A1
20070272933 Kim et al. Nov 2007 A1
20070280320 Feezell et al. Dec 2007 A1
20080029152 Milshtein et al. Feb 2008 A1
20080087919 Tysoe et al. Apr 2008 A1
20080092812 McDiarmid et al. Apr 2008 A1
20080094592 Shibazaki Apr 2008 A1
20080095492 Son et al. Apr 2008 A1
20080121916 Teng et al. May 2008 A1
20080124817 Bour et al. May 2008 A1
20080149949 Nakamura et al. Jun 2008 A1
20080149959 Nakamura et al. Jun 2008 A1
20080164578 Tanikella et al. Jul 2008 A1
20080173735 Mitrovic et al. Jul 2008 A1
20080191192 Feezell et al. Aug 2008 A1
20080191223 Nakamura et al. Aug 2008 A1
20080198881 Farrell et al. Aug 2008 A1
20080210958 Senda et al. Sep 2008 A1
20080217745 Miyanaga et al. Sep 2008 A1
20080232416 Okamoto et al. Sep 2008 A1
20080251020 Franken et al. Oct 2008 A1
20080283851 Akita Nov 2008 A1
20080285609 Ohta et al. Nov 2008 A1
20080291961 Kamikawa et al. Nov 2008 A1
20080298409 Yamashita et al. Dec 2008 A1
20080303033 Brandes Dec 2008 A1
20080308815 Kasai et al. Dec 2008 A1
20080315179 Kim et al. Dec 2008 A1
20090021723 De Lega Jan 2009 A1
20090058532 Kikkawa et al. Mar 2009 A1
20090061857 Kazmi Mar 2009 A1
20090066241 Yokoyama Mar 2009 A1
20090078944 Kubota et al. Mar 2009 A1
20090080857 St. John-Larkin Mar 2009 A1
20090081857 Hanser et al. Mar 2009 A1
20090081867 Taguchi et al. Mar 2009 A1
20090141765 Kohda et al. Jun 2009 A1
20090153752 Silverstein Jun 2009 A1
20090159869 Ponce et al. Jun 2009 A1
20090229519 Saitoh Sep 2009 A1
20090250686 Sato et al. Oct 2009 A1
20090267100 Miyake et al. Oct 2009 A1
20090273005 Lin Nov 2009 A1
20090301387 D'Evelyn Dec 2009 A1
20090301388 D'Evelyn Dec 2009 A1
20090309110 Raring et al. Dec 2009 A1
20090309127 Raring et al. Dec 2009 A1
20090310640 Sato et al. Dec 2009 A1
20090316116 Melville et al. Dec 2009 A1
20090320744 D'Evelyn Dec 2009 A1
20090321778 Chen et al. Dec 2009 A1
20100001300 Raring et al. Jan 2010 A1
20100003492 D'Evelyn Jan 2010 A1
20100006546 Young et al. Jan 2010 A1
20100006873 Raring et al. Jan 2010 A1
20100025656 Raring et al. Feb 2010 A1
20100031875 D'Evelyn Feb 2010 A1
20100044718 Hanser et al. Feb 2010 A1
20100096615 Okamoto et al. Apr 2010 A1
20100104495 Kawabata et al. Apr 2010 A1
20100140630 Hamaguchi et al. Jun 2010 A1
20100140745 Khan et al. Jun 2010 A1
20100151194 D'Evelyn Jun 2010 A1
20100195687 Okamoto et al. Aug 2010 A1
20100220262 DeMille et al. Sep 2010 A1
20100276663 Enya et al. Nov 2010 A1
20100295054 Okamoto et al. Nov 2010 A1
20100302464 Raring et al. Dec 2010 A1
20100309943 Chakraborty et al. Dec 2010 A1
20100316075 Raring et al. Dec 2010 A1
20100327291 Preble et al. Dec 2010 A1
20110031508 Hamaguchi et al. Feb 2011 A1
20110056429 Raring et al. Mar 2011 A1
20110057167 Ueno et al. Mar 2011 A1
20110064100 Raring et al. Mar 2011 A1
20110064101 Raring et al. Mar 2011 A1
20110064102 Raring et al. Mar 2011 A1
20110073888 Ueno et al. Mar 2011 A1
20110075694 Yoshizumi et al. Mar 2011 A1
20110100291 D'Evelyn May 2011 A1
20110103418 Hardy et al. May 2011 A1
20110129669 Fujito et al. Jun 2011 A1
20110150020 Haase et al. Jun 2011 A1
20110164637 Yoshizumi et al. Jul 2011 A1
20110170569 Tyagi et al. Jul 2011 A1
20110180781 Raring et al. Jul 2011 A1
20110183498 D'Evelyn Jul 2011 A1
20110186874 Shum Aug 2011 A1
20110186887 Trottier et al. Aug 2011 A1
20110188530 Lell et al. Aug 2011 A1
20110216795 Hsu et al. Sep 2011 A1
20110247556 Raring et al. Oct 2011 A1
20110281422 Wang et al. Nov 2011 A1
20110286484 Raring et al. Nov 2011 A1
20120104359 Felker et al. May 2012 A1
20120119218 Su May 2012 A1
20120178198 Raring et al. Jul 2012 A1
20120187371 Raring et al. Jul 2012 A1
20120314398 Raring et al. Dec 2012 A1
20130016750 Raring et al. Jan 2013 A1
20130022064 Raring et al. Jan 2013 A1
20130044782 Raring Feb 2013 A1
20130064261 Sharma et al. Mar 2013 A1
20160006217 Raring et al. Jan 2016 A1
Foreign Referenced Citations (17)
Number Date Country
1171692 Jan 1998 CN
1538534 Oct 2004 CN
1702836 Nov 2005 CN
1781195 May 2006 CN
101009347 Aug 2007 CN
101079463 Nov 2007 CN
101099245 Jan 2008 CN
03287770 Dec 1991 JP
2007068398 Mar 2007 JP
2007-173467 Jul 2007 JP
2008205231 Sep 2008 JP
2008300547 Dec 2008 JP
2008306062 Dec 2008 JP
2008311640 Dec 2008 JP
2004084275 Sep 2004 WO
2008041521 Apr 2008 WO
2010120819 Oct 2010 WO
Non-Patent Literature Citations (77)
Entry
U.S. Appl. No. 12/759,273, Final Office Action dated Jun. 26, 2012, 10 pages.
U.S. Appl. No. 12/759,273, Final Office Action dated Mar. 29, 2016, 12 pages.
U.S. Appl. No. 12/759,273, Final Office Action dated Oct. 24, 2014, 16 Pages.
U.S. Appl. No. 12/759,273, Final Office Action dated Jun. 8, 2015, 17 pages.
U.S. Appl. No. 12/759,273, Non-Final Office Action dated Nov. 21, 2011, 10 pages.
U.S. Appl. No. 12/759,273, Non-Final Office Action dated Apr. 3, 2014, 16 pages.
U.S. Appl. No. 12/759,273, Non-Final Office Action dated Jan. 29, 2015, 16 pages.
U.S. Appl. No. 12/759,273, Non-Final Office Action dated Sep. 23, 2015, 18 pages.
U.S. Appl. No. 13/549,335, Non-Final Office Action dated Nov. 20, 2013, 12 pages.
U.S. Appl. No. 13/549,335, Notice of Allowance dated Mar. 20, 2014, 7 pages.
U.S. Appl. No. 14/134,244, Final Office Action dated Jan. 2, 2015, 7 pages.
U.S. Appl. No. 14/134,244, Non-Final Office Action dated Jun. 19, 2014, 6 pages.
U.S. Appl. No. 14/134,244, Notice of Allowance dated Mar. 3, 2015, 7 pages.
U.S. Appl. No. 14/229,738, Notice of Allowance dated Oct. 22, 2014, 15 pages.
U.S. Appl. No. 14/736,939, Non-Final Office Action dated Oct. 21, 2016, 21 pages.
U.S. Appl. No. 14/736,939, Notice of Allowance dated Mar. 28, 2017, 9 pages.
U.S. Appl. No. 14/754,043, Notice of Allowance dated Feb. 4, 2016, 7 pages.
U.S. Appl. No. 15/155,947, Notice of Allowance dated Sep. 13, 2016, 10 pages.
U.S. Appl. No. 15/380,156, Notice of Allowance dated Apr. 12, 2017, 10 pages.
U.S. Appl. No. 15/671,384, Notice of Allowance dated Aug. 8, 2017,12 pages.
Abare et al., Cleaved and Etched Facet Nitride Laser Diodes, IEEE Journal of Selected Topics in Quantum Electronics, vol. 4, No. 3, May 1998, pp. 505-509.
Aoki et al., InGaAs/InGaAsP MQW Electroabsorption Modulator Integrated with a DFB Laser Fabricated by Band-Gap Energy Control Selective Area MOCVD, IEEE Journal of Quantum Electronics, vol. 29, No. 6, Jun. 1993, pp. 2088-2096.
Asano et al., 100-mW Kink-Free Blue-Violet Laser Diodes with Low Aspect Ratio, IEEE Journal of Quantum Electronics, vol. 39, No. 1, Jan. 2003, pp. 135-140.
Bernardini et al., Spontaneous Polarization and Piezoelectric Constants of III-V Nitrides, Physical Review B, vol. 56, No. 16, Oct. 15, 1997, pp. 10024-10027.
Caneau et al., Studies on the Selective OMVPE of (Ga,In)/(As,P), Journal of Crystal Growth, vol. 124, No. 1, Nov. 1, 1992, pp. 243-248.
Chen et al., Growth and Optical Properties of Highly Uniform and Periodic InGaN Nanostructures, Advanced Materials, vol. 19, Jun. 5, 2007, pp. 1707-1710.
D'Evelyn et al., Bulk GaN Crystal Growth by the High-Pressure Ammonothermal Method, Journal of Crystal Growth, vol. 300, Issue 1, Mar. 1, 2007, pp. 11-16.
Feezell et al., Short-Wave Diode Lasers: Nonpolar gallium nitride laser diodes are the next new blue, Laser Focus World, vol. 43, Issue 10, Oct. 1, 2007.
Founta et al., Anisotropic Morphology of Nonpolar a-Plan GaN Quantum Dots and Quantum Wells, Journal of Applied Physics, vol. 102, No. 7, 2007, pp. 074304-1-074304-6.
Franssila, Tools for CVD and Epitaxy, Introduction to Microfabrication, 2004, pp. 329-336.
Fujii et al., Increase in the Extraction Efficiency of GaN-Based Light-Emitting Diodes via Surface Roughening, Applied Physics Letters, vol. 84, No. 6, 2004, pp. 855-857.
Funato et al., Blue, Green, and Amber InGaN/GaN Light-Emitting Diodes on Semipolar {1122} GaN Bulk Substrates, Journal of Japanese Applied Physics, vol. 45, No. 26, 2006, pp. L659-L662.
Funato et al., Monolithic Polychromatic Light-Emitting Diodes Based on InGaN Microfacet Quantum Wells toward Tailor-Made Solid-State Lighting, Applied Physics Express, vol. 1, No. 1, 2008, pp. 011106-1-011106-3.
Gardner et al., Blue-Emitting InGaN—GaN Double-Heterostructure Light-Emitting Diodes Reaching Maximum Quantum Efficiency Above 200A/cm2, Applied Physics Letters, vol. 91, Dec. 12, 2007, pp. 243506-1-243506-3.
Hiramatsu et al., Selective Area Growth and Epitaxial Lateral Overgrowth of GaN by Metalorganic Vapor Phase Epitaxy and Hydride Vapor Phase Epitaxy, Materials Science and Engineering B, vol. 59, May 6, 1999, pp. 104-111.
Iso et al., High Brightness Blue InGaN/GaN Light Emitting Diode on Nonpolar m-Plane Bulk GaN Substrate, Japanese Journal of Applied Physics, vol. 46, No. 40, 2007, pp. L960-L962.
Kendall et al., Energy Savings Potential of Solid State Lighting in General Lighting Applications, Report for the Department of Energy, 2001, 35 pages.
Khan et al., Cleaved Cavity Optically Pumped InGaN—GaN Laser Grown on Spinel Substrates, Applied Physics Letters, vol. 69, Issue 16, Oct. 14, 1996, pp. 2418-2420.
Kim et al., Improved Electroluminescence on Nonpolar m-Plane InGaN/GaN Quantum Wells LEDs, Physica Status Solidi (RRL), vol. 1, No. 3, 2007, pp. 125-127.
Kuramoto et al., Novel Ridge-Type InGaN Multiple-Quantum-Well Laser Diodes Fabricated by Selective Area Re-Growth on n-GaN Substrates, Journal of Japanese Applied Physics, vol. 40, 2001, pp. L925-L927.
Lin et al., Influence of Separate Confinement Heterostructure Layer on Carrier Distribution in InGaAsP Laser Diodes with Nonidentical Multiple Quantum Wells, Japanese Journal of Applied Physics, vol. 43, No. 10, 2004, pp. 7032-7035.
Masui et al., Electrical Characteristics of Nonpolar InGaN-Based Light-Emitting Diodes Evaluated at Low Temperature, Japanese Journal of Applied Physics, vol. 46, Part 1, No. 11, 2007, pp. 7309-7310.
Michiue et al., Recent development of nitride LEDs and LDs, Proceedings of SPIE, vol. 7216, 2009, pp. 72161Z-1-72161Z-6.
Nakamura et al., InGaN/GaN/AIGaN-Based Laser Diodes with Modulation-Doped Strained-Layer Superlattices Grown on an Epitaxially Laterally Overgrown GaN Substrate, Applied Physics Letters, vol. 72, No. 12, 1998, pp. 211-213.
Nam et al., Lateral Epitaxial Overgrowth of GaN Films on SiO2 Areas via Metalorganic Vapor Phase Epitaxy, Journal of Electronic Materials, vol. 27, No. 4, Apr. 1998, pp. 233-237.
Okamoto et al., Continuous-Wave Operation of m-Plane InGaN Multiple Quantum Well Laser Diodes, The Japan Society of Applied Physics Express Letter, vol. 46, No. 9, 2007, pp. L187-L189.
Okamoto et al., High-Efficiency Continuous-Wave Operation of Blue-Green Laser Diodes Based on Nonpolar m-Plane Gallium Nitride, The Japan Society of Applied Physics, Applied Physics Express 1, Jun. 20, 2008, pp. 072201-1-072201-3.
Okamoto et al., Pure Blue Laser Diodes Based on Nonpolar m-Plane Gallium Nitride with InGaN Waveguiding Layers, Journal of Japanese Applied Physics, vol. 46, No. 35, 2007, pp. L820-L822.
Okubo, Nichia Develops Blue-green Semiconductor Laser w/ 488nm Wavelength, Nikkei Technology Online, Tech-on, http://techon.nikkeibp.co jp/english/NEWS_EN/20080122/146009/?ST=english_PRINT, 2008, pp. 1-2.
Park, Crystal Orientation Effects on Electronic Properties of Wurtzite InGaN/GaN Quantum Wells, Journal of Applied Physics, vol. 91, No. 12, Jun. 15, 2002, pp. 9904-9908.
International Application No. PCT/US2009/046786, International Search Report and Written Opinion dated May 13, 2010, 8 pages.
International Application No. PCT/US2009/047107, International Search Report and Written Opinion dated Sep. 29, 2009, 10 pages.
International Application No. PCT/US2009/052611, International Search Report and Written Opinion dated Sep. 29, 2009, 11 pages.
International Application No. PCT/US2010/030939, International Search Report and Written Opinion dated Jun. 16, 2010, 9 pages.
International Application No. PCT/US2010/049172, International Search Report and Written Opinion dated Nov. 17, 2010, 7 pages.
International Application No. PCT/US2011/037792, International Search Report and Written Opinion dated Sep. 8, 2011, 9 pages.
International Application No. PCT/US2011/060030, International Search Report and Written Opinion dated Mar. 21, 2012, 8 pages.
Purvis , Changing the Crystal Face of Gallium Nitride, The Advance Semiconductor Magazine, III-Vs Review, vol. 18, No. 8, Nov. 8, 2005, 3 pages.
Romanov et al., Strain-Induced Polarization in Wurtzite III-Nitride Semipolar Layers, J. Appl. Phys., vol. 100, Jul. 25, 2006, pp. 023522-1-023522-10.
Sato et al., High Power and High Efficiency Green Light Emitting Diode on Free-Standing Semipolar (1122) Bulk GaN Substrate, Physica Status Sol. (RRL), vol. 1, Jun. 15, 2007, pp. 162-164.
Sato et al., Optical Properties of Yellow Light-Emitting-Diodes Grown on Semipolar (1122) Bulk GaN Substrate, Applied Physics Letter, vol. 92, No. 22, 2008, pp. 221110-1-221110-3.
Schmidt et al., Demonstration of Nonpolar m-Plane InGaN/GaN Laser Diodes, Japanese Journal of Applied Physics, vol. 46 Part 2, 2007, pp. 190-191.
Schmidt et al., High Power and High External Efficiency m-Plane InGaN Light Emitting Diodes, Japanese Journal of Applied Physics, vol. 46, No. 7, Feb. 9, 2007, pp. L126-L128.
Schoedl et al., Facet degradation of GaN Heterostructure laser diodes, Journal of Applied Physics, vol. 97, No. 12, 2005, pp. 123102-1-123102-8.
Shchekin et al., High Performance Thin-Film Flip-Chip InGaN—GaN Light-Emitting Diodes, Applied Physics Letters, vol. 89, Aug. 16, 2006, pp. 071109-1-071109-3.
Shen et al., Auger Recombination in InGaN Measured by Photoluminescence, Applied Physics Letters, vol. 91, Oct. 1, 2007, pp. 141101-1-141101-3.
Sizov et al., 500-nm Optical Gain Anisotropy of Semipolar (1122) InGaN Quantum Wells, Applied Physics Express, vol. 2, Jun. 19, 2009, pp. 071001-1-071001-3.
Tomiya et al., Dislocation Related Issues in the Degradation of GaN-Based Laser Diodes, IEEE Journal of Selected Topics in Quantum Electronics, vol. 10, Issue 6, Nov.-Dec. 2004, pp. 1277-1286.
Tyagi et al., High Brightness Violet InGan/Gan Light EMitting Diodes on Semipolar (1011) Bulk Gan Substrates, Japanese Journal of Applied Physics, vol. 46, No. 4-7, Feb. 9, 2007, pp. L129-L131.
Tyagi et al., Semipolar (1011) InGaN/GaN Laser Diodes on Bulk GaN Substrates, Japanese Journal of Applied Physics, vol. 46, No. 19, Part 2, May 11, 2007, pp. L444-L445.
Uchida et al., Recent Progress in High-Power Blue-Violet Lasers, IEEE Journal of Selected Topics in Quantum Electronics, vol. 9, Issue 5, Sep.-Oct. 2003, pp. 1252-1259.
Waltereit et al., Nitride Semiconductors Free of Electrostatic Fields for Efficient White Light-Emitting Diodes, Nature, vol. 406, Aug. 24, 2000, pp. 865-868.
Wierer et al., High-power AlGaInN Flip-Chip Light-Emitting Diodes, Applied Physics Letters, vol. 78, No. 22, 2001, pp. 3379-3381.
Yamaguchi, Anisotropic Optical Matrix Elements in Strained GaN-Quantum Wells with Various Substrate Orientations, Physica Status Solidi (PSS), vol. 5, No. 6, May 2008, pp. 2329-2332.
Yoshizumi et al., Continuous-Wave Operation of 520 nm Green InGaN-Based Laser Diodes on Semi-Polar {2021} GaN Substrates, Applied Physics Express, vol. 2, No. 9, Aug. 2009, pp. 1-3.
Yu et al., Multiple Wavelength Emission from Semipolar InGaN/GaN Quantum Wells Selectively Grown by MOCVD, Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest (CD), 2007, 2 pages.
Zhong et al., Demonstration of High Power Blue-Green Light Emitting Diode on Semipolar (1122) bulk GaN substrate, Electronics Letters, vol. 43, No. 15, Jul. 2007, pp. 825-826.
Provisional Applications (8)
Number Date Country
61249568 Oct 2009 US
61243502 Sep 2009 US
61177317 May 2009 US
61177218 May 2009 US
61170550 Apr 2009 US
61170553 Apr 2009 US
61177227 May 2009 US
61168926 Apr 2009 US
Divisions (2)
Number Date Country
Parent 14601651 Jan 2015 US
Child 14754043 US
Parent 13549335 Jul 2012 US
Child 14229738 US
Continuations (5)
Number Date Country
Parent 15671384 Aug 2017 US
Child 15938802 US
Parent 15380156 Dec 2016 US
Child 15671384 US
Parent 15155947 May 2016 US
Child 15380156 US
Parent 14754043 Jun 2015 US
Child 15155947 US
Parent 14229738 Mar 2014 US
Child 14601651 US
Continuation in Parts (5)
Number Date Country
Parent 12884993 Sep 2010 US
Child 13549335 US
Parent 12778718 May 2010 US
Child 12884993 US
Parent 12762269 Apr 2010 US
Child 12778718 US
Parent 12762271 Apr 2010 US
Child 12762269 US
Parent 12759273 Apr 2010 US
Child 12762271 US