This document relates to optical resonators and devices using optical resonators.
Optical resonators can be configured in various configurations. Examples of well-known optical resonator designs includes Fabry-Perot optical resonators and optical ring resonators. As another example, an optical material such as a dielectric material may be shaped to construct an optical whispering-gallery-mode (“WGM”) resonator which supports one or more resonator modes known as whispering gallery (“WG”) modes. These WG modes represent optical fields confined in an interior region close to the surface of the resonator due to the total internal reflection at the boundary. Microspheres with diameters from few tens of microns to several hundreds of microns have been used to form compact optical WGM resonators. Such spherical resonators include at least a portion of the sphere that comprises the equator of the sphere. The resonator dimension is generally much larger than the wavelength of light so that the optical loss due to the finite curvature of the resonators is small. As a result, a high quality factor, Q, e.g., greater than 109, may be achieved in such resonators. Hence, optical energy, once coupled into a whispering gallery mode, can circulate within the WGM resonator with a long photon life time. Such hi-Q WGM resonators may be used in many optical applications, including optical filtering, optical delay, optical sensing, lasers, and opto-electronic oscillators.
In one aspect, an optical device can be implemented to include an optical resonator that is shaped to include an optical path and supports whispering gallery modes propagating in the optical path and including a selected whispering gallery mode that has a zero electric field at a selected location in the optical path at which electric fields of other whispering gallery modes are not zero. This device also includes a structure formed at the selected location in the optical path of the optical resonator and structured to suppress electric fields of other whispering gallery modes at the selected location to render the selected whispering gallery mode to be a single optical mode in the optical resonator.
In another aspect, a method for maintaining a single optical mode in an optical resonator can be implemented to include providing an optical resonator that is shaped to include an optical path and supports whispering gallery modes propagating in the optical path and including a selected whispering gallery mode that has a zero electric field at a selected location in the optical path at which electric fields of other whispering gallery modes are not zero; and suppressing electric fields of other whispering gallery modes at the selected location in the optical path of the optical resonator to render the selected whispering gallery mode to be a single optical mode present in the optical resonator.
In another aspect, an optical device is implemented to include an optical resonator that is shaped to include a circular optical path and supports whispering gallery modes propagating in an optical path and including a selected whispering gallery mode that has a zero electric field at a selected location in the optical path at which electric fields of other whispering gallery modes are not zero; and an optical coupler located outside the optical resonator near the selected location in the optical path of the optical resonator to be in evanescently coupling with whispering gallery modes at the selected location to suppress electric fields of other whispering gallery modes at the selected location to render the selected whispering gallery mode to be a single optical mode present in the optical resonator.
In another aspect, an optical device is implemented to include a cylindrical rod of an optical material structured to comprise a plurality of optical waveguide loops, which are formed on or near an exterior surface of the cylindrical rod and each surround a longitudinal axis of the cylindrical rod, to form a plurality of optical whispering gallery mode resonators in each of which a whispering gallery mode circulates around a respective optical waveguide loop. Two adjacent optical waveguide loops of the plurality of optical waveguide loops are separated from each other with a spacing to allow optical coupling between the two adjacent optical waveguide loops.
In another aspect, an optical device is implemented to include a cylindrical rod of an optical material structured to comprise a helix of an optical waveguide winding around the cylindrical rod regions in form of a plurality of connected optical waveguide loops forming the helix. Each optical waveguide loop supports at least one optical whispering gallery mode and being close to an adjacent optical waveguide loop located at a different position along the cylindrical rod to be optically coupled with the adjacent optical waveguide loop via spatial overlapping of optical fields extended outside the optical waveguide loop and the adjacent optical waveguide loop.
In yet another aspect, an optical whispering gallery mode resonator device is implemented to include a substrate having a top surface and a bottom surface parallel to the top surface; and an optical material located on the top surface of the substrate and engaged to the substrate, the substrate and the optical material are shaped to collectively form a conical shape in which side surfaces of the substrate and the optical material are flat surfaces and form an angle with respect to the top and bottom surfaces of the substrate. The conical shaped optical material is structured as an optical resonator supporting one or more optical whispering gallery modes circulating around a symmetric axis of the conical shape.
These and other implementations and their properties, operations and fabrications are described in greater detail in the attached drawings, the detailed description and the claims.
Many WGM resonators are axially or cylindrically symmetric around a symmetry axis around which the WG modes circulate in a circular path or the equator. The exterior surface of such a resonator is smooth and zprovides spatial confinement to light around the circular plane to support one or more WG modes. The exterior surface may be curved toward the symmetry axis to spatially confine the light along the symmetry axis. A WGM resonator may be shaped symmetrically around a symmetry axis and has a protruded belt region to form a circular path to confine light in one or more MG modes. The exterior surface of the protruded belt region may be any suitable geometrical shape such as a flat surface or a curved surface. Such a WGM resonator may be configured in any suitable physical size for a given wavelength of light. Various materials can be used for WGM resonators and include, for example, crystal materials and non-crystal materials. Some examples of suitable dielectric materials include fused silica materials, glass materials, lithium niobate materials, and calcium fluoride materials.
The profile of the exterior surface of a WGM resonator may be selected from a number of geometrical shapes, e.g., spherical, spheroidal, flat and others.
This resonator 200 may be formed by revolving an ellipse (with axial lengths a and b) around the symmetric axis along the short elliptical axis 101 (z). Therefore, similar to the spherical resonator in
The above three exemplary geometries in
Notably, the spatial extent of the WG modes in each resonator along the z direction 101 is limited above and below the plane 102 and hence it may not be necessary to have the entirety of the sphere 100, the spheroid 200, or the conical shape 300. Instead, only a portion of the entire shape around the plane 102 that is sufficiently large to support the whispering gallery modes may be used to for the WGM resonator. For example, rings, disks and other geometries formed from a proper section of a sphere may be used as a spherical WGM resonator.
An optical coupler is generally used to couple optical energy into or out of the WGM resonator by evanescent coupling.
Other WGM resonator geometries and device designs can be implemented to achieve certain technical features or effects. Specific examples are provided below.
Certain applications of whispering gallery mode resonators require clean optical spectra of the WGM resonators. In many cases performance of the wgmr based device strongly depend on number of modes within the free spectral range (FSR) and their coupling. Various WGM resonator of elliptical or circular shape can have tens of modes per FSR when coupled via a prism or taper coupler. Single-mode WGM resonators can be structured to support the fundamental modes only to produce clean spectra while suppressing higher WG modes based on precise diamond turning and high-speed polishing. Alternatively, as described below, a multi-mode WGM resonators can be structured to select one high-order WG mode while suppressing the fundamental mode and other modes to achieve a single mode operation.
One example method for maintaining a single optical mode in an optical resonator uses an optical resonator that is shaped to include an optical path and supports whispering gallery modes propagating in the optical path and including a selected whispering gallery mode that has a zero electric field at a selected location in the optical path at which electric fields of other whispering gallery modes are not zero. At the selected location in the optical path of the optical resonator, optical fields or electric fields of other whispering gallery modes (e.g., including the fundamental WG mode and other modes) are suppressed to render the selected whispering gallery mode to be a single optical mode present in the optical resonator.
In implementations, a composite multi-mode resonator which supports modes of 1−m=2k+1 (3, 5, 7 . . . ) index only can be used to achieve the single-mode operation. The boundary of the resonator should not coincide with any surface of any orthogonal coordinate system. One practical approach to achieving this condition is to design the shape of the resonator to have a composite shape which is mixture of two or more orthogonal coordinate systems within the wave propagation region. In this context, such a resonator is a composite resonator and can include a two-index multimode resonator and highly absorptive defects (e.g., one or more quantum dots) at a selected location in the propagation path of the modes to suppress all modes except one selected mode that has a zero optical field at the selected location. The defects can be replaced by highly irradiative elements (e.g., a waveguide taper) placed at its surface in some implementations. Both the defects at the selected location and an irradiative element (e.g., a waveguide taper) near the irradiative element in evanescent coupling with the WGM resonator can be used together to achieve the single-mode operation. Usually optical damping of modes is applied to transverse modes while fundamental mode is meant to be preserved. The present design can be implemented to suppress the fundamental WG mode and other undesired WG modes by, e.g., placing a defect at the location where the electric or optical field of a selected non-fundamental mode is at zero.
Based on this design, an optical device for single mode operation can be implemented to include an optical resonator that is shaped to include an optical path and supports whispering gallery modes propagating in the optical path and including a selected whispering gallery mode that has a zero electric field at a selected location in the optical path at which electric fields of other whispering gallery modes are not zero. In addition, this device includes a structure formed at the selected location in the optical path of the optical resonator and structured to suppress electric fields of other whispering gallery modes at the selected location to render the selected whispering gallery mode to be a single optical mode in the optical resonator.
The above structure at the selected location does not influence bandwidth or effective refractive index of the selected mode which has a zero field at the selected location while all other modes show significant overlapping with the volume occupied by the structure (e.g., a defect that attenuates the light). The three-dimensional shape of the resonator is preselected in a special way to prevent separation of variables in the wave equation. This three dimensional resonator has two mode indices, rather three mode indices, because all modes of a particular azimuthal number 1 show zeroes in the amplitudes or power levels of their optical fields in different places from the selected location. For that reason only one transverse mode survives in two-index resonator with a defect at the selected location for achieving the single mode operation of the selected mode. The fundamental mode does not survive either since it does not show any zeroes on resonator's surface. A deflect at the selected location with a highly localized spatial profile (e.g., a delta-function defect) would ultimately result in surviving of the only mode through all optical spectra since coordinates of zeroes of optical field of the same 1-m mode depend on 1 index as well. In practical implementations, a defect has a limited strength in suppressing light and a limited size. This aspect of the defect can limit the suppression level of modes pre-selected for extinction and limit the width of the frequency band where modes survive at all when an absorptive defect is used.
One example of using the above single-mode operation in a multi-mode WGM resonator is a parametric oscillator based on a nonlinear WGM resonator. An example of such an oscillator is described by Savchenkov et al. in “Low Threshold Optical Oscillations in a Whispering Gallery Mode CaF2 Resonator”, Phys. Rev. Lett. 93, 243905 (2004). The performance of the demonstrated parametric oscillator depends on the relationship between thresholds of stimulated Raman scattering (SRS) and four wave mixing (FWM). SRS plays the role of noise while FWM is the signal. In the tested CaF2 resonator, SRS gain is approximately two times higher than FWM. In multimode cavities, SRS often has a lower threshold simply because the oscillator's threshold depends not only on gain but on the Q-factor as well. The Raman lasing in the resonator starts in unloaded transverse modes Q-factor of which is much higher. Special techniques are applied to ensure SRS-free start of FWM oscillations. The Q-factor at the Raman shifted frequency is suppressed in a composite single mode cavity which increases the SRS threshold and eliminates this limitation on optical power of the oscillator.
In optical applications, opto-electronic oscillators (OEOs) for generating RF signals employ high-Q crystalline cavities as replacement for a fiber delay line in the optical part of the OEO loop. The above composite single mode resonator can be used in such OEOs to increase the mode volume without increasing the mode density, to suppress noise caused by various sources such as nonlinear SRS and FWM noise, and thermo-refractive noise, and to achieve a single mode operation to avoid technical difficulties associated with the multimode structure of spectra.
In some applications, compact WGM resonator systems with complicated spectral functions are suitable for optical filtering and broadband resonant modulation of light. One method is based on the fabrication of multiple interacting WGM resonators on a single dielectric rod (e.g. single mode resonators). The WGM resonators can be placed close to each other to utilize the inter-resonator coupling to trim the interaction between the resonator modes allowing changes in the spectrum of the whole system of the coupled resonators. Desirable spectral shapes of the passbands of the resonator systems can be constructed in this way.
The fabrication of whispering gallery mode (WGM) resonators having complicated spectra is important for multiple practical applications. Fabricating multiple interacting resonators on a single dielectric rod can be used to provide some advantages. A several micron sized protrusion on the top of a dielectric rod can form a WGM resonator possessing a single mode family. Several protrusions placed less than several microns apart from each other create the set of coupled resonators. The proposed multi-resonator design on a single rod allows a selection of the geometrical sizes of the protrusions (which may single mode resonators or multi-mode resonators) and the distance between them to achieve certain operating behaviors. For example, such coupled resonators can create a desired optical spectral form in the optical transmission. In some implementations, the multiple resonators are placed on the same rod and from the same material as the rod and the coupling between the resonators can be achieved within the rod. The resultant resonator consisting of multiple single mode resonators can be considered as a single integral WGM resonator with a complicated morphology. This structure for multiple resonators can have high thermal stability and behave like a single entity. No separate temperature stabilization devices are needed for the multiple resonators. In designs where the resonant structure made out of an electro-optic material can allow fabrication of resonant electro-optic modulators possessing both large finesse and wide bandwidth.
In the above examples in
High-Q WGM crystalline resonators can have a complex geometry. For example, as shown in the example in
Manufacturing of such resonators via polishing may require multiple manual operations. First, an irregular crystalline wafer is converted to a small drum and edges of the drum are polished until chamfers 1210 and 1220 of particular size are created. The rim 1230 of the resonator is polished until specific radius of curvature is obtained. Every operation requires multiple measurements. Manufacturing of every resonator is a time-consuming and labor-intensive process and requires skillful personnel.
A WGM resonator can be designed to have a simple geometry to simplify the fabrication and to allow for mass production. As an example, an optical whispering gallery mode resonator device can include a substrate having a top surface and a bottom surface parallel to the top surface and an optical material located on the top surface of the substrate and engaged to the substrate. The substrate and the optical material are shaped to collectively form a conical shape in which side surfaces of the substrate and the optical material are flat surfaces and form an angle with respect to the top and bottom surfaces of the substrate. The conical shaped optical material is structured as an optical resonator supporting one or more optical whispering gallery modes circulating around a symmetric axis of the conical shape.
In implementations, a WGM resonator can include two optically bonded wafers. The substrate or wafer can be made of a metal or a transparent material of a low refractive index that is lower than the material of the top wafer for forming the resonator. The top wafer is made of a target material, such as a crystal, for instance, lithium tantalate in case of WGM-based receiver, or MgF2 in case of a WGM-based filter.
Simplified shape of resonator allows faster manufacturing by turning. Manufacturing can be accomplished by one simple polishing step. Such a resonator allows mass production on wafer without mounting each resonator on pin. Mass production may involve core drilling and lithography. For example, a method for fabricating an optical whispering gallery mode resonator device can include providing a substrate having a top surface and a bottom surface parallel to the top surface; placing an optical material on the top surface of the substrate to engage the optical material to the substrate; and shaping the engaged substrate and the optical material together to form a conical shape in the engaged substrate and the optical material to make the conical shaped optical material an optical resonator supporting one or more optical whispering gallery modes circulating around a symmetric axis of the conical shape.
While this document contains many specifics, these should not be construed as limitations on the scope of an invention or of what may be claimed, but rather as descriptions of features specific to particular embodiments of the invention. Certain features that are described in this document in the context of separate embodiments can also be implemented in combination in a single embodiment. Conversely, various features that are described in the context of a single embodiment can also be implemented in multiple embodiments separately or in any suitable subcombination. Moreover, although features may be described above as acting in certain combinations and even initially claimed as such, one or more features from a claimed combination can in some cases be excised from the combination, and the claimed combination may be directed to a subcombination or a variation of a subcombination.
Only a few implementations are disclosed. Variations and enhancements to the described implementations and other implementations can be made based on what is disclosed.
This application is a divisional of U.S. Utility application Ser. No. 12/467,248 entitled “Structures and Fabrication of Whispering-Gallery-Mode Resonators” to issue as U.S. Pat. No. 8,102,597 on Jan. 24, 2012, which claims the benefits of U.S. Provisional Application No. 61/053,416 entitled “Composite Single Mode Whispering Gallery Mode Cavity” and filed May 15, 2008, U.S. Provisional Application No. 61/053,396 entitled “Spectral Engineering in WGM Resonators” and filed May 15, 2008, and U.S. Provisional Application No. 61/108,257 entitled “Conical Resonators for Cheaper and Easier Mass Production” and filed Oct. 24, 2008. The disclosures of the above application are incorporated by reference as part of the disclosure of this document.
Number | Name | Date | Kind |
---|---|---|---|
4851788 | Ives et al. | Jul 1989 | A |
5187409 | Ito | Feb 1993 | A |
5204640 | Logan, Jr. | Apr 1993 | A |
5220292 | Bianchini et al. | Jun 1993 | A |
5343490 | McCall | Aug 1994 | A |
5652556 | Flory et al. | Jul 1997 | A |
5723856 | Yao et al. | Mar 1998 | A |
5751747 | Lutes et al. | May 1998 | A |
5777778 | Yao | Jul 1998 | A |
5909160 | Dick et al. | Jun 1999 | A |
5917179 | Yao | Jun 1999 | A |
5926496 | Ho et al. | Jul 1999 | A |
5929430 | Yao et al. | Jul 1999 | A |
5985166 | Unger et al. | Nov 1999 | A |
6080586 | Baldeschwieler et al. | Jun 2000 | A |
6178036 | Yao | Jan 2001 | B1 |
6203660 | Unger et al. | Mar 2001 | B1 |
6389197 | Iltchenko et al. | May 2002 | B1 |
6417957 | Yao | Jul 2002 | B1 |
6473218 | Maleki et al. | Oct 2002 | B1 |
6476959 | Yao | Nov 2002 | B2 |
6487233 | Maleki et al. | Nov 2002 | B2 |
6488861 | Iltchenko et al. | Dec 2002 | B2 |
6490039 | Maleki et al. | Dec 2002 | B2 |
6535328 | Yao | Mar 2003 | B2 |
6541295 | Looney | Apr 2003 | B1 |
6567436 | Yao et al. | May 2003 | B1 |
6580532 | Yao et al. | Jun 2003 | B1 |
6594061 | Huang et al. | Jul 2003 | B2 |
6711200 | Scherer et al. | Mar 2004 | B1 |
6762869 | Maleki et al. | Jul 2004 | B2 |
6763052 | Huang | Jul 2004 | B2 |
6795481 | Maleki et al. | Sep 2004 | B2 |
6798947 | Iltchenko | Sep 2004 | B2 |
6853479 | Ilchenko et al. | Feb 2005 | B1 |
6871025 | Maleki et al. | Mar 2005 | B2 |
6873631 | Yao et al. | Mar 2005 | B2 |
6879752 | Ilchenko et al. | Apr 2005 | B1 |
6901189 | Savchenkov et al. | May 2005 | B1 |
6906309 | Sayyah et al. | Jun 2005 | B2 |
6922497 | Savchenkov et al. | Jul 2005 | B1 |
6928091 | Maleki et al. | Aug 2005 | B1 |
6943934 | Ilchenko et al. | Sep 2005 | B1 |
6987914 | Savchenkov et al. | Jan 2006 | B2 |
7024069 | Savchenkov et al. | Apr 2006 | B2 |
7043117 | Matsko et al. | May 2006 | B2 |
7050212 | Matsko et al. | May 2006 | B2 |
7061335 | Maleki et al. | Jun 2006 | B2 |
7062131 | Ilchenko | Jun 2006 | B2 |
7092591 | Savchenkov et al. | Aug 2006 | B2 |
7133180 | Ilchenko et al. | Nov 2006 | B2 |
7173749 | Maleki et al. | Feb 2007 | B2 |
7184451 | Ilchenko et al. | Feb 2007 | B2 |
7187870 | Ilchenko et al. | Mar 2007 | B2 |
7218662 | Ilchenko et al. | May 2007 | B1 |
7248763 | Kossakovski et al. | Jul 2007 | B1 |
7260279 | Gunn et al. | Aug 2007 | B2 |
7283707 | Maleki et al. | Oct 2007 | B1 |
7356214 | Ilchenko | Apr 2008 | B2 |
7362927 | Ilchenko et al. | Apr 2008 | B1 |
7369722 | Yilmaz et al. | May 2008 | B2 |
7389053 | Ilchenko et al. | Jun 2008 | B1 |
7400796 | Kossakovski et al. | Jul 2008 | B1 |
7440651 | Savchenkov et al. | Oct 2008 | B1 |
7460746 | Maleki et al. | Dec 2008 | B2 |
7480425 | Gunn et al. | Jan 2009 | B2 |
20010004411 | Yariv | Jun 2001 | A1 |
20010038651 | Maleki et al. | Nov 2001 | A1 |
20020018611 | Maleki et al. | Feb 2002 | A1 |
20020018617 | Iltchenko et al. | Feb 2002 | A1 |
20020021765 | Maleki et al. | Feb 2002 | A1 |
20020081055 | Painter et al. | Jun 2002 | A1 |
20020085266 | Yao | Jul 2002 | A1 |
20020097401 | Maleki et al. | Jul 2002 | A1 |
20030016434 | Torchigin | Jan 2003 | A1 |
20030160148 | Yao et al. | Aug 2003 | A1 |
20040100675 | Matsko et al. | May 2004 | A1 |
20040109217 | Maleki et al. | Jun 2004 | A1 |
20040179573 | Armani et al. | Sep 2004 | A1 |
20040218880 | Matsko et al. | Nov 2004 | A1 |
20040240781 | Savchenkov et al. | Dec 2004 | A1 |
20050017816 | Ilchenko et al. | Jan 2005 | A1 |
20050063034 | Maleki et al. | Mar 2005 | A1 |
20050074200 | Savchenkov et al. | Apr 2005 | A1 |
20050123306 | Ilchenko et al. | Jun 2005 | A1 |
20050128566 | Savchenkov et al. | Jun 2005 | A1 |
20050175358 | Ilchenko et al. | Aug 2005 | A1 |
20050248823 | Maleki et al. | Nov 2005 | A1 |
20070009205 | Maleki et al. | Jan 2007 | A1 |
20070153289 | Yilmaz et al. | Jul 2007 | A1 |
20080001062 | Gunn et al. | Jan 2008 | A1 |
20080075464 | Maleki et al. | Mar 2008 | A1 |
20080089367 | Srinivasan et al. | Apr 2008 | A1 |
20080310463 | Maleki et al. | Dec 2008 | A1 |
20090097516 | Maleki et al. | Apr 2009 | A1 |
20090135860 | Maleki et al. | May 2009 | A1 |
20090237666 | Vollmer et al. | Sep 2009 | A1 |
Number | Date | Country |
---|---|---|
0196936 | Dec 2001 | WO |
2005038513 | Apr 2005 | WO |
2005055412 | Jun 2005 | WO |
2005067690 | Jul 2005 | WO |
2005122346 | Dec 2005 | WO |
2006076585 | Jul 2006 | WO |
2007143627 | Dec 2007 | WO |
Number | Date | Country | |
---|---|---|---|
61053416 | May 2008 | US | |
61053396 | May 2008 | US | |
61108257 | Oct 2008 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12467248 | May 2009 | US |
Child | 13357086 | US |