The present invention relates to an optical diode structure, and more particularly to an optical diode structure having a rough-surfaced grating. The present invention also relates to a method of manufacturing such an optical diode structure.
A light emitting diode (LED) is a semiconductor device capable of converting electrical energy into visible light and radiation energy when electric current flows between the anode electrode and the cathode electrode due to a voltage applied on both terminals of the semiconductor device. When an electric current passes through the LED in the forward direction, electrons recombine with holes and the extra energy is released in the form of light. The wavelength of the emitted light corresponds to the material and the energy associated with electron-hole pair recombination. The advantages of using the LED include a low operating voltage, low power consumption, high illuminating efficiency, very short response time, pure light color, high structural firmness, high impact resistance, excellent performance reliability, light weight, cost effectiveness, long service life, and so on. With increasing development of material science, the current LEDs could emit a variety of colors. The conventional LEDs are made from a variety of inorganic semiconductor materials. For example, the LED made of gallium aluminum arsenide (AlGaAs) could emit red light or infrared ray; the LED made of aluminum gallium phosphide (AlGaP) could emit green light, the LED made of gallium nitride (GaN) could emit blue light. As the demands on the multi-color and high brightness are increased, three primary colors (i.e. red, green and blue) LEDs are used to produce resulting light with desired color and brightness. For the reason, GaN-based light-emitting diodes (GaN LEDs) that emit blue light have experienced great growth and are now rapidly gaining in popularity.
GaN LEDs are becoming more and more appealing in various applications due to their superior performances of energy efficiency, high reliability, and versatile colors. The applications of the GaN LEDs include for example data storage technology, large-sized full color display panels, indicator lights and various lighting devices. In a case that GaN LEDs are applied to lighting devices, several characteristics such as brightness, color uniformity, and uniform irradiance should be taken into account. Among these characteristics, the brightness is the most important. Generally, the brightness is strongly related to output efficiency of GaN LEDs. The output efficiency of a LED is also referred as external quantum efficiency. The external quantum efficiency is equal to a product of the internal quantum efficiency of the LED and the light extraction efficiency of the LED. The internal quantum efficiency of the LED is the electric-light conversion efficiency of the LED. The internal quantum efficiency of the LED is related to band gap energy, defects, impurities and epitaxy composition and structure of the LED. The light extraction efficiency of the LED is defined as the number of photons emitted into the free space relative to the number of photons emitted from the active region of the LED after the light is absorbed, refracted and reflected by the LED. In other words, light extraction efficiency is dependent on several factors such as light absorption, geometry, refraction index and scatting property of the LED. That is, the product of the internal quantum efficiency of the LED and the light extraction efficiency of the LED is equal to the output efficiency of the LED.
From the above discussion, the light extraction efficiency could be increased by adjusting the material, geometry and scatting property of the LED. As the light extraction efficiency is increased, the output efficiency of the LED is increased. Since the GaN LEDs are becoming more and more appealing, it is critical to improve the output efficiency of the GaN LEDs.
Although the rough-surfaced luminous structure 13 is effective for increasing the light extraction efficiency of GaN LED structure 1, the improvement is still insufficient. Therefore, there is a need of providing an optical diode structure having enhanced light extraction efficiency.
The present invention provides an optical diode structure having enhanced light extraction efficiency.
In accordance with an aspect of the present invention, there is provided an optical diode structure. The optical diode structure includes a semiconductor substrate, a luminous layer, a first type semiconductor layer and a second type semiconductor. The luminous layer is disposed over the semiconductor substrate for emitting light. The first type semiconductor layer is formed between the semiconductor substrate and the luminous layer. The second type semiconductor layer has a first surface and a second surface. The first surface is in contact with the luminous layer. A rough-surfaced grating structure is formed in the second surface for modulating the light emitted by the luminous layer, thereby increasing light extraction efficiency of the luminance layer.
In accordance with another aspect of the present invention, there is provided a process of manufacturing an optical diode structure. The process includes steps of: providing a semiconductor substrate, forming a luminous structure over the semiconductor substrate, forming a roughening region in the luminous structure, performing a photolithography and etching procedure on the luminous structure, thereby forming a rough-surfaced grating structure in the roughening region of the luminous structure.
The above contents of the present invention will become more readily apparent to those ordinarily skilled in the art after reviewing the following detailed description and accompanying drawings, in which:
The present invention will now be described more specifically with reference to the following embodiments. It is to be noted that the following descriptions of preferred embodiments of this invention are presented herein for purpose of illustration and description only. It is not intended to be exhaustive or to be limited to the precise form disclosed.
The present invention provides an optical diode structure having enhanced light extraction efficiency.
When the light emitted by the luminous structure 22 passes through the rough-surfaced grating structure 23, the light confined within the luminous structure 22 could be modulated by the rough-surfaced grating structure 23. For example, by using the rough-surfaced grating structure 23, the emitting angle of the light emitted by the luminous structure 22 may be increased and the light of high spatial frequency may be extracted from the luminous structure 22. Due to the superposition effect of the rough surface and the grating of the rough-surfaced grating structure 23, the light extraction efficiency of the LED structure 2 is increased.
Please refer to
For providing the rough-surfaced grating structure 23, a roughening region is firstly formed in the surface of the P-type semiconductor layer 221 by controlling the epitaxy parameters of the MOCVD procedure or using an etching procedure. Next, by a photolithography and etching procedure, sub-wavelength structures are formed in the roughening region of the P-type semiconductor layer 221 in a regular arrangement, thereby producing the rough-surfaced grating structures 23. Since the LED structure 2 of the present invention has the nano/micro rough-surfaced grating structure 23, the light extraction efficiency is largely enhanced when compared with the conventional LED structure.
Please refer to
From the above description, the optical diode structure of the present invention has a rough-surfaced grating structure 23, which is formed in the surface of the luminous structure 22 (or in the surface of the P-type semiconductor layer 221). The rough-surfaced grating structure 23 is effective for modulating the light emitted by the luminous structure 22, thereby increasing the light extraction efficiency of the optical diode structure. In addition, the rough-surfaced grating structures 23 are produced by forming a roughening region in the surface of the luminous structure 22 (or in the surface of the P-type semiconductor layer 221) and then forming regularly-arranged sub-wavelength structures in the roughening region. Due to the rough-surfaced grating structure 23, the light extraction efficiency is largely enhanced when compared with the conventional LED structure.
In the above embodiments, the P-type semiconductor layer 221, the luminous layer 222 and the N-type semiconductor layer 223 of the luminous structure 22 are stacked from top to bottom. Alternatively, the N-type semiconductor layer 223, the luminous layer 222 and the P-type semiconductor layer 221 of the luminous structure 22 could be stacked from top to bottom to provide another stacked order.
In the above embodiment, the roughening region 2210 is formed in the surface 2211 of the P-type semiconductor layer 221 by a wet etching procedure (see
From the above description, the optical diode structure of the present invention has rough-surfaced grating structures. The rough-surfaced grating structures are produced by forming a roughening region in the surface of the luminous structure and then forming regularly-arranged sub-wavelength grating structures in the roughening region. The light emitted from the optical diode structure of the present invention is initially modulated by the grating structure to have an increased cone angle. The light that is initially modulated by the grating structure is further modulated and scatted by the rough surface of the grating structure, so that the cone angle is further increased. In other words, the synergistic effect generated by these two modulations will increase the light extraction angle so as to increase the light extraction amount of the optical diode structure. When compared with the conventional optical diode structure, the light extraction efficiency of the optical diode structure of the present invention is increased by at least seven to ten times in order to obviate the drawbacks encountered in the prior art.
While the invention has been described in terms of what is presently considered to be the most practical and preferred embodiments, it is to be understood that the invention needs not to be limited to the disclosed embodiment. On the contrary, it is intended to cover various modifications and similar arrangements included within the spirit and scope of the appended claims which are to be accorded with the broadest interpretation so as to encompass all such modifications and similar structures.
Number | Date | Country | Kind |
---|---|---|---|
098101596 | Jan 2009 | TW | national |