A data backup device is provided for personal, as well as commercial, applications. The data backup device of the present invention allows files to be selectively copied from a data source, such as a personal computer, to the data backup device according to some criterion such as file type. For example, the device can be configured to backup audio files having recognized music file extensions such as .mp3 and .wav, or image files having recognized image file extensions such as .jpg, .pct, and .tif. The data backup device stores a backup application that automatically launches when the data backup device is connected to the data source. The backup application can be configured to require little or no user input to perform the backup process. The data backup device can take the form of a hybrid optical disc divided into sections characterized by different media formats. Although the example of a hybrid optical disc is used for explanatory purposes herein, it will be appreciated that the invention is not limited to hybrid optical discs as is explained further herein.
As noted, the portions 110, 120 can comprise either the same or different media formats. In those embodiments where the portions 110, 120 of the optical disc 100 comprise the same media format, the media format is one that can only be written once. Examples of write-once media formats include Compact Disc-Recordable (CD-R), DVD-Recordable (DVD-R and DVD+R), DVD-Recordable Dual Layer (DVD-R DL and DVD+R DL), Blu-ray disc Recordable (BD-R), and High-Density Digital Versatile Disc (HD-DVD) formats. These media formats are defined in various industry standards known in the art such as the Orange Book Recordable Compact Disc Standard developed by Philips and Sony. In these embodiments, the read-only portion 110, having computer-readable instructions already written thereto, cannot be rewritten, whereas the writable portion 120 remains initially unwritten.
Optical discs 100 having portions 110, 120 comprising different media formats are referred to herein as hybrid optical discs. Where the optical disc 100 comprises a hybrid optical disc, suitable media formats for the read-only portion 110 include CD-ROM and DVD-ROM formats where the computer-readable instructions are placed on the read-only portion 110 by stamping. Other suitable media formats for the read-only portion 110 include the write-once media formats listed above where the computer-readable instructions are written to the read-only portion 110. In hybrid optical disc embodiments, the writable portion 120 can either comprise a write-once media format, or a rewritable media format such as Compact Disc-Rewritable (CD-RW), DVD-Rewritable (DVD-RW and DVD+RW), DVD-Rewritable Dual Layer (DVD-RW DL and DVD+RW DL), Blu-ray disc Re-writeable (BD-RE), and DVD Random Access Memory (DVD-RAM). The writable portion 120 can either be initially unwritten or, if the writable portion 120 comprises a rewritable format, can include computer-readable instructions that can be overwritten with data files.
It will be appreciated that the portions 110, 120 can also be distributed across the layers of a multi-layered optical disc 100. In one example, the read-only portion 110 is disposed on a first layer of a dual layer optical disc 100, such as a CD-ROM layer, and the writable portion 120 is disposed on a second layer, such as a DVD-R layer. As another dual layer example, both layers can comprise the DVD-R format with only a segment of a first layer comprising the read-only portion 110. In this example the remainder of the first layer, as well as a second layer, comprise the writable portion 120. In other embodiments, the different layers comprise different media formats, for instance, a triple layer optical disc 100 can comprise a CD-ROM layer, a DVD-R layer, and a DVD+R layer. In this example, the CD-ROM layer comprises the read-only portion 110 and the DVD-R and DVD+R layers comprise the writable portion 120. Providing both DVD-R and DVD+R formats on a single optical disc 100 can be particularly advantageous as many optical drives 210, 220 are configured to write to one of the two formats but not the other.
The following list provides examples of media format combinations that can be implemented for either a single-layer optical disc 100, where the two media formats are provided in a side-by-side configuration, or for a dual-layer optical disc 100 where the each media format is provided as a separate layer. Although the following list is extensive, the list is not meant to be exhaustive: CD-ROM/CD-R; CD-ROM/CD-RW; CD-ROM/CD+RW; CD-ROM/DVD-R; CD-ROM/DVD+R; CD-ROM/DVD-RW; CD-ROM/DVD+RW; CD-ROM/DVD+R DL; CD-ROM/BD-R; CD-ROM/BD-RE; CD-ROM/HD-DVD; DVD-ROM/DVD-R; DVD-ROM/DVD+R; DVD-ROM/DVD-RW; DVD-ROM/DVD+RW; DVD-ROM/DVD+R DL; DVD-ROM/BD-R; DVD-ROM/BD-RE; and DVD-ROM/HD-DVD-R. Additional media format combinations that can be implemented as the layers of a three-layer optical disc 100 include: CD-ROM/DVD-R/DVD+R; CD-ROM/DVD-RW/DVD+RW; DVD-ROM/DVD-R/DVD+R; DVD-ROM/DVD-RW/DVD+RW; CD-ROM/BD-R/HD-DVD-R; CD-ROM/BD-RE/HD-DVD-R; DVD-ROM/BD-R/HD-DVD-R; and DVD-ROM/BD-RE/HD-DVD-R. As above, this list of three-layer media format combinations is not meant to be exhaustive.
The data source 200 can be, for example, a personal computer (PC), a Macintosh computer (Mac), or a Personal Digital Assistant (PDA) on which data resides. The data source 200 can also comprise a server, a settop box, a television, a cellular telephone, a Smartphone, a digital still camera or video camera, a scanner, a digital music or video player, a game console, or a Personal Video Recorder (PVR). Preferably, the data source 200 includes an operating system (OS), such as Windows XP, that includes an automatic application launching function, as discussed in more detail elsewhere herein. Other suitable operating systems include MacOS, PalmOS, Linux, and Unix, for example. The data source, in some embodiments, can also be configured to access the Internet and/or include other peripheral devices (not shown), especially for data storage such as hard disc drives, solid state memory devices like compact flash (CF), and/or a storage area network (NAS).
As used herein, auto-launch devices are those devices that will trigger the automatic execution functionalities of certain operating systems, such as the AutoRun function of the Microsoft Windows operating systems. Examples of device types that will trigger AutoRun of Windows include CD and DVD drives when a CD or DVD medium is contained therein. In these examples, the Windows AutoRun functionality is triggered when either a CD or DVD medium is placed in either of the optical drives 210, 220, or when the optical drive 210, already containing a CD or DVD medium, is connected to the data source 200. The AutoRun function in Windows XP is used herein as merely an example of the automatic application launching functions that are made available by other operating systems, and the invention is not limited to the Windows environment.
The backup application finds 320 files that meet one or more predefined criteria, such as file type (e.g., .jpg) or type of content (e.g., audio files). The backup application can also find 320 files that meet at least one of several predefined criteria. Other examples of types of content include e-mails, business application data (e.g., Accpac and Simply Accounting files), digital video files, ebook files, contacts files, calendar files, text files, tasks files, settings files, bookmark files, and password files. Another criterion, in some embodiments, is whether a file has been previously backed up. Still other can be a particular date or a range of dates. The backup application, in some embodiments, finds 320 files that meet the predefined criteria by searching e-mail attachments and files embedded within other files, such as compressed files within a zip file. The backup application can find 320 files that are stored directly on the data source 200, or additionally on associated peripheral devices and networks.
One advantage of the invention is the simplicity of use of the optical disc 100 for selectively backing up a particular type of content, such as images or music. It will be appreciated that a user's involvement can be reduced to inserting 305 the optical disc 100 into either of the optical drives 210 or 220, and from that point forward the back-up method 300 continues automatically. Accordingly, the backup application can be configured to back up those data files that include a particular type of content, such as images. This allows embodiments of the optical disc 100 to be packaged and sold as a specialty data backup device for automatically backing up a single type of content onto the data backup device. In this way, the optical disc 100 can be viewed as a device that takes and stores a snapshot of a type of content on the data source 200. Additionally, a set of optical discs 100 can be provided together where each is a specialty data backup device dedicated to a different type of content such that the set covers the types of data files most commonly found on data sources 200. Thus, an exemplary set includes one optical disc 100 for backing up Microsoft Office files, one optical disc 100 for backing up music files, one optical disc 100 for backing up image files, and one optical disc 100 for backing up video files.
With continued reference to
In some embodiments, writing 345 the files includes creating a file path or directory structure on the writable portion 120 to indicate the location where a copied file was located on the data source 200. In other embodiments, the backup application creates a new directory structure based on chronological order, alphabetical order, file size, or some other criteria. Another alternative is for the backup application to create a monolithic file that includes all of the backed up files. Yet another alternative is for the backup application to store on the writable portion 120 the backed-up files in a common directory (i.e., a flat structure) and to create an index (e.g. an XML index) that stores the information on file locations. In these embodiments, when the backed-up files are restored the index is used to re-create the directory structure on the data source 200.
As noted above, a user's involvement in the method 300 can be reduced to simply inserting 305 the optical disc 100 into either optical drive 210, 220. Once the backup application has successfully completed the data backup, a message indicating successful completion can be displayed 360 to the user by a graphical user interface (GUI) provided by the backup application on a display device of the data source 200. It will be understood, however, that other embodiments provide options to the user through the GUI so that the user, if desired, can customize the backup process prior to the backup application finding 320 data files. As one example, the user can customize the backup process by specifying one or more search criteria. The use can specify a search criterion by making a selection from a set of choices, for example, as presented in a drop-down menu. As another example, the user can customize the backup process by specifying one or more search criteria by entering the criteria in a text box. Additionally, the user can limit the scope of the backup process by drive, directory, folder, file type, file size, or date/time stamp, or the user can deselect a type of content or a specific file, drive, directory, or folder such as a temporary folder or an Internet Explorer directory. Additional user involvement is discussed below.
At this point of the method 400, the backup application asks 410 whether the files can be backed up onto additional discs and waits for a response. If the user indicates that further discs are not available, the method 400 aborts 415 the backup. In an alternative embodiment, the backup application asks whether a subset of the found files should be backed up to the optical disc 100 to the extent possible given the limited storage capacity of the writable portion 120. If so, the backup application can provide the user alternatives for selecting the subset. For example, the user may select files in order of descending file size (thus omitting the smallest files), ascending file size (thus maximizing the number of files that are backed up), oldest to newest files or newest to oldest, by directory, and so forth.
If the user indicates that further optical discs are available, the method 400 continues with the process described above with respect to
The further optical discs need not include the read-only portion 110 and can be any writable or rewritable optical disc that is compatible with the optical drive 210 or 220. In such a situation, the backup application marks with an internal label and sequentially numbers the optical disc 100 and the subsequent optical discs so that the user will be notified that the backed-up files span more than the optical disc 100 when the backed-up data is later accessed. In some instances the storage capacity needed to back up all of the found files is more than the available capacity of the writable portion 120, but less than the standard capacity of a blank optical disc. In this situation, the backup application can suggest a suitable media, for example, that the user insert a DVD-R where the files to be backed-up do not exceed the standard DVD-R capacity of 4.7 gigabytes (GB). The user can then opt to back up all of the found files to a single optical disc rather than distribute the found files between the writable portion 120 of the optical disc 100 and one or more additional optical discs.
It should be noted that the computer-readable instructions on the read-only portion 110 can include instructions that are installed onto the data source 200. In this way applications can run on the data source 200 even when the optical disc 100 is no longer present in either of the optical drives 210, 220. Thus, for example, embodiments of the present invention can also be configured to backup data based on a schedule, such as every 1st day of every month, or according to internal or external triggers.
An example of an external trigger is the discretion of the user. When the user decides that a backup should be performed, the user can manually run the backup application. An example of an internal trigger is a threshold number of files on the data source 200. When the threshold is exceeded the backup application automatically begins finding files and copying them. This can include prompting the user to insert the optical disc 100, or another optical disc, into one of the optical drives 210, 220.
In either of the described methods 300 and 400, the backup application can employ known techniques for compression and encryption. Likewise, with respect to method 400, the backup application can employ known techniques for disc spanning where the storage capacity of the writable portion 120 is less than needed to store the found files. Also, in either of the described methods 300 and 400, should a backup fail or be incomplete, an informative message can be displayed to the user. The backup application can also be configured such that notifications to the user can be sent by e-mail alerts or network messages. Notifications can indicate that a backup failed, or that a backup was automatically performed successfully, for example.
As in the embodiments described above with respect to
In some embodiments the backup application is configured to automatically direct the data files to be backed up to a pre-determined location, so that the user does not need to specify a destination. One example of a pre-determined location is a website accessible over the Internet. In such a case the data is automatically uploaded to the website. An online service provider, for example, can offer data storage as a service and distribute CD-ROMs including the backup application, where the backup application is configured to automatically direct data files to a URL maintained by the online service provider. The data files can then be stored, for instance, on servers maintained by the online service provider.
Payment for the storage service can be arranged in numerous different ways. As one example, the backup application asks the user to provide an e-mail address after the data files have been copied to the online service provider's servers. The online service provider can then send an e-mail to the user with pricing information based on the amount of storage used, for example, and requesting a credit card number for billing purposes. Rather than charge for the storage itself, the storage can be free but subsequent access or use can be billed. Examples of uses that can be billed for include printing copies of the data files, and where the data files are images, using the images in merchandising such as printing on T-shirts, coffee mugs, buttons, and so forth. In other embodiments, the backup application installs an access application on the data source 200. Launching the access application opens a browser such as Internet Explorer and directs the browser to the website of the online service provider. The online service provider can then charge the user for access to the data files.
Another example where the backup application can be configured to automatically direct the data files to be backed up to a pre-determined location is within the context of an organization, such as a corporation. For instance, an information technology (IT) department of a corporation can provide a backup application CD-ROM to each employee having a computer. The backup application can be configured to selectively back up business-related files such as e-mails and business application data. The data files are then directed to a specific drive on the corporation network that has been dedicated for this purpose. Advantageously, employees working remotely from the office can readily back up files.
Regardless of the destination for the data files, whether selected by the user or pre-determined, backing up 510 the data files proceeds as otherwise described with respect to
In the foregoing specification, the invention is described with reference to specific embodiments thereof, but those skilled in the art will recognize that the invention is not limited thereto. Various features and aspects of the above-described invention may be used individually or jointly. Further, the invention can be utilized in any number of environments and applications beyond those described herein without departing from the broader spirit and scope of the specification. The specification and drawings are, accordingly, to be regarded as illustrative rather than restrictive. It will be recognized that the terms “comprising,” “including,” and “having,” as used herein, are specifically intended to be read as open-ended terms of art.
This application claims the benefit of U.S. Provisional Patent Application No. 60/834,247 filed on Jul. 31, 2006 and entitled “A Portable Electronic Data Backup Appliance Utilizing a Hybrid Optical Disc” and U.S. Provisional Patent Application No. 60/836,228 filed on Aug. 9, 2006 and also entitled “A Portable Electronic Data Backup Appliance Utilizing a Hybrid Optical Disc.” This application is related to U.S. Non-Provisional patent application Ser. No. 11/546,263 filed on even date herewith and entitled “Optical Disc for Simplified Data Backup” which also claims the benefit of U.S. Provisional Patent Application No. 60/834,247, and U.S. Provisional patent Application No. 60/836,228. This application is related to, and incorporates by reference, U.S. Non-Provisional patent application Ser. No. 11/492,380 filed on Jul. 24, 2006 and entitled “Emulation Component for Data Backup Applications” which claims the benefit of U.S. Provisional Patent Application No. 60/725,225 filed on Oct. 12, 2005 and entitled “A Method, Apparatus and a System for Removable Media Device Emulation on an External Storage Device via an Emulation Component for the Purpose of an Electronic Data Backup Appliance,”U.S. Provisional Patent Application No. 60/814,687 filed on Jun. 19, 2006 and entitled “Portable Electronic Data Backup Appliance Based on Integrated Circuit (IC) Memory,” and U.S. Provisional Patent Application No. 60/817,540 filed on Jun. 30, 2006 and entitled “Portable Data Backup Appliance for Utilizing a Recordable Media Burner Dwevice.”
Number | Date | Country | |
---|---|---|---|
60834247 | Jul 2006 | US | |
60836228 | Aug 2006 | US |