Optical disc

Abstract
An optical disc includes an electromagnetic coupling module mounted therein. The electromagnetic coupling module includes a wireless IC chip and a feeder circuit substrate in which a feeder circuit including a resonant circuit having a predetermined resonant frequency is disposed. The electromagnetic coupling module is electromagnetically coupled to a reflective film defining a metal thin film of the optical disc, and the reflective film defines an antenna or radiation pattern of the electromagnetic coupling module.
Description
BACKGROUND OF THE INVENTION

1. Field of the Invention


The present invention relates to optical discs and in particular, to an optical disc in which an electromagnetic coupling module having a wireless integrated circuit (IC) chip for use in a radio frequency identification (RFID) system is disposed.


2. Description of the Related Art


Recently, digital versatile discs (DVDs) have become very popular as media capable of recording a large amount of data, such as video and audio data. With the desire to record longer video data having higher image quality, the development of optical discs whose light source is a blue semiconductor laser is rapidly advancing, and one example of this type of optical discs is a Blu-ray disc (BD) that is currently commercially available.


When a portable recording media is capable of easily storing high-quality digital contents, the protection of the copyright of the digital contents becomes very important. BDs perform control so as to prevent unauthorized discs from being played by causing a player to read a unique ID recorded in the innermost area of a signal recordable region, called a burst cutting area, for each disc as a bar-code pattern. However, techniques for creating unauthorized discs are rapidly advancing, such that more robust measures for copyright protection are desired.


To address this issue, a DVD having a structure in which an RFID tag is incorporated to prevent unauthorized duplication is disclosed in Japanese Unexamined Patent Application Publication No. 9-245381 and Japanese Unexamined Patent Application Publication No. 2006-92630. In Japanese Unexamined Patent Application Publication No. 9-245381, an antenna pattern is provided in an area that is adjacent to the central hole and that does not include a reflective film provided therein. This limits the size of the antenna pattern, such that a relatively large gain cannot be obtained and the reading distance by an RFID reader/writer is undesirably small. One possible solution is to provide the antenna pattern on the back surface of a signal recordable region at which a reflective film is provided. However, with this approach, if the antenna pattern and the reflective film overlap, communications are adversely affected.


In Japanese Unexamined Patent Application Publication No. 2006-92630, an RFID tag is provided which has a slot antenna structure in which a slit is provided on each of an inner portion and an outer portion of a reflective film that are not disposed in a signal recordable region. However, because slot antennas have relatively high impedances, it is difficult to perform matching to the impedance of a wireless IC chip of the RFID. As a result, a problem occurs in which a sufficient antenna gain cannot be obtained.


SUMMARY OF THE INVENTION

To overcome the problems described above, preferred embodiments of the present invention provide an optical disc that includes an electromagnetic coupling module having high electromagnetic-wave radiation efficiency in a wide band and that is suitable for copyright protection.


A preferred embodiment of the present invention provides an optical disc in which an electromagnetic coupling module is mounted, wherein the electromagnetic coupling module includes a wireless IC chip and a feeder circuit substrate in which a feeder circuit including a resonant circuit having a predetermined resonant frequency is disposed, and the electromagnetic coupling module is electromagnetically coupled to a reflective film defining a metal thin film of the optical disc, and the reflective film is used as an antenna radiator of the electromagnetic coupling module.


In the optical disc according to this preferred embodiment of the present invention, the electromagnetic coupling module including the wireless IC chip and the feeder circuit substrate is electromagnetically coupled to the reflective film defining the metal thin film of the optical disc. An excitation of the reflective film improves the electromagnetic-wave radiation efficiency. An improved antenna gain increases the acceptable distance to an RFID reader/writer.


In the optical disc according to this preferred embodiment of the present invention, the wireless IC chip may preferably be disposed on the feeder circuit substrate, and the reflective film may preferably face a surface of the feeder circuit substrate on which the wireless IC chip is not disposed. With this arrangement, the electromagnetic coupling between the electromagnetic coupling module and the reflective film is improved.


The electromagnetic coupling module may preferably be disposed in a region other than a signal recordable region of the optical disc. The effects on the reading of the recorded information from the optical disc that is caused by mounting the electromagnetic coupling module in the optical disc can be avoided.


The resonant circuit disposed in the feeder circuit substrate may include an inductance element defined by a linear electrode. The linear electrode defining the inductance element improves the electromagnetic coupling to the reflective film.


When a plurality of resonant circuits defines the resonant circuit disposed in the feeder circuit substrate, impedance matching between the wireless IC chip and the feeder circuit and impedance matching between the feeder circuit and the reflective film can be preferably performed in a wide frequency band.


The optical disc may be a digital versatile disc (DVD) or a compact disc (CD), a soft key for playback may be provided in a recording surface of the DVD or the CD, and the soft key for playback may be stored in the wireless IC chip. This enables effective protection of a copyright against unauthorized duplication and other piracy.


According to various preferred embodiments of the present invention, because the reflective film disposed in the optical disc is used as the antenna radiator of the electromagnetic coupling module in which the wireless IC chip is disposed, an electromagnetic-wave radiation efficiency is improved in a wide band. In addition, information stored in the wireless IC chip can be obtained using an RFID system, and the obtained information can be effectively utilized for copyright protection.


Other features, elements, steps, characteristics and advantages of the present invention will become more apparent from the following detailed description of preferred embodiments of the present invention with reference to the attached drawings





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a plan view that illustrates an optical disc according to a preferred embodiment of the present invention.



FIG. 2 is a cross-sectional view that illustrates an enlarged main portion of the optical disc shown in FIG. 1.



FIG. 3 is a cross-sectional view that illustrates a feeder circuit substrate according to a first preferred embodiment of the present invention.



FIGS. 4A and 4B are perspective views that illustrate connection states between a wireless IC chip and the feeder circuit substrate.



FIG. 5 is an equivalent circuit diagram of the feeder circuit substrate according to the first preferred embodiment of the present invention.



FIG. 6 is an exploded perspective view of the feeder circuit substrate according to the first preferred embodiment of the present invention.



FIG. 7 is an equivalent circuit diagram that illustrates a feeder circuit substrate according to a second preferred embodiment of the present invention.



FIG. 8 is an exploded plan view of the feeder circuit substrate according to the second preferred embodiment of the present invention.



FIG. 9 is a graph that illustrates a reflection characteristic of an electromagnetic coupling module that uses the second preferred embodiment of the present invention.



FIG. 10 is a chart in the XY plane that illustrates directivity of the electromagnetic coupling module using the second preferred embodiment of the present invention.





DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS

Preferred embodiments of an optical disc according to the present invention will be described below with reference to the accompanying drawings.


General Configuration of Optical Disc and Electromagnetic Coupling Module


A plan view of an optical disc 50 according to a preferred embodiment of the present invention is shown in FIG. 1, and a cross-sectional view that illustrates an enlarged main portion thereof is shown in FIG. 2. The optical disc 50 is a CD, a DVD, or a BD for example. As illustrated in FIG. 2, the optical disc 50 has a three-layer structure in which a reflective film 51 preferably made of an aluminum-deposited film, for example, is disposed between polycarbonate resin layers 52 and 53 arranged on the upper and lower surfaces thereof. The reflective film 51 defines an antenna or radiation pattern. The diagonally shaded portion in FIG. 1 is the portion in which the reflective film 51 is provided. In the reflective film 51, a portion surrounding a central hole 54 is a non-recordable region 55, and the remaining portion thereof is a recordable region. Information recorded in the reflective film 51 is read by an optical pickup 65.


An electromagnetic coupling module 1, which will be described below, is embedded in the non-recordable region 55. The location of attachment of the electromagnetic coupling module 1 to the optical disc 50 may be in the outer portion of the reflective film 51, as opposed to the inner portion, or may be on the back surface side of the recordable region.


As illustrated in the cross-sectional view of FIG. 3, the electromagnetic coupling module 1 includes a known wireless IC chip 5 used in an RFID system and a feeder circuit substrate 10 in which a feeder circuit 16 having a predetermined resonant frequency is disposed. The wireless IC chip 5 is mounted on the front side of the feeder circuit substrate 10. The back side (i.e., the surface on which the wireless IC chip 5 is not disposed) of the feeder circuit substrate 10 faces the reflective film 51.


The wireless IC chip 5 includes a clock circuit, a logic circuit, and a memory circuit, stores necessary information, and is DC-connected directly to the feeder circuit 16 included in the feeder circuit substrate 10.


The feeder circuit 16 is a circuit arranged to supply the reflective film 51 with a transmission signal having a predetermined frequency and also to select a reception signal having a predetermined frequency from signals received at the reflective film 51 and supply the reception signal to the wireless IC chip 5. The feeder circuit 16 includes a resonant circuit that resonates at the frequency of each of the transmission and reception signals.


The perspective views of FIGS. 4A and 4B illustrate connection structures between the wireless IC chip 5 and the feeder circuit substrate 10. FIG. 4A illustrates a connection structure in which pairs of antenna (balance) terminals 7a and 17a are disposed on the back surface side of the wireless IC chip 5 and the front surface side of the feeder circuit substrate 10, respectively. FIG. 4B illustrates another connection structure in which, in addition to the pairs of antenna (balance) terminals 7a and 17a, pairs of ground terminals 7b and 17b are disposed on the back surface side of the wireless IC chip 5 and the front surface side of the feeder circuit substrate 10, respectively. The ground terminals 17b of the feeder circuit substrate 10 are terminated, such that they are not connected to another terminal of the feeder circuit substrate 10.


First Preferred Embodiment of Feeder Circuit Substrate According to the Present Invention

As illustrated in FIGS. 3 and 5, as equivalent circuits, the feeder circuit substrate 10 includes the feeder circuit 16 including a series LC lumped-constant resonant circuit including a helical inductance element L and a capacitance element C. As illustrated in FIG. 5, a coil electrode pattern defining the inductance element L is arranged such that its winding axis is substantially perpendicular to the reflective film 51, and the feeder circuit 16 is primarily magnetically coupled to the reflective film 51.


Specifically, as illustrated in FIG. 6, the feeder circuit substrate 10 is constructed by laminating, pressing and bonding, and sintering of dielectric ceramic sheets 31A to 31F. The sheet 31A includes a connection electrode 32 and a via-hole conductor 33a. The sheet 31B includes a capacitor electrode 34a and a via-hole conductor 33b. The ceramic sheet 31C includes a capacitor electrode 34b and via-hole conductors 33c and 33b. The sheet 31C includes a capacitor electrode 34b and via-hole conductors 33c and 33b. The sheet or sheets 31D include a conductor pattern 35a and via-hole conductors 33d and 33b. The sheet or sheets 31E include a conductor pattern 35b and via-hole conductors 33e and 33b. The sheet 31F includes a conductor pattern 35c. Each of the sheets 31A to 31F may also be a sheet made of a magnetic ceramic material. The feeder circuit substrate 10 can be easily obtained by a known process of manufacturing a multilayer substrate, such as sheet laminating method or thick-film printing method, for example.


By laminating the sheets 31A to 31F, the feeder circuit 16 is provided, which includes the series LC resonant circuit in which the inductance element L whose winding axis of the helical coil is substantially perpendicular to the reflective film 51 and the capacitance element C are connected in series to each other. The capacitor electrode 34a is connected to the connection electrode 32 through the via-hole conductor 33a and is further connected to the wireless IC chip 5 with a solder bump 6 disposed therebetween. An end of the inductance element L is connected to the connection electrode 32 through the via-hole conductor 33b and is further connected to the wireless IC chip 5 with a solder bump 6 disposed therebetween.


That is, among the components defining the feeder circuit 16, the inductance element L defined by the coil electrode pattern supplies the reflective film 51 with a transmission signal through a magnetic field, and a reception signal from the reflective film 51 is supplied to the inductance element L through a magnetic field. Accordingly, it is preferable that, of the inductance element L and the capacitance element C defining the resonant circuit in the feeder circuit substrate 10, the inductance element L be arranged closer to the reflective film 51.


The electromagnetic coupling module 1 having the above-described configuration receives a high-frequency signal (e.g., in the ultrahigh frequency (UHF) band) emitted from a reader/writer 60 (see FIG. 2) at the reflective film 51, resonates the feeder circuit 16 (the series LC resonant circuit including the inductance element L and the capacitance element C) primarily magnetically coupled to the reflective film 51, and supplies the wireless IC chip 5 with only a reception signal in a predetermined frequency band. The electromagnetic coupling module 1 extracts a predetermined energy from this reception signal, matches information stored in the wireless IC chip 5 to a predetermined frequency with the feeder circuit 16 using the extracted energy as a driving source, then conveys a transmission signal from the inductance element L of the feeder circuit 16 to the reflective film 51 through magnetic field coupling, and transmits it from the reflective film 51 to the reader/writer 60.


The function of the reader/writer 60 can preferably be installed in a DVD/CD playback drive device, for example. To prevent unauthorized discs from being played, a soft key (i.e., encryption key) for playback corresponding to a recorded content is recorded on a recording surface of the optical disc 50, and the soft key recorded on the recording surface is also stored in the wireless IC chip 5. In playback of the optical disc 50, the reader/writer 60, and the optical pickup 65 read the respective soft keys, and the content is played only when the read soft keys match each other. Alternatively, a key to permit playback may be stored in the wireless IC chip 5. The wireless IC chip 5 can store various types of information regarding the optical disc 50, other than information preventing unauthorized duplication, and the stored information can be updated, instead of being read by the reader/writer 60. The information can also be used to detect theft from a store.


In the optical disc 50, the electromagnetic coupling module 1 is electromagnetically coupled to the reflective film made of an aluminum-deposited film, for example. An excitation of the reflective film 51 improves the electromagnetic-wave radiation efficiency. As compared to when the reflective film 51 is not used, an increase of an approximately 20-dB gain is obtained, and the communication distance to the reader/writer 60 increases by approximately 10 times. The feeder circuit 16 and the reflective film 51 are coupled primarily through a magnetic field. However, coupling through an electric field may also be present.


In the electromagnetic coupling module 1, the wireless IC chip 5 is DC connected directly on the feeder circuit substrate 10 including the feeder circuit 16. The feeder circuit substrate 10 has substantially the same size as the wireless IC chip 5 and is rigid. Due to this arrangement, the wireless IC chip 5 can be precisely positioned on the feeder circuit substrate 10. Additionally, because the feeder circuit substrate 10 is made of a ceramic material and is resistant to heat, the wireless IC chip 5 can be attached to the feeder circuit substrate 10 by soldering. That is, because ultrasonic bonding is not used, the wireless IC chip 5 can be inexpensively attached, there is no risk of breaking the wireless IC chip 5 by pressure applied in ultrasonic bonding, and the self-alignment achieved by reflow soldering can also be utilized.


In the feeder circuit 16, the resonant-frequency characteristic is determined by the resonant circuit including the inductance element L and the capacitance element C. The resonant frequency of a signal emitted from the reflective film 51 is substantially equivalent to the self-resonant frequency of the feeder circuit 16, and the maximum gain of the signal is substantially determined by at least one of the size of the feeder circuit 16, the shape thereof, the distance between the feeder circuit 16 and the reflective film 51, and the medium. That is, in preferred embodiments of the present invention, because the frequency of a signal emitted from the reflective film 51 is substantially determined by the resonant frequency of the resonant circuit (i.e., the feeder circuit 16), the frequency characteristic is substantially independent of the electrical length and shape of the reflective film 51.


In the feeder circuit 16, the coil electrode pattern is arranged such that its winding axis is substantially perpendicular to the reflective film 51. Thus, advantages are obtained in which the magnetic-flux component to the reflective film 51 is increased, the transmission efficiency of the signal energy is improved, and the gain is increased.


In preferred embodiments of the present invention, the resonant circuit may also function as a matching circuit to match the impedance of the wireless IC chip 5 and that of the reflective film 51. Alternatively, the feeder circuit substrate may further include a matching circuit that includes an inductance element and a capacitance element and that is provided separately from the resonant circuit. To add the function of the matching circuit to the resonant circuit, the design of the resonant circuit is relatively complicated. If the matching circuit is provided separately from the resonant circuit, the resonant circuit and the matching circuit can be designed independently.


Second Preferred of Feeder Circuit Substrate According to the Present Invention


In the feeder circuit substrate 10 according to the second preferred embodiment, as illustrated in the equivalent circuit diagram of FIG. 7, the feeder circuit 16 includes magnetically coupled inductance elements L1 and L2. The inductance element L1 is connected to feed terminals 19a and 19b connected to the wireless IC chip 5 through capacitance elements C1a and C1b. The inductance element L1 is also connected in parallel to the inductance element L2 through capacitance elements C2a and C2b. In other words, the feeder circuit 16 includes a series LC resonant circuit including the inductance element L1 and the capacitance elements C1a and C1b and a series LC resonant circuit including the inductance element L2 and the capacitance elements C2a and C2b. The resonant circuits are connected by magnetic field coupling M illustrated in FIG. 7. Both of the inductance elements L1 and L2 are magnetically coupled to the reflective film 51 of the optical disc 50, which is illustrated in FIGS. 1 and 2.


Specifically, as illustrated in FIG. 8, the feeder circuit substrate 10 is constructed by laminating, pressing and bonding, and sintering of dielectric ceramic sheets 41a to 41i. More specifically, the sheet 41a includes the feed terminals 19a and 19b and via-hole conductors 49a and 49b. The sheet 41b includes capacitor electrodes 42a and 42b. The sheet 41c includes capacitor electrodes 43a and 43b and via-hole conductors 49c and 49d. The sheet 41d includes capacitor electrodes 44a and 44b and via-hole conductors 49c, 49d, 49e, and 49f.


The sheet 41e includes connection conductor patterns 45a, 45b, and 45c and via-hole conductors 49d, 49g, 49h, and 49i. The sheet 41f includes conductor patterns 46a and 47a and via-hole conductors 49g, 49i, 49j, and 49k. The sheet 41g includes conductor patterns 46b and 47b and via-hole conductors 49g, 49i, 49j, and 49k. The sheet 41h includes conductor patterns 46c and 47c and via-hole conductors 49g, 49i, 49j, and 49k. Moreover, the sheet 41i includes conductor patterns 46d and 47d.


By laminating the sheets 41a to 41i, the conductor patterns 46a to 46d are connected together through the via-hole conductor 49j, thus defining the inductance element L1, and the conductor patterns 47a to 47d are connected together through the via-hole conductor 49k, thus defining the inductance element L2. The capacitance element C1a includes the electrodes 42a and 43a. The capacitance element C1b includes the electrodes 42b and 43b. The capacitance element C2a includes the electrodes 43a and 44a. The capacitance element C2b includes the electrodes 43b and 44b.


The inductance element L1 includes one end connected to the capacitor electrode 43a through the via-hole conductor 49g, the connection conductor pattern 45c, and the via-hole conductor 49c and another end connected to the capacitor electrode 43b through the via-hole conductor 49d. The inductance element L2 includes one end connected to the capacitor electrode 44a through the via-hole conductor 49i, the connection conductor pattern 45a, and the via-hole conductor 49e and another end connected to the capacitor electrode 44b through the via-hole conductor 49h, the connection conductor pattern 45b, and the via-hole conductor 49f.


The feed terminal 19a is connected to the capacitor electrode 42a through the via-hole conductor 49a. The feed terminal 19b is connected to the capacitor electrode 42b through the via-hole conductor 49b.


In the feeder circuit substrate 10 having the above-described configuration, the series LC resonant circuits including the magnetically coupled inductance elements L1 and L2 resonate, and the inductance elements L1 and L2 function as a radiating element. Coupling the inductance elements L1 and L2 through the capacitance elements C2a and C2b enables the resonant circuits to function as a matching circuit to match the impedance of the wireless IC chip 5 (typically about 50Ω) connected to the feed terminals 19a and 19b and that of air (about 377Ω).


The coupling coefficient k for the adjacent inductance elements L1 and L2 is represented by k2=M/(L1×L2), and is preferably at least about 0.1, and in the second preferred embodiment, is approximately 0.8975, for example. Because each of the series LC resonant circuits including the capacitance elements C1a, C1b, C2a, and C2b and the inductance elements L1 and L2 is a lumped-constant resonant circuit, the series LC resonant circuits can be miniaturized as a laminated type. In addition, because the capacitance elements C1a and C1b are disposed between the feed terminals 19a and 19b and the inductance elements, a low-frequency surge can be cut off, so the wireless IC chip 5 can be protected against the surge.


From results of a simulation performed by the inventors of the present invention based on the equivalent circuit illustrated in FIG. 7, the reflection characteristic illustrated in FIG. 9 for the feeder circuit substrate 10 was obtained. As shown in FIG. 9, the center frequency is about 915 MHz, a reflection characteristic of about −10 dB or less in a wide band of about 850 MHz to about 970 MHz was obtained.



FIG. 10 illustrates the directivity (i.e., the magnetic field strength) in the XY plane of the feeder circuit substrate 10. The x-axis, y-axis, and z-axis correspond to the arrows X, Y, and Z illustrated in FIG. 2, respectively.


The operational advantage of the second preferred embodiment is substantially the same as that of the first preferred embodiment, and the second preferred embodiment can effectively prevent playback of an unauthorized duplication of the optical disc. That is, the electromagnetic coupling module 1 receives a high-frequency signal (e.g., in the UHF band) emitted from the reader/writer 60 at the reflective film 51, resonates the feeder circuit 16 (the series LC resonant circuit including the inductance element L1 and the capacitance elements C1a and C1b and the series LC resonant circuit including the inductance element L2 and the capacitance elements C2a and C2b) primarily magnetically coupled to the reflective film 51, and supplies the wireless IC chip 5 with only a reception signal in a predetermined frequency band. The electromagnetic coupling module 1 extracts a predetermined energy from this reception signal, matches information retained in the wireless IC chip 5 to a predetermined frequency with the feeder circuit 16 using the extracted energy as a driving source, then conveys a transmission signal from the inductance elements L1 and L2 of the feeder circuit 16 to the reflective film 51 through magnetic field coupling, and transmits it from the reflective film 51 to the reader/writer 60.


In particular, in the second preferred embodiment, the reflection characteristic has a wide frequency band, as illustrated in FIG. 9. This results from the feeder circuit 16 being defined by the plurality of LC resonant circuits including the magnetically coupled inductance elements L1 and L2 with a high degree of coupling.


The optical disc according to preferred embodiments of the present invention is not limited to the above-described preferred embodiments. Various modifications can be made without departing from the scope of the invention.


For example, the resonant circuit(s) defining the feeder circuit may have various circuit configurations, such as a series LC resonant circuit or a parallel LC resonant circuit, and may be either a lumped-constant type or a distributed-constant type. Information stored in the wireless IC chip and the use of the information by using the reader/writer may have any form.


As described above, preferred embodiments of the present invention are useful for an optical disc. In particular, preferred embodiments of the present invention are advantageous in that they include an electromagnetic coupling module having high electromagnetic-wave radiation efficiency in a wide band and are suitable for copyright protection.


While preferred embodiments of the present invention have been described above, it is to be understood that variations and modifications will be apparent to those skilled in the art without departing the scope and spirit of the present invention. The scope of the present invention, therefore, is to be determined solely by the following claims.

Claims
  • 1. An optical disc comprising: a reflective film defined by a metal thin film;a wireless IC chip; anda feeder circuit including a conductor pattern connected to the wireless IC chip; whereinthe conductor pattern is arranged to overlap a portion of the reflective film such that the conductor pattern is electromagnetically coupled with the reflective film; andthe reflective film defines an antenna or a radiation pattern.
  • 2. The optical disc according to claim 1, wherein the feeder circuit is provided adjacent to a central hole in the reflective film.
  • 3. The optical disc according to claim 1, wherein the feeder circuit includes a resonant circuit having a predetermined resonant frequency, and the conductor pattern defines the resonant circuit.
  • 4. The optical disc according to claim 3, wherein the resonant circuit includes at least one of a coil electrode pattern and a capacitor electrode pattern.
  • 5. The optical disc according to claim 4, wherein the resonant circuit includes the coil electrode pattern, and a winding axis of the coil electrode pattern is substantially perpendicular to the reflective film.
  • 6. The optical disc according to claim 1, further comprising a resin layer, wherein the reflective film is provided in the resin layer, and the wireless IC chip is embedded in the resin layer.
Priority Claims (1)
Number Date Country Kind
2006-182687 Jun 2006 JP national
US Referenced Citations (133)
Number Name Date Kind
3364564 Kurtz et al. Jan 1968 A
4794397 Ohe et al. Dec 1988 A
5232765 Yano et al. Aug 1993 A
5253969 Richert Oct 1993 A
5337063 Takahira Aug 1994 A
5374937 Tsunekawa et al. Dec 1994 A
5399060 Richert Mar 1995 A
5491483 D'Hont Feb 1996 A
5528222 Moskowitz et al. Jun 1996 A
5757074 Matloubian et al. May 1998 A
5854480 Noto Dec 1998 A
5903239 Takahashi et al. May 1999 A
5936150 Kobrin et al. Aug 1999 A
5955723 Reiner Sep 1999 A
5995006 Walsh Nov 1999 A
6104611 Glover et al. Aug 2000 A
6107920 Eberhardt et al. Aug 2000 A
6172608 Cole Jan 2001 B1
6181287 Beigel Jan 2001 B1
6190942 Wilm et al. Feb 2001 B1
6249258 Bloch et al. Jun 2001 B1
6259369 Monico Jul 2001 B1
6271803 Watanabe et al. Aug 2001 B1
6335686 Goff et al. Jan 2002 B1
6362784 Kane et al. Mar 2002 B1
6367143 Sugimura Apr 2002 B1
6378774 Emori et al. Apr 2002 B1
6406990 Kawai Jun 2002 B1
6448874 Shiino et al. Sep 2002 B1
6452563 Porte Sep 2002 B1
6462716 Kushihi Oct 2002 B1
6542050 Arai et al. Apr 2003 B1
6600459 Yokoshima et al. Jul 2003 B2
6634564 Kuramochi Oct 2003 B2
6664645 Kawai Dec 2003 B2
6763254 Nishikawa Jul 2004 B2
6812707 Yonezawa et al. Nov 2004 B2
6828881 Mizutani et al. Dec 2004 B2
6837438 Takasugi et al. Jan 2005 B1
6861731 Buijsman et al. Mar 2005 B2
6927738 Senba et al. Aug 2005 B2
6963729 Uozumi Nov 2005 B2
7088249 Senba et al. Aug 2006 B2
7088307 Imaizumi Aug 2006 B2
7112952 Arai et al. Sep 2006 B2
7119693 Devilbiss Oct 2006 B1
7129834 Naruse et al. Oct 2006 B2
7248221 Kai et al. Jul 2007 B2
7250910 Yoshikawa et al. Jul 2007 B2
7276929 Arai et al. Oct 2007 B2
7317396 Ujino Jan 2008 B2
7405664 Sakama et al. Jul 2008 B2
7519328 Dokai et al. Apr 2009 B2
7630685 Dokai et al. Dec 2009 B2
7764928 Dokai et al. Jul 2010 B2
8078106 Dokai et al. Dec 2011 B2
8081121 Kato et al. Dec 2011 B2
8081541 Dokai et al. Dec 2011 B2
20020011967 Goff et al. Jan 2002 A1
20020015002 Yasukawa et al. Feb 2002 A1
20020044092 Kushihi Apr 2002 A1
20020067316 Yokoshima et al. Jun 2002 A1
20020093457 Hamada et al. Jul 2002 A1
20030006901 Kim et al. Jan 2003 A1
20030020661 Sato Jan 2003 A1
20030045324 Nagumo et al. Mar 2003 A1
20030169153 Muller Sep 2003 A1
20040001027 Killen et al. Jan 2004 A1
20040026519 Usami et al. Feb 2004 A1
20040056823 Zuk et al. Mar 2004 A1
20040066617 Hirabayashi et al. Apr 2004 A1
20040217915 Imaizumi Nov 2004 A1
20040219956 Iwai et al. Nov 2004 A1
20040227673 Iwai et al. Nov 2004 A1
20040252064 Yuanzhu Dec 2004 A1
20050092836 Kudo May 2005 A1
20050099337 Takei et al. May 2005 A1
20050125093 Kikuchi et al. Jun 2005 A1
20050134460 Usami Jun 2005 A1
20050134506 Egbert Jun 2005 A1
20050138798 Sakama et al. Jun 2005 A1
20050140512 Sakama et al. Jun 2005 A1
20050232412 Ichihara et al. Oct 2005 A1
20050236623 Takechi et al. Oct 2005 A1
20050275539 Sakama et al. Dec 2005 A1
20060001138 Sakama et al. Jan 2006 A1
20060032926 Baba et al. Feb 2006 A1
20060044192 Egbert Mar 2006 A1
20060055601 Kameda et al. Mar 2006 A1
20060071084 Detig et al. Apr 2006 A1
20060109185 Iwai et al. May 2006 A1
20060145872 Tanaka et al. Jul 2006 A1
20060158380 Son et al. Jul 2006 A1
20060170606 Yamagajo et al. Aug 2006 A1
20060214801 Murofushi et al. Sep 2006 A1
20060220871 Baba et al. Oct 2006 A1
20060244676 Uesaka Nov 2006 A1
20060267138 Kobayashi Nov 2006 A1
20070004028 Lair et al. Jan 2007 A1
20070018893 Kai et al. Jan 2007 A1
20070040028 Kawamata Feb 2007 A1
20070052613 Gallschuetz et al. Mar 2007 A1
20070057854 Oodachi et al. Mar 2007 A1
20070069037 Kawai Mar 2007 A1
20070132591 Khatri Jun 2007 A1
20070164414 Dokai et al. Jul 2007 A1
20070200782 Hayama et al. Aug 2007 A1
20070229276 Yamagajo et al. Oct 2007 A1
20070247387 Kubo et al. Oct 2007 A1
20070252700 Ishihara et al. Nov 2007 A1
20070252703 Kato et al. Nov 2007 A1
20070285335 Bungo et al. Dec 2007 A1
20070290928 Chang et al. Dec 2007 A1
20080024156 Arai et al. Jan 2008 A1
20080087990 Kato et al. Apr 2008 A1
20080169905 Slatter Jul 2008 A1
20080272885 Atherton Nov 2008 A1
20090002130 Kato Jan 2009 A1
20090009007 Kato et al. Jan 2009 A1
20090021352 Kataya et al. Jan 2009 A1
20090021446 Kataya et al. Jan 2009 A1
20090065594 Kato et al. Mar 2009 A1
20090109102 Dokai et al. Apr 2009 A1
20090160719 Kato et al. Jun 2009 A1
20090201116 Orihara Aug 2009 A1
20090224061 Kato et al. Sep 2009 A1
20090231106 Okamura Sep 2009 A1
20090262041 Ikemoto et al. Oct 2009 A1
20090278687 Kato Nov 2009 A1
20090321527 Kato et al. Dec 2009 A1
20100103058 Kato et al. Apr 2010 A1
20110031320 Kato et al. Feb 2011 A1
20110063184 Furumura et al. Mar 2011 A1
Foreign Referenced Citations (399)
Number Date Country
2 279 176 Jul 1998 CA
10 2006 057 369 Jun 2008 DE
0 694 874 Jan 1996 EP
0 948 083 Oct 1999 EP
0 977 145 Feb 2000 EP
1 010 543 Jun 2000 EP
1 160 915 Dec 2001 EP
1 170 795 Jan 2002 EP
1 193 793 Apr 2002 EP
1 227 540 Jul 2002 EP
1 280 232 Jan 2003 EP
1 280 350 Jan 2003 EP
1 343 223 Sep 2003 EP
1 357 511 Oct 2003 EP
1 547 753 Jun 2005 EP
1 548 872 Jun 2005 EP
1 703 589 Sep 2006 EP
1 744 398 Jan 2007 EP
1 841 005 Oct 2007 EP
1 865 574 Dec 2007 EP
1 976 056 Oct 2008 EP
1 988 491 Nov 2008 EP
1 993 170 Nov 2008 EP
2 009 738 Dec 2008 EP
2 012 258 Jan 2009 EP
2 148 449 Jan 2010 EP
2 251 934 Nov 2010 EP
2 305 075 Mar 1997 GB
2461443 Jan 2010 GB
50-143451 Nov 1975 JP
61-284102 Dec 1986 JP
62-127140 Aug 1987 JP
02-164105 Jun 1990 JP
02-256208 Oct 1990 JP
03-503467 Aug 1991 JP
03-262313 Nov 1991 JP
04-150011 May 1992 JP
04-167500 Jun 1992 JP
04-096814 Aug 1992 JP
04-101168 Sep 1992 JP
04-134807 Dec 1992 JP
05-327331 Dec 1993 JP
6-53733 Feb 1994 JP
06-077729 Mar 1994 JP
06-177635 Jun 1994 JP
6-260949 Sep 1994 JP
07-183836 Jul 1995 JP
08-055725 Feb 1996 JP
08-056113 Feb 1996 JP
8-87580 Apr 1996 JP
08-88586 Apr 1996 JP
08-088586 Apr 1996 JP
11-149537 Jun 1996 JP
08-176421 Jul 1996 JP
08-180160 Jul 1996 JP
08-279027 Oct 1996 JP
08-307126 Nov 1996 JP
08-330372 Dec 1996 JP
09-014150 Jan 1997 JP
09-035025 Feb 1997 JP
09-093029 Apr 1997 JP
9-93029 Apr 1997 JP
09-245381 Sep 1997 JP
09-252217 Sep 1997 JP
09-270623 Oct 1997 JP
09-284038 Oct 1997 JP
9-512367 Dec 1997 JP
10-069533 Mar 1998 JP
10-69533 Mar 1998 JP
10-505466 May 1998 JP
10-171954 Jun 1998 JP
10-193849 Jul 1998 JP
10-193851 Jul 1998 JP
10-293828 Nov 1998 JP
11-025244 Jan 1999 JP
11-039441 Feb 1999 JP
11-075329 Mar 1999 JP
11-085937 Mar 1999 JP
11-88241 Mar 1999 JP
11-102424 Apr 1999 JP
11-103209 Apr 1999 JP
11-149536 Jun 1999 JP
11-149538 Jun 1999 JP
11-219420 Aug 1999 JP
11-220319 Aug 1999 JP
11-282993 Oct 1999 JP
11-328352 Nov 1999 JP
11-331014 Nov 1999 JP
11-346114 Dec 1999 JP
11-515094 Dec 1999 JP
2000-21128 Jan 2000 JP
2000-021639 Jan 2000 JP
2000-022421 Jan 2000 JP
2005-229474 Jan 2000 JP
2000-059260 Feb 2000 JP
2000-085283 Mar 2000 JP
2000-090207 Mar 2000 JP
2000-132643 May 2000 JP
2000-137778 May 2000 JP
2000-137779 May 2000 JP
2000-137785 May 2000 JP
2000-148948 May 2000 JP
2000-172812 Jun 2000 JP
2000-209013 Jul 2000 JP
2000-222540 Aug 2000 JP
2000-510271 Aug 2000 JP
2000-242754 Sep 2000 JP
2000-243797 Sep 2000 JP
2000-251049 Sep 2000 JP
2000-261230 Sep 2000 JP
2000-276569 Oct 2000 JP
2000-286634 Oct 2000 JP
2000-286760 Oct 2000 JP
2000-311226 Nov 2000 JP
2000-321984 Nov 2000 JP
3075400 Nov 2000 JP
2000-349680 Dec 2000 JP
2001-10264 Jan 2001 JP
2001-028036 Jan 2001 JP
2007-18067 Jan 2001 JP
2001-043340 Feb 2001 JP
2001-66990 Mar 2001 JP
2001-76111 Mar 2001 JP
2001-101369 Apr 2001 JP
2001-505682 Apr 2001 JP
2001-168628 Jun 2001 JP
2001-188890 Jul 2001 JP
2001-240046 Sep 2001 JP
2001-256457 Sep 2001 JP
2001-257292 Sep 2001 JP
2001-514777 Sep 2001 JP
2001-319380 Nov 2001 JP
2001-331976 Nov 2001 JP
2001-332923 Nov 2001 JP
2001-339226 Dec 2001 JP
2001-344574 Dec 2001 JP
2001-351083 Dec 2001 JP
2001-351084 Dec 2001 JP
2001-352176 Dec 2001 JP
2002-024776 Jan 2002 JP
2002-026513 Jan 2002 JP
2002-32731 Jan 2002 JP
2002-042076 Feb 2002 JP
2002-063557 Feb 2002 JP
2002-505645 Feb 2002 JP
2002-76750 Mar 2002 JP
2002-076750 Mar 2002 JP
2002-111363 Apr 2002 JP
2002-150245 May 2002 JP
2002-157564 May 2002 JP
2002-158529 May 2002 JP
2002-175508 Jun 2002 JP
2002-183690 Jun 2002 JP
2002-185358 Jun 2002 JP
2002-204117 Jul 2002 JP
2002-522849 Jul 2002 JP
2002-230128 Aug 2002 JP
2002-232221 Aug 2002 JP
2002-252117 Sep 2002 JP
2002-259934 Sep 2002 JP
2002-280821 Sep 2002 JP
2002-298109 Oct 2002 JP
2002-308437 Oct 2002 JP
2002-319008 Oct 2002 JP
2002-319009 Oct 2002 JP
2002-319812 Oct 2002 JP
2002-362613 Dec 2002 JP
2002-366917 Dec 2002 JP
2002-373029 Dec 2002 JP
2002-373323 Dec 2002 JP
2002-374139 Dec 2002 JP
2003-006599 Jan 2003 JP
2003-016412 Jan 2003 JP
2003-022912 Jan 2003 JP
2003-026177 Jan 2003 JP
2003-030612 Jan 2003 JP
2003-44789 Feb 2003 JP
2003-046318 Feb 2003 JP
2003-58840 Feb 2003 JP
2003-067711 Mar 2003 JP
2003-069335 Mar 2003 JP
2003-076947 Mar 2003 JP
2003-76963 Mar 2003 JP
2003-78333 Mar 2003 JP
2003-078336 Mar 2003 JP
2003-085501 Mar 2003 JP
2003-085520 Mar 2003 JP
2003-87008 Mar 2003 JP
2003-87044 Mar 2003 JP
2003-099720 Apr 2003 JP
2003-099721 Apr 2003 JP
2003-110344 Apr 2003 JP
2003-132330 May 2003 JP
2003-134007 May 2003 JP
2003-155062 May 2003 JP
2003-158414 May 2003 JP
2003-168760 Jun 2003 JP
2003-179565 Jun 2003 JP
2003-187207 Jul 2003 JP
2003-187211 Jul 2003 JP
2003-188338 Jul 2003 JP
2003-188620 Jul 2003 JP
2003-198230 Jul 2003 JP
2003-209421 Jul 2003 JP
2003-216919 Jul 2003 JP
2003-218624 Jul 2003 JP
2003-233780 Aug 2003 JP
2003-242471 Aug 2003 JP
2003-243918 Aug 2003 JP
2003-249813 Sep 2003 JP
2003-529163 Sep 2003 JP
2003-288560 Oct 2003 JP
2003-309418 Oct 2003 JP
2003-317060 Nov 2003 JP
2003-331246 Nov 2003 JP
2003-332820 Nov 2003 JP
2003-536302 Dec 2003 JP
2004-040597 Feb 2004 JP
2004-505481 Feb 2004 JP
2004-082775 Mar 2004 JP
2004-88218 Mar 2004 JP
2004-93693 Mar 2004 JP
2004-096566 Mar 2004 JP
2004-127230 Apr 2004 JP
2004-140513 May 2004 JP
2004-213582 Jul 2004 JP
2004-519916 Jul 2004 JP
2004-234595 Aug 2004 JP
2004-253858 Sep 2004 JP
2004-527864 Sep 2004 JP
2004-280390 Oct 2004 JP
2004-282403 Oct 2004 JP
2004-287767 Oct 2004 JP
2004-297249 Oct 2004 JP
2004-297681 Oct 2004 JP
2004-304370 Oct 2004 JP
2004-319848 Nov 2004 JP
2004-326380 Nov 2004 JP
2004-334268 Nov 2004 JP
2004-336250 Nov 2004 JP
2004-343000 Dec 2004 JP
2004-362190 Dec 2004 JP
2004-362341 Dec 2004 JP
2004-362602 Dec 2004 JP
2005-5866 Jan 2005 JP
2005-18156 Jan 2005 JP
2005-033461 Feb 2005 JP
2005-124061 May 2005 JP
2005-128592 May 2005 JP
2005-129019 May 2005 JP
2005-135132 May 2005 JP
2005-136528 May 2005 JP
2005-137032 May 2005 JP
3653099 May 2005 JP
2005-165839 Jun 2005 JP
2005-167327 Jun 2005 JP
2005-167813 Jun 2005 JP
2005-190417 Jul 2005 JP
2005-191705 Jul 2005 JP
2005-192124 Jul 2005 JP
2005-210676 Aug 2005 JP
2005-210680 Aug 2005 JP
2005-217822 Aug 2005 JP
2005-236339 Sep 2005 JP
2005-244778 Sep 2005 JP
2005-252853 Sep 2005 JP
2005-275870 Oct 2005 JP
2005-284352 Oct 2005 JP
2005-293537 Oct 2005 JP
2005-295135 Oct 2005 JP
2005-311205 Nov 2005 JP
2005-321305 Nov 2005 JP
2005-322119 Nov 2005 JP
2005-335755 Dec 2005 JP
2005-340759 Dec 2005 JP
2005-345802 Dec 2005 JP
2005-346820 Dec 2005 JP
2005-352858 Dec 2005 JP
2006-13976 Jan 2006 JP
2006-013976 Jan 2006 JP
2006-025390 Jan 2006 JP
2006-031766 Feb 2006 JP
2006-033312 Feb 2006 JP
2006-39902 Feb 2006 JP
2006-039947 Feb 2006 JP
2006-42059 Feb 2006 JP
2006-42097 Feb 2006 JP
2006-053833 Feb 2006 JP
2006-67479 Mar 2006 JP
2006-72706 Mar 2006 JP
2006-80367 Mar 2006 JP
2006-92630 Apr 2006 JP
2006-102953 Apr 2006 JP
2006-107296 Apr 2006 JP
2006-513594 Apr 2006 JP
2006-148462 Jun 2006 JP
2006-148518 Jun 2006 JP
2006-151402 Jun 2006 JP
2006-174151 Jun 2006 JP
2006-195795 Jul 2006 JP
2006-203187 Aug 2006 JP
2006-203852 Aug 2006 JP
2006-217000 Aug 2006 JP
2006-232292 Sep 2006 JP
2006-237674 Sep 2006 JP
2006-270212 Oct 2006 JP
2006-270681 Oct 2006 JP
2006-270766 Oct 2006 JP
2006-285911 Oct 2006 JP
2006-295879 Oct 2006 JP
2006-302219 Nov 2006 JP
2006-309401 Nov 2006 JP
2006-311239 Nov 2006 JP
2006-323481 Nov 2006 JP
2006-339964 Dec 2006 JP
2007-007888 Jan 2007 JP
2007-13120 Jan 2007 JP
2007-28002 Feb 2007 JP
2007-043535 Feb 2007 JP
2007-048126 Feb 2007 JP
2007-65822 Mar 2007 JP
2007-79687 Mar 2007 JP
2007-81712 Mar 2007 JP
2007-096768 Apr 2007 JP
2007-102348 Apr 2007 JP
2007-116347 May 2007 JP
2007-122542 May 2007 JP
2007-150642 Jun 2007 JP
2007-150868 Jun 2007 JP
2007-159083 Jun 2007 JP
2007-159129 Jun 2007 JP
2007-166133 Jun 2007 JP
2007-172369 Jul 2007 JP
2007-172527 Jul 2007 JP
2007-228325 Sep 2007 JP
2007-266999 Oct 2007 JP
2007-272264 Oct 2007 JP
2007-287128 Nov 2007 JP
2007-295557 Nov 2007 JP
2007-312350 Nov 2007 JP
2007-324865 Dec 2007 JP
2008-033716 Feb 2008 JP
2008-72243 Mar 2008 JP
2008-083867 Apr 2008 JP
2008-097426 Apr 2008 JP
4069958 Apr 2008 JP
2008-107947 May 2008 JP
2008-148345 Jun 2008 JP
2008-519347 Jun 2008 JP
2008-160874 Jul 2008 JP
2008-197714 Aug 2008 JP
2008-288915 Nov 2008 JP
11-175678 Jan 2009 JP
2009-25870 Feb 2009 JP
2009-27291 Feb 2009 JP
2009-044715 Feb 2009 JP
3148168 Feb 2009 JP
2009-182630 Aug 2009 JP
2010-009196 Jan 2010 JP
4609604 Jan 2011 JP
9100176 Mar 1992 NL
9100347 Mar 1992 NL
9833142 Jul 1998 WO
9967754 Dec 1999 WO
0010122 Feb 2000 WO
0195242 Dec 2001 WO
0248980 Jun 2002 WO
02061675 Aug 2002 WO
02097723 Dec 2002 WO
03079305 Sep 2003 WO
2004036772 Apr 2004 WO
2004070879 Aug 2004 WO
2004072892 Aug 2004 WO
2005073937 Aug 2005 WO
2005091434 Sep 2005 WO
2005115849 Dec 2005 WO
2006045682 May 2006 WO
2006048663 May 2006 WO
2006114821 Nov 2006 WO
2007083574 Jul 2007 WO
2007083575 Jul 2007 WO
2007086130 Aug 2007 WO
2007097385 Aug 2007 WO
2007102360 Sep 2007 WO
2007105348 Sep 2007 WO
2007119310 Oct 2007 WO
2007125683 Nov 2007 WO
2007138857 Dec 2007 WO
2008007606 Jan 2008 WO
2008081699 Jul 2008 WO
2008126458 Oct 2008 WO
2008133018 Nov 2008 WO
2008140037 Nov 2008 WO
2008142957 Nov 2008 WO
2009011144 Jan 2009 WO
2009011376 Jan 2009 WO
2009011423 Jan 2009 WO
2009081719 Jul 2009 WO
2009110381 Sep 2009 WO
Related Publications (1)
Number Date Country
20120056001 A1 Mar 2012 US
Continuations (2)
Number Date Country
Parent 12326916 Dec 2008 US
Child 13295153 US
Parent PCT/JP2007/060605 May 2007 US
Child 12326916 US