A CD has a long, spiraled data track, which may be approximately 3.5 miles in length. This continuous data track originates from the central portion of the disk and spirals to the outer portion of the disk. The data is formed by molding features on the top surface of a polycarbonate plastic disk. While the dimensions of such features may vary between CDs and DVDs, they may be approximately 0.5 to 1.2 microns across. The centerlines of adjacent rings of the long, continuous data spiral on the CD may be separated by approximately 1.6 microns. The data features within the continuous data spiral appear as “pits” when viewed from above, but are “bumps” when viewed from below. During the data-reading process, the bumps are viewed from below by the optical pick-up unit (OPU) of the optical disk drive. The upper surface of the polycarbonate plastic disk into which the pits are molded is covered with an aluminum layer, which in turn is covered with an acrylic layer, and ultimately, a label.
During the process of reading data off the CD, a drive motor spins the disk. The drive motor may precisely rotate the disk between 200 and 500 rpm, depending on if an outer or an inner portion of the spiral is being read, respectively. The angular speed at which data passes the OPU may be fine-tuned to maintain a consistent speed at which data is read by the OPU. For example, where data is being read at a rate which is too fast or slow, slight modifications to the spindle motor may be made in response, to more nearly approximate the desired rate of disk speed rotation. Such feedback can be used to gradually decrease the speed of disk rotation as locations on the track which are progressively further from the center of the disk are read.
A sled carrying the OPU, which typically includes a laser, a lens system and a sensor, moves from an inner location to an outer location, as data is read. A sled motor guides movement of the sled carrying the OPU so that the laser's beam can follow the spiral data track molded into the CD from a position below the portion of the spiral being read. Due to the extremely small dimensions of the data elements within the spiral, the precision of the tracking mechanism is important.
The sled motor will not, without assistance, achieve the accuracy required to adequately position the OPU under the desired portion of the data spiral. Accordingly, tracking sensors provide constant feedback to the sled motor. The feedback may be based on the sensor's observation of the precise location of the data track spiral.
Even with the tracking sensors, the accuracy of the tracking mechanism may not be entirely adequate. To bring the accuracy of the OPU within even greater tolerances, deflection sensors may be needed, to coordinate the operation of a deflection mechanism by which the laser of the OPU may be deflected slightly. If required, the deflection mechanism may aim the laser at a slight angle, thereby compensating for slight errors in the position of the sled carrying the OPU. Because the deflection sensors and associated circuitry move elements having much less mass than the sled through much smaller distances, the deflection mechanism is able to fine-tune the operation of the OPU.
While the OPU is typically used to read data from the optical disk, recent advancements have allowed the OPU to apply an image to a label of a CD to which an appropriate coating has been applied to the label. The image may be applied by turning the CD up-side-down and placing it in the CD drive. Because the CD is up-side-down, the coating may be activated by contact of the laser within the OPU. Application of the laser activates chemicals contained within the coating to result in formation of the image.
Unfortunately, during the process of applying an image to the label, the OPU is difficult to position accurately. The tracking sensors and deflection sensors are not operable, due to the absence, on the label surface of the disk, of a spiraling data track of the type that these sensors were designed to sense. Accordingly, the angular speed of disk rotation and the angular orientation of the disk are difficult to know and control with precision. As a result, any image applied by the OPU to the label surface may be distorted and flawed, or the resolution of the image may be less than desired, or both.
DVDs are similarly constructed, but typically have several layers of polycarbonate plastic upon which several layers of data are molded. Accordingly, application of an image to a label on a DVD involves many of the same problems seen in applying an image to a label of a CD.
An optical disk includes a label region having writable material. Disk speed features are located in a manner which allows them to be readable when writing to the label region.
The following detailed description refers to the accompanying figures. In the figures, the left-most digit(s) of a reference number identifies the figure (Fig.) in which the reference number first appears. Moreover, the same reference numbers are used throughout the drawings to reference like features and components.
An optical disk is configured to allow application of an image to a label side of the disk. The disk includes features, which may be molded, silk screened or otherwise formed or applied, which provide disk orientation (i.e. the way the label side of the disk is oriented within an optical drive), rotational speed and angular orientation information (i.e. the direction a ray originating from the center of the disk and passing through a given point on the perimeter of the disk is pointed within the disk drive) during the image application process. The optical disk drive contains an encoder which monitors the features, thereby initially detecting disk orientation, and subsequently monitoring disk speed and angular orientation, thereby assisting in the application of the image to the label surface of the optical disk. In one exemplary implementation, disk speed relative to the OPU (i.e. the speed at which the media passes the OPU (optical pickup unit), resulting in a constantly varying RPM as the OPU moves radially outward) is held at 0.25 meters/second, to within +/−0.02%, by a spindle motor. This allows image application with quarter-pixel precision at 600 dpi (dots per inch) yielding an effective resolution of 2400 dpi. In part because of spindle motor quality issues, and in part because the disk speed relative to the OPU is a function of the radial distance of the OPU, adjustments to the spindle motor may be required at intervals during each revolution to maintain the precision required.
The labeling process can include reading features 110, which first provide information on disk orientation (i.e. which way is a given planar surface of the disk oriented within the disk drive), and then provide information on disk speed (angular or rotational speed, i.e. RPM) and disk angular orientation. In the exemplary optical disk 100, the features 110 are defined to allow observation while applying an image to the label side of the disk. Typically, the features are on the label side of the disk; however in alternate configurations, the features 110 could be defined on the data side of the disk, or on layers within the interior of the disk.
The features 110 of the exemplary optical disk 100 include a ring of disk speed features 112. When detected by an encoder (as will be seen below) the disk speed features 112 provide information on the speed of rotation of the optical disk 100. In the exemplary optical disk 100, the disk speed features 112 include molded areas spaced at intervals to provide a regular pattern of higher and lower light reflectivity. Exemplary detail of the structure of the molded disk speed features 112 is seen in
The features 110 of the exemplary optical disk 100 also include disk angular orientation features 114. When detected by an encoder (as will be seen below) the disk angular orientation features 114 provide information on the angular orientation (i.e. which direction a ray originating in the center of the disk and passing through a given point on the perimeter of the disk is pointed) of the optical disk 100 during rotation. The angular orientation of the disk is important as the image 108 is applied to the label region 106, since information about the angular orientation of the disk implies information about the angular orientation of the label region 106 during the image application process. In the exemplary disk 100, the disk angular orientation features 114 include molded areas spaced at intervals to provide an irregular pattern of higher and lower light reflectivity. Exemplary detail of the structure of molded features is seen in
The exemplary disk angular orientation features 114 of optical disk 100 include a larger feature 116 and smaller features 118 separated by flat, light-reflective areas of varying size. Because the pattern is irregular, and/or not symmetric about a number of radial axes, it is possible to determine the angular orientation of the disk 100 as it turns within an optical disk drive by observing the features 114. For example, where a single larger feature 116 and a plurality of smaller features 118 are present, the angular orientation of the disk may be readily determined.
The disk speed features 202 are similar to the disk speed features 112 (
The sensor or encoder 406 of
A disk 100 having an information side 702 is oriented to position the label side 704 for marking. The disk 100 is rotated by a disk or spindle motor 706, which is controlled by the spindle controller 708. An image is applied to the label area 106 (
In the exemplary optical disk drive 700, the encoder 406 is typically able to read information on the disk that is radially inside or outside a region readable by the OPU (optical pick-up unit) 710. For example, the encoder 406 can read data features 110 (
In the exemplary optical disk drive 700, the encoder 406 reads data by sending light 404 (
The controller 726 may execute software or firmware 728 to control the overall operation of the OPU 710, sled motor 714, spindle motor 706 and encoder 406. Firmware 728 code may configure the encoder 406 to read the molded disk speed features 112 and/or molded disk angular orientation features 114. Firmware code may also enable the OPU 710 to read disk angular orientation features 204 that are molded, printed and/or silk-screened onto the disk, typically within the label region 106.
At block 908, disk angular orientation features, 114, 204 or similar, are defined, typically to be readable from the label side of the disk. In a first alternative, seen at block 910, optically readable indicia, such as silk-screened markings resembling features 204 may be defined, typically on an outer layer of the disk. In a second alternative, seen at block 912, disk angular orientation features are molded into the optical disk. For example, the disk angular orientation features 114, 204 may be molded into inner or outer layers of a DVD disk, or may be molded into a radially inner location in a CD or DVD disk for reading by the encoder 406.
At block 914, the label region of the label side of the optical disk may be coated with an OPU-writable material. For example, a thermally reactive coating may be applied, thereby allowing the OPU to apply an image by reacting the coating.
Although the disclosure has been described in language specific to structural features and/or methodological steps, it is to be understood that the appended claims are not limited to the specific features or steps described. Rather, the specific features and steps are exemplary forms of implementing this disclosure. For example, while actions described in blocks of the flow diagrams may be performed in parallel with actions described in other blocks, the actions may occur in an alternate order, or may be distributed in a manner which associates actions with more than one other block. And further, while elements of the methods disclosed are intended to be performed in any desired manner, it is anticipated that computer- or processor-readable instructions, performed by a computer and/or processor, typically located within a printer, reading from a computer- or processor-readable media, such as a ROM, disk or CD ROM, would be a preferred means of performing all or part of the methods. Additionally, while reference has been made to both CDs and DVDs, most of the elements described herein apply to disks generally, and optical disks particularly. Accordingly, the references to CDs and DVDs are by way of example only; such examples being are representative of larger and more general concepts, typically involving variations on, and/or improvements of, any type of disk, such as an optical disk (e.g. CD or DVD). And also, while disk speed features 112 and disk angular orientation features 114 have been illustrated as distinct markings, they could be combined, if desired, in some implementations. Such a combination may be more efficient in some applications.
This patent application is related to U.S. patent application Ser. No. ______, titled “Optical Disk Drive Modified for Speed and Orientation Tracking”, having attorney docket number 200315232, filed concurrently herewith, commonly assigned herewith, and hereby incorporated by reference.