Hereinafter, an explanation is given using the drawings regarding a disk drive relating to the present invention, taking a rewritable DVD (Digital Versatile Disc) as an example.
In
Drive device 101 comprises an optical disk 111, a semiconductor laser 113 irradiating laser light 112, a disk temperature detection means 121 detecting the temperature of the disk surface, a drive temperature detection means 122 detecting the temperature of the drive device, a temperature difference computation means 123 computing the difference of the temperatures of the disk and the drive device, a strategy determination device 124 determining a strategy suited to the temperatures of the disk and the drive device, a laser driver 125 setting a determined strategy, and a signal processing part 131 processing signals recorded on optical disk 111. Numeral 141 designates a host managing the recorded information.
Numeral 151 designates a pickup which is an embodiment of a recording means which records on the optical disk. Drive temperature detection means 122 is mounted inside pickup 151 having semiconductor laser 113 and laser drive 125. As for this drive temperature detection means 122, it is further preferred that it is provided inside pickup 151 facing optical disk 111.
Disk temperature detection means 121 detects the temperature of the pickup 151 side face of optical disk 111 when optical disk 111 is installed in drive device 101.
By way of example, a thermopile is used as disk temperature detection means 121 and a thermistor is used as drive temperature detection means 122.
The thermistor has a resistance value which changes as a function of the temperature, and the temperature is obtained by making a conversion from the voltage value and the current value on the thermistor.
Moreover, the thermopile is a device which gets warmed up due to the effect of the heat which the infrared radiation has and which detects changes in the electrical properties of a component, based on the increase in component temperature. Using the properties of this thermopile and irradiating infrared radiation on the surface of the optical disk, the temperature of the optical disk surface is detected based on the reflected infrared radiation.
Here, since it is more valid, for the adjustment of the recording waveform and the like based on the temperature difference, to measure the temperature difference between semiconductor laser 113 and the disk surface at a closer position, semiconductor laser 113, disk temperature detection means 121 and drive temperature detection means 122 are arranged at respectively closer locations, and further, it is better for the temperature detection to have disk temperature detection means 121 and drive temperature detection means 122 at opposite positions. For that reason, it is also acceptable with a configuration in which disk temperature detection means 121 and drive temperature detection means 122 are integrated and moved to be matched to recording positions in a radial direction of the optical disk.
Further, the temperature sensor may be another device detecting the temperature, irrespective of whether it is contacting or non-contacting.
Next, the operation of a recording will be explained using
If information to be recorded is supplied from host 141 to signal processing part 131, encoding is carried out to perform scramble, code addition and modulation in signal processing part 131. The scramble randomizes the data to prevent the continuation of a fixed pattern. The code addition adds error correction code in order to carry out detection and correction of errors due to noise or erroneous operation in the communication path. The modulation prevents the continuation of binary number 0's or 1's and converts code by means of a modulation law.
The encoded signal is recorded as mark parts and space parts on the disk in the 3T to 14T range, if the recording operation clock is expressed in periods of 1T. In order to carry out the recording, a strategy corresponding to the mark length and a power level appropriate for the disk recording layer are set.
The initial emission pulse present in strategy 401 is called a front pulse 411 and the group of pulses following thereafter is called a multipulse 412. Moreover, the last emission pulse is called a final pulse 413 and the low-power pulse after final pulse 413 is called a final cleaning pulse 414. Multipulse 412 emits light in 1T periods, the recording mark length differing by the number of emission pulses. If the recording mark length is taken to be nT (n being a natural number: 3 to 11 and 14), the number of multipulses becomes n−3. Consequently, if front pulse 411 and final pulse 413 are added, the number of strategy emission pulses for a mark length of nT becomes n−1. Further, the number of pulse emissions is an example, another number being acceptable.
Also, the maximum power present in strategy 401 is called a write power level 415, the intermediate power is called an erase power level 416, the lowest power is called a cleaning power level 417, and the level where no light is emitted is called an extinction level 418.
When write power level 415 is irradiated on the optical disk, the temperature of the recording layer increases to or beyond the melting point, and a state is entered in which the atomic arrangement is disordered. When the subsequent cleaning pulse 417 is irradiated, the atomic arrangement remains disordered due to abrupt cooling and enters an amorphous state. As for this amorphous state, a mark 421 is formed since the reflectance becomes lower than for the other state.
Moreover, if erase power 416 is irradiated on the optical disk, since it is maintained for a time leading to a temperature at or above the crystallization temperature, the amorphous state of the mark 421 portion again enters a crystalline state, making it possible to eliminate the mark 421 part, so a space 422 in a crystalline state with high reflectance is formed. Further, even if erase power level 416 is irradiated on space 422, space 422 is formed for a second time. Further, in
On a disk where mark 421 and space 422 have been formed, a high reflected light level and a low level can be obtained if read power at a level lower than erase power 416 is irradiated. By binarizing this, there can be obtained binarized reproduction levels: a low level 431 and a high level 432. By making this correspond to the binary numbers 0 and 1, reproduction information can be obtained.
When carrying out this binarization, the low level 431 time period and the high level 432 time period change as a function of the position of a leading edge 423 and a trailing edge 424 which are the ends of mark 421. To obtain appropriate recording quality, it is desirable for the positions of this leading edge 423 and this trailing edge 424 to be in appropriate positions.
Strategy determination means 124 in
In
In
In
As for an instance which can be cited as an example of the influence of heat accumulation, there is the phenomenon that the recorded mark ends up shrinking due to the fact that a greater heat quantity than normally is added. That is a phenomenon which occurs because the recording layer, after reaching the melting point, cools down slowly.
In order to solve this, a first position 512 of the light emission launch in front pulse 411 in
Further, an illustration by example has been given regarding the launch position of front pulse 411 and the termination position of final cleaning pulse 414, but launch positions and termination positions for pulses other than that are acceptable, and the number of steps by which modifications are carried out may be different from 1. Also, first mark 521 is smaller than second mark 522, but it may be bigger. What has an effect on the improvement on the recording quality is in particular that the front pulse width and the cleaning width after the final pulse are changed, rather than changes in the intermediate pulse widths.
By proceeding in this way, the determined strategy is set by laser driver LDD (Laser Diode Driver) 125. And then, in response to the setting of the LDD, laser light 112 is irradiated by semiconductor laser 113. By making an implementation in the way mentioned above, it is possible to determine a strategy matching the temperature of the disk, and an appropriate recording is possible.
In
The basic configuration is the same as that of Embodiment 1 in
a three-dimensional pickup 711 capable of changing the irradiation angle of laser light 112, a laser inclination control means 712 controlling the irradiation angle of the laser light, and a disk inclination measurement means 713 measuring the inclination of the disk. The basic operation is the same as that of Embodiment 1 in
The adjustment method irradiates laser light 112 on the surface of optical disk 111 while changing the angle of three-dimensional pickup 711 and, while measuring the inclination of optical disk 111 with disk inclination measurement means 712, takes the angle at which the return light of the laser is a maximum to be the appropriate irradiation angle. The adjustment is implemented at least at two points on a path from the inner circumference of optical disk 111 to the outer circumference.
By making an implementation in the way mentioned above, laser light can be irradiated on the disk at an appropriate angle and it is possible to record appropriately, even if there temporarily arises an inclination of the disk based on the temperature difference between the disk and the drive device.
In
As a first example of determining the power level, OPC (Optimum Power Control) can be cited. This consists in performing the recording while gradually changing the power level for each sector in the OPC domain of the disk and reading the recorded portions. From the values of recording performance indicators such as the modulation factor, asymmetry, or jitter obtained from the read signal, the power level of well recorded sectors is selected. The power level may be approximated with a quadratic curve or a curve of higher degree and taking the appropriate power level to be the value obtained therefrom. Also, the recording performance indicator value may be any value capable of objectively evaluating the performance.
Also, as a second example of determining the power level, there can be cited the method of preparing a table 301, as in
Alternatively, this coefficient, as shown in a power coefficient determination means 901 of
Dx=Tm−Tx,
and the difference Dy of the disk surface temperature Ty during a transient state of the temperature and the melting point Tm,
Dy=Tm−Ty,
is given by
Axy=Dy/Dx,
and it is acceptable to set Axy to be multiplied by some coefficient α in power coefficient table 301.
Further, the delimitation, upper and lower limits, and coefficients of the disk temperature and the drive device temperature in power coefficient table 301 may have values other than these.
In
The aforementioned description was made regarding the embodiments, but the present invention is not limited thereto, and the fact that it is possible to carry out various changes and corrections within the scope of the spirit and the appended claims of the present invention is apparent to a person skilled in the art.
Number | Date | Country | Kind |
---|---|---|---|
2006-133207 | May 2006 | JP | national |