The present disclosure relates to the technical field of optical imaging, and particularly, to an optical display assembly and an intelligent wearable device.
With the development of technology, intelligent wearable devices, such as AR glasses or VR glasses, have gradually entered people's lives. Generally, people wear the intelligent wearable device on their heads to view an image projected by an optical-mechanical module located on two sides, thereby achieving virtual reality or augmented reality.
Embodiments of the present disclosure provide an optical display assembly and an intelligent wearable device.
The optical display assembly provided by the embodiments of the present disclosure includes an optical-mechanical module, an optical transmission element, and a light path altering element. The optical-mechanical module is configured to cast light carrying an image. The optical transmission element has a first surface, a second surface opposite to the first surface, and a third surface connecting the first surface with the second surface. The optical transmission element is configured to receive light on the first surface and reflect the light in an interior between the first surface and the second surface. The first surface is at a first angle with respect to a light-emitting surface of the optical-mechanical module. The light path altering element is disposed between the optical transmission element and the optical-mechanical module. The light path altering element is configured to receive the light and cast the light onto the first surface. The light exits the first surface. A distance between the third surface and a center of a position at which the light exits the first surface is within a predetermined range.
The intelligent wearable device provided by the embodiments of the present disclosure includes frames, legs, and at least one optical display assembly according to any of the above embodiments of the present disclosure. The optical-mechanical module and the light path altering element are disposed in one of the legs. The optical transmission element is disposed in one of the frames.
Additional aspects and advantages of the present disclosure will be provided at least in part in the following description, or will become apparent at least in part from the following description, or can be learned from practicing of the present disclosure.
The above and/or additional aspects and advantages of the present disclosure will become more apparent and more understandable from the description of embodiments taken in conjunction with the accompanying drawings, in which:
Embodiments of the present disclosure will be described in detail below with reference to examples thereof as illustrated in the accompanying drawings, throughout which same or similar elements, or elements having same or similar functions, are denoted by same or similar reference numerals. The embodiments described below with reference to the drawings are illustrative only, and are intended to explain, rather than limiting, the present disclosure.
Since a human head is usually narrow in the front and wide in the back, people may pull two sides of an intelligent wearable device apart after wearing the intelligent wearable device, and thus people cannot see an image projected by an optical-mechanical module in an optimal viewing angle.
Referring to
In some embodiments, the distance between the center of the position at which the light exits the first surface 21 and the third surface 25 is equal to a distance between a central axis of the optical transmission element 20 and the third surface 35.
In some embodiments, the light exits perpendicularly to the first surface 21.
In some embodiments, the distance between the center of the position at which the light exits the first surface 21 and the third surface 35 is smaller than the distance between the central axis of the optical transmission element 20 and the third surface 35.
In some embodiments, the light exits at a second angle with respect to the first surface 21.
In some embodiments, the optical transmission element 20 is configured to cast the light from the first surface 21 to a human eye. The center of the position at which the light exits the first surface 21 is located within an orthographic projection of the human eye on the first surface 21.
In some embodiments, the optical transmission element 20 is configured to cast the light from the first surface 21 to a human eye, and the center of the position at which the light exits the first surface 21 and the optical-mechanical module 10 are located on two sides of the orthographic projection, respectively.
In some embodiments, the light path altering element 30 has an incident surface 31 and an emergent surface 32; the incident surface 31 is parallel to the light-emitting surface 11; and the light perpendicularly enters the first surface 21 subsequent to exiting the emergent surface 32.
In some embodiments, the light path altering element 30 has the incident surface 31 and the emergent surface 32; the incident surface 31 is parallel to the light-emitting surface 11; and the light obliquely enters the first surface 21 subsequent to exiting the emergent surface 32.
In some embodiments, the light path altering element 30 is combined with the optical-mechanical module 10 through a common carrier, and the light path altering element 30 is spaced apart from or attached to the optical-mechanical module 10.
In some embodiments, a one-piece structure is formed by the light path altering element 30 and the optical-mechanical module 10 through a threaded connection, gluing, welding, or snapping. The one-piece structure is mounted in the common carrier.
Referring to
In some embodiments, the distance between the center of the position at which the light exits the first surface 21 and the third surface 25 is equal to a distance between a central axis of the optical transmission element 20 and the third surface 35.
In some embodiments, the light exits perpendicularly to the first surface 21.
In some embodiments, the distance between the center of the position at which the light exits the first surface 21 and the third surface 35 is smaller than the distance between the central axis of the optical transmission element 20 and the third surface 35.
In some embodiments, the light exits at a second angle with respect to the first surface 21.
In some embodiments, the optical transmission element 20 is configured to cast the light from the first surface 21 to a human eye, and the center of the position at which the light exits the first surface 21 is located within an orthographic projection of the human eye on the first surface 21.
In some embodiments, the optical transmission element 20 is configured to cast the light from the first surface 21 to a human eye, and the center of the position at which the light exits the first surface 21 and the optical-mechanical module 10 are located on two sides of the orthographic projection, respectively.
In some embodiments, the light path altering element 30 has an incident surface 31 and an emergent surface 32; the incident surface 31 is parallel to the light-emitting surface 11; and the light perpendicularly enters the first surface 21 subsequent to exiting the emergent surface 32.
In some embodiments, two optical display assemblies 100 are provided. Two optical-mechanical modules 10 and two light path altering elements 30 are disposed in two legs 300, respectively. Two optical transmission elements 20 are disposed in two frames 200, respectively.
Referring to
In some embodiments, referring to
The optical display assembly 100 includes the optical-mechanical module 10, the optical transmission element 20 and the light path altering element 30. The optical-mechanical module 10 and the light path altering element 30 are disposed in the leg 300. The optical transmission element 20 is disposed in the frame 200. The optical-mechanical module 10 is configured to cast light carrying the image. The optical transmission element 20 has the first surface 21, the second surface 23 opposite to the first surface 21, and the third surface 25 connecting the first surface 21 to the second surface 23. The optical transmission element 20 is configured to receive the light on the first surface 21 and reflect the light in the interior between the first surface 21 and the second surface 23. The first surface 21 is at the first angle γ with respect to the light-emitting surface 11 of the optical-mechanical module 10. The light path altering element 30 is disposed between the optical transmission element 20 and the optical-mechanical module 10. The light path altering element 30 is configured to receive the light and cast the light onto the first surface 21. The light exits the first surface 21. The distance between the center of the position at which the light exits the first surface 21 and the third surface 25 is within the predetermined range.
The number of the optical display assembly 100 may be one or two. When one optical display assembly 100 is provided, the optical-mechanical module 10 and the light path altering element 30 are disposed in one of the legs 300, and the optical transmission element 20 is disposed in the frame 200 corresponding to the leg 300. In this case, the intelligent wearable device 1000 can provide a user with a virtual image or an augmented reality image at one side of vision. The image projected by the optical-mechanical module 10 will not enter a range of the other side of vision of the user, thereby preventing the user's vision from being influenced in a specific occasion. For example, the specific occasion may be that the user is driving a car or a vehicle such as an aircraft, and the user does not want the virtual image to block one side of vision in front of the field of view.
When two optical display assemblies 100 are provided, two optical-mechanical modules 10 and two light path altering elements 30 are disposed in two legs 300, respectively, and two optical transmission elements 20 are disposed in two frames 200, respectively. In this case, the intelligent wearable device 1000 can provide the user with the virtual image or the augmented reality image at two sides of vision, thereby enhancing the user's sensory immersion in a specific usage scenario such as playing game.
In some embodiments, the optical-mechanical module 10 includes a structural assembly, a display screen, and a lens. Both of the display screen and the lens are disposed within the structural assembly. The structural assembly is configured to protect the display screen and the lens, for example, against dust, water, drops, and the like. The display screen is configured to display an image. The lens is disposed in front of the display screen to converge or diffuse the light emitted from the display screen. The optical-mechanical module 10 is configured to cast the light carrying the image. That is, the optical-mechanical module 10 is configured to amplify and output the image displayed by the display screen. It should be noted that, the light projected by the optical-mechanical module 10 into the optical transmission element 20 is located within a specified range on the first surface 21. For example, a size of the specified range (when the specified range is rectangular, the size is a width thereof; and when the specified range is circular, the size is a radius thereof) may be smaller than or equal to 5 mm, or smaller than or equal to 10 mm, or smaller than or equal to 15 mm, etc.
The first angle γ may be an acute angle (a dotted line in
The optical transmission element 20 is configured to allow the light carrying the image and emitted from the optical-mechanical module 10 to perform a total reflection in an interior of the optical transmission element 20 and then exit the light-outgoing position of the optical transmission element 20. The optical transmission element 20 includes an optical waveguide such as a waveguide sheet, an optical fiber, etc. The optical waveguide may be made of glass or plastic. In the present embodiment, the optical transmission element 20 is the waveguide sheet. In the intelligent wearable device 1000 according to the embodiments of the present disclosure, the optical transmission element 20 (i.e., the optical waveguide) is thin and highly permeable to an external light. Thus, light entering the interior of the optical transmission element 20 from the first surface 21 advances in the light waveguide by multiple reflections like a swimming snake without being transmitted out. The optical transmission element 20 couples the light into a glass substrate thereof, transmits the light to the front of the human eye based on the principle of “total reflection” and then emits the light from the first surface 21. In the entire transmission process, the optical transmission element 20 is only responsible for transmitting the image projected by the optical-mechanical module 10. The human eye can see the virtual image projected by the optical-mechanical module 10. At the same time, due to a high transmissivity of the optical transmission element 20, the user may also see the real world, thus enabling a reality enhancement effect. Due to the presence of the optical transmission element 20 in the intelligent wearable device 1000 according to the present disclosure, the optical-mechanical module 10 can be disposed away from the frame 200, for example, disposed on a side surface of the intelligent wearable device 1000, namely, on the leg 300. In this way, an obstruction of external vision by the optical-mechanical module 10 can be greatly reduced and a weight distribution can be more ergonomic, thus improving a wearing experience of the intelligent wearable device 1000.
The light path altering element 30 may be a prism, a lens, an optical grating, a parallel flat plate, a Fresnel's zone plate, birefringent crystals, liquid crystals, etc., and it is configured to alter a light transmission path. In the embodiments of the present disclosure, the light path altering element 30 is a prism.
The optical axis of the optical assembly formed by the light path altering element 30 and the optical-mechanical module 10 remains parallel to the central axis of the leg 300, the aforementioned problem that the leg 300 cannot wrap the optical-mechanical module 10 with the optical axis perpendicular to the optical transmission element 20 can be solved. However, in this case, the light from the optical-mechanical module 10 cannot perpendicularly enter and exit the optical transmission element 20 and cannot enter the human eye, and thus people may be sill unable to view the image projected by the optical-mechanical module 10 in the optimal viewing angle. In this regard, in the embodiments of the present disclosure, the light path altering element 30 and the optical transmission element 20 cooperate to keep the distance between the center of the position at which the light exits the first surface 21 and the third surface 25 within the predetermined range. The predetermined range may be a distance to the third surface 25, ranging from 10 mm to 30 mm, including 10 mm, 15 mm, 18 mm, 20 mm, 22 mm, 26 mm, 28 mm, 29 mm, and 30 mm, etc. The predetermined range may be a range indicated by a dotted circle as illustrated in
In summary, in the optical display assembly 100 and the intelligent wearable device 1000 according to the present disclosure, by utilizing the first angle γ included between the light-emitting surface 11 of the optical-mechanical module 10 and the first surface 21 of the optical transmission element 20, the optical display assembly 100 can easily match the human head, which is narrow in the front and wide in the back. At the same time, in the optical display assembly 100 and the intelligent wearable device 1000 according to the present disclosure, by additionally providing the light path altering element 30 between the optical-mechanical module 10 and the optical path transmission element 20, and by changing a transmission direction of the light emitted from the optical-mechanical module 10 through the light path altering element 30, the light can enter the optical transmission element 20 at one end of the first surface 21, and then exit the optical transmission element 20 at the other end of the first surface 21 after being transmitted within the optical transmission element 20; and the distance between the center of the light-outgoing position and the third surface 25 is within the predetermined range, such that the user can view the image projected by the optical-mechanical module 10 from in the optimal viewing angle.
Referring to
Further referring to
Referring to
In some embodiments, further referring to
Referring to
Referring to
In some embodiments, the orthographic projection of the human eye on the first surface 21 is indicated by a dotted circle in
Further referring to
In one example, the human eye is located directly opposite to the central axis 27 of the optical transmission element 20, so the light emitted perpendicularly from the first surface 21 can enter the human eye perpendicularly. In this case, the user can see the image projected by the optical-mechanical module 10 in the optimal viewing angle, and the route of the light casting to the human eye is the shortest, which shortens the time for the user to see the projected image, thereby providing the optimal user experience.
Referring to
In some embodiments, the orthographic projection of the human eye on the first surface 21 is indicated by a dotted circle in
Referring further to
In an example, the human eye is located directly opposite to the central axis 27 of the optical transmission element 20, and thus the light emitted obliquely from the first surface 21 may obliquely enter the human eye. In this case, the user can see the image projected by the optical-mechanical module 10 in the optimal viewing angle, and the image projected by the optical-mechanical module 10 is located at one side of the optical transmission element 20 away from the optical-mechanical module 10, rather than directly in front of the user. Thus, it would not block the user's field of view, preventing the user's vision from being influenced in a specific occasion, thereby ensuring the safety for the user using the intelligent wearable device 1000 in the specific occasion.
Referring to
In another embodiment, the light path altering element and the optical-mechanical module may form a one-piece structure through the threaded connection, gluing, welding, or snapping. In this case, the one-piece structure is mounted in the common carrier. In this case, the light-emitting surface 11 and the incident surface 31 may also be attached to each other (as illustrated in
It should be noted that the carrier described herein can be the leg 300 or other housing structure, which is not limited herein.
Number | Date | Country | Kind |
---|---|---|---|
202010429949.9 | May 2020 | CN | national |
202020858903.4 | May 2020 | CN | national |
The present application is a continuation of International Application No. PCT/CN2021/085355, filed on Apr. 2, 2021, which claims priorities and benefits of Chinese Patent Application No. 202010429949.9 and Chinese Patent Application No. 202020858903.4, both filed on May 20, 2020 to China National Intellectual Property Administration. The disclosures of the above-mentioned applications are hereby incorporated by reference in their entireties.
Number | Date | Country | |
---|---|---|---|
Parent | PCT/CN2021/085355 | Apr 2021 | US |
Child | 17979529 | US |