The present application is based on, and claims priority from, Taiwan Application Serial Number 93104824, filed on Feb. 25, 2004, the disclosure of which is hereby incorporated by reference herein in its entirety.
1. Field of Invention
The present invention relates to an optical drive controller chip and a method for the optical drive controller chip to send a command message in advance. More particularly, the present invention relates to an optical drive controller chip for sending a plurality of command messages to a decoder module and the transmission method thereof.
2. Description of Related Art
In the field of video compression, the MPEG standard is one of the most popular standards. In the MPEG standard, the MPEG 2 standard can provide high quality video, and therefore, it is the most popular video standard in the market. The data involved in video compatible with MPEG 2 standard is huge, so a high capacity storage medium is needed, such as a DVD.
In the process of playing a DVD, the control of a servo motor is needed to move the laser pick-up to the right position. Thus, the right data can be read from the DVD. Moreover, the data read from the DVD has to be quickly and efficiently decoded according to the MPEG 2 standard, so that the MPEG 2 video is played smoothly without blocking or delayed effect.
The calculation for decoding an MPEG 2 video is very complex. If the decoding process is performed by software, blocking and delays may happen because of the speed limits of the central processing unit. If the decoding process is performed by hardware, the MPEG 2 decoding, the DVD decoding, and the control of the servo motor must cooperate very well. Therefore, how to design a hardware for driving a servo motor, decoding the content in the optical disk, performing the MPEG 2 decoding, and utilizing the advantages of SOC (system on chip) to play a DVD very fluently is in great need.
The MPEG module 106 obtains the data read from the optical disk and decodes the data according to an MPEG standard. The MPEG standard is, for example, a MPEG 2 standard. The first central processing unit 102 controls the MPEG module 106. There is an IDE (Integrated Drive Electronics) interface 114 between the MPEG module 106 and the decoder module 108. Therefore, communication between the MPEG module 106 and the decoder module 108 must be via the IDE interface 114.
Next, the decoder module 108 updates the device, prepares data, and sends an update device signal 310 to the ATAPI interface 302. Before sending next ATAPI command message 312, the MPEG module 106 sends a read device status signal 314 to make sure that the decoder module 108 is ready for receiving the ATAPI command message 312. Next, the MPEG module 106 sends the ATAPI command message 312. Next, the MPEG module 106 and the decoder module 108 repeat the same handshaking procedure and read the data on the optical disk and perform MPEG 2 decoding.
As mentioned above, in
A method for an optical drive controller chip to send a command message in advance is described. The method includes the following steps. First, a command message is sent from a MPEG module to a decoder module. Next, after the decoder module receives the command message, data on an optical disk is read and stored in a memory, so that the data is accessible to the MPEG module. Next, after the data is stored in the memory, the decoder module sends an acknowledgement message to the MPEG module. Next, without receiving the acknowledgement message, the MPEG module directly sends next command message to the decoder module according to a predetermined rate. Next, the MPEG module accesses the data stored in the memory to perform a decoding process according to an MPEG standard and displays the decoded video.
An optical drive control circuit is also described. The optical drive control circuit includes at least one decoder module, one MPEG module, and a central processing unit.
The decoder module receives a plurality of command messages. After the decoder module receives a command message, the decoder module reads data and stores the data in a memory. When the data is stored in the memory, the decoder module sends an acknowledgement message.
Without receiving the acknowledgement message, the MPEG module directly sends the command messages. The MPEG module accesses the data stored in the memory. The central processing unit controls and coordinates the decoder module and the MPEG module.
It is to be understood that both the foregoing general description and the following detailed description are examples, and are intended to provide further explanation of the invention as claimed.
The accompanying drawings are included to provide a further understanding of the invention, and are incorporated in and constitute a part of this specification. The drawings illustrate embodiments of the invention and, together with the description, serve to explain the principles of the invention. In the drawings,
Reference will now be made in detail to the present preferred embodiments of the invention, examples of which are illustrated in the accompanying drawings. Wherever possible, the same reference numbers are used in the drawings and the description to refer to the same or like parts.
After the data is stored in the memory 208, the decoder module 206 sends an acknowledgement message 404 to the MPEG module 204. When the MPEG module 204 has not yet received the acknowledgement message 404, the MPEG module 204 is in an unacknowledged status.
In the unacknowledged status, the MPEG module 204 directly sends an ATAPI command message 406 to the decoder module 206 at the rate mentioned above. That is to say, without waiting to receive the acknowledgement message 404, the MPEG module 204 decides by itself to send the ATAPI command message 406. In contrast to the command sequence shown in
Because the time the ATAPI command message 406 is sent is earlier than the time the MPEG module 204 receives the acknowledgement message 404, the decoder module 206 is able to receive the ATAPI command message 406 earlier. Therefore, the decoder module 206 is capable of moving the laser pick-up to the right position earlier. The time for the decoder module 206 to wait for the ATAPI command message 406 is saved. Therefore, the image is not blocked or delayed.
The way of determining the rate of sending the ATAPI command messages to the decoder module 206 is described in the following example. The MPEG module 204 calculates the capacity of the memory 208 in advance, cooperates with the speed of the laser pick-up to move to the right position, and further cooperates with the frequency of the access that the MPEG module 204 itself makes to read the data stored in the memory 208. Thus, the rate of sending the ATAPI command messages is obtained. The decoder module 206 is able to inform the pick-up to move to the right position in advance and the data is also stored in the memory 208 in advance. The process of storing the data in the memory 208 in advance is called pre-fetch.
In
In the command sequence shown in
Although the present invention has been described in considerable detail with reference to certain preferred embodiments thereof, other embodiments are possible. Therefore, their spirit and scope of the appended claims should not be limited to the description of the preferred embodiments contained herein.
It will be apparent to those skilled in the art that various modifications and variations can be made to the structure of the present invention without departing from the scope or spirit of the invention. In view of the foregoing, it is intended that the present invention cover modifications and variations of this invention provided they fall within the scope of the following claims and their equivalents.
Number | Date | Country | Kind |
---|---|---|---|
93104824 A | Feb 2004 | TW | national |
Number | Name | Date | Kind |
---|---|---|---|
5654949 | Nonaka et al. | Aug 1997 | A |
5991251 | Sakurai et al. | Nov 1999 | A |
6418099 | Yamamoto | Jul 2002 | B2 |
6466736 | Chen et al. | Oct 2002 | B1 |
7190880 | Cookson et al. | Mar 2007 | B2 |
7327934 | Kitani | Feb 2008 | B2 |
Number | Date | Country |
---|---|---|
1560845 | Jan 2005 | CN |
763944 | Mar 1997 | EP |
1071255 | Jan 2001 | EP |
261195 | Sep 2006 | TW |
Number | Date | Country | |
---|---|---|---|
20050185717 A1 | Aug 2005 | US |