The present invention relates to an optical element and a spectroscopic device for use in an optical communication system, an optical measuring instrument, etc.
Increase in capacity of an optical fiber communication network has been intensely demanded with the rapid advance of popularization of the Internet in recent years. Development of WDM (wavelength division multiplexing) communication as means for increasing the capacity has been advanced rapidly. In WDM communication, optically functional elements such as an optical demultiplexer, a filter and an isolator excellent in wavelength selectivity are required because various kinds of information are transmitted individually by light having slightly different wavelengths. It is a matter of course that mass production, miniaturization, integration, stability, etc. are strongly required of the functional elements.
An optical demultiplexer (or a spectroscopic device) is used for demultiplexing/detecting an optical signal multiplexed with a plurality of wavelengths artificially as in wavelength division multiplexing optical communication or for spectrally analyzing target light as in spectrometry. The optical demultiplexer needs spectroscopic elements such as a prism, a wavelength filter, and a diffraction grating. Particularly, the diffraction grating is a typical spectroscopic element. For example, a silica or silicon substrate having a periodic micro prismatic structure formed in its surface is used as the diffraction grating. Diffracted light rays generated by the periodic micro prismatic structure interfere with one another, so that light at a specific wavelength exits in a specific direction. This property is used for the spectroscopic element.
A reflection diffraction grating satisfies the equation:
sin θi+sin θo=mλ/d
in which m is the order of diffraction of the diffraction grating, d is a grating constant, λ is a wavelength used, θi is the angle between input light (an optical axis 5 of an optical fiber) and a line normal to the surface in which the diffraction grating is formed, and θo is the angle between output light and the normal line.
When the wavelength λ is changed by Δλ while θi is kept constant, the positional change Δx of each light ray which reaches an acceptance surface far by a distance L from the diffraction grating is given by the following equation.
Δx=(Lm/(d·cos θo))·Δλ
Accordingly, signals separated by wavelengths can be obtained if acceptance units are arranged on the acceptance surface at intervals of a positional pitch calculated in accordance with a wavelength pitch by the aforementioned equation.
An output angle from the diffraction grating, however, has little dependence on wavelength. Assume the case where light, for example, having wavelengths arranged at intervals of 0.8 nm (equivalent to a frequency pitch of 100 GHz) in a 1.55 μm-wavelength band used in optical communication needs to be demultiplexed. When the order m of diffraction is 25 in the condition that the input angle θi is 71.5° whereas the output angle θo is 38.5°, the grating constant d of the diffraction grating is 24.7 μm. The change of the output angle obtained in accordance with the wavelength pitch of 0.8 nm in this system is only about 0.06°. If the light is to be separably accepted by acceptance elements arranged at intervals of 50 μm, a distance L of 48 mm is required.
That is, generally, the positional change Δx of a light spot on the acceptance surface needs to be not smaller than the order of tens of μm because each acceptance unit has a predetermined size. Because m and d which are constants of the diffraction grating cannot be changed largely, the distance L needs to be made large in order to obtain a necessary value of Δx in accordance with a small wavelength change Δλ. Hence, there is a problem that device size cannot but become large in order to improve the performance of the optical demultiplexer using the diffraction grating.
The invention is developed to solve the problem and an object of the invention is to provide an optical element by which a larger angular change than that obtained by a diffraction grating is generated in accordance with a wavelength change to thereby make it possible to miniaturize a spectroscopic optical system.
An optical element according to the invention is constituted by a multilayer structure containing a periodic structural portion as at least one region constituted by repetition of a predetermined period, wherein an end surface of the multilayer structure not parallel to layer surfaces of the multilayer structure is used as a light input surface whereas one or each of opposite surfaces of the multilayer structure parallel to the layer surfaces is used as a light output surface, or one of opposite surfaces of the multilayer structure parallel to the layer surfaces is used as a light input surface whereas an end surface of the multilayer structure not parallel to the layer surfaces is used as a light output surface. The periodic structural portion of the multilayer structure can be regarded as a one-dimensional photonic crystal. In order to form the optical element according to the invention, it is necessary to satisfy the following conditions (1) and (2):
0<ks·λ0/(2π·ns)<1 (1)
which is the condition to be satisfied in a direction that is parallel to the layer surfaces of the multilayer structure and that does not have the periodic structural portion, wherein λ0 is the wavelength in vacuum of used light, ks is the magnitude of a wave number vector in a coupling band (a band which is capable of coupling and which is not the lowest) of the photonic crystal in accordance with the wavelength λ0, and ns is the refractive index of a medium taken at the wavelength λ0 and brought into contact with a surface of the multilayer structure which serves as the light output surface or the light input surface; and
0.2≦λ0/(a·nM2)≦0.4 (2)
in which a is the length of one period of the periodic structural portion of the multilayer structure in accordance with the wavelength λ0, and nM is the average refractive index in one period of the periodic structural portion in accordance with the wavelength λ0.
Preferably, the coupling band (the band which is capable of coupling and which is not the lowest) is the second lowest coupling band.
Preferably, the condition (1) is further limited within the following range.
cos 60°≦ks·λ0/(2π·ns)≦cos 20°
Preferably, refractive indices of a plurality of substances constituting the periodic structural portion of the multilayer structure are formed so that the ratio of the maximum refractive index to the minimum refractive index at the wavelength λ0 is not smaller than 1.2 but not larger than 5.0. Preferably, one period of the periodic structural portion of the multilayer structure is constituted by a combination of layers made of different materials respectively. Preferably, each of boundaries between layers constituting the multilayer structure may be formed as a layer which varies continuously in terms of composition or characteristic. Preferably, the number of repeated periods in the periodic structural portion of the multilayer structure is not smaller than 10.
The end surface through which light is input into the multilayer structure may be perpendicular to the layer surfaces of the multilayer structure or the surface through which light is output from the multilayer structure may be perpendicular to the layer surfaces of the multilayer structure.
The multilayer structure may be selected to satisfy the conditions:
0<ks·λ0/(2π·ns1)<1, and
1<ks·λ0/(2π·ns2)
in which ns1 and ns2 (ns2<ns1) are refractive indices of two media abutting on opposite surfaces of the multilayer structure. In this case, refracted light is output to only the medium side having the refractive index ns1.
The multilayer structure may be selected to satisfy the conditions:
0<ks·λ0/(2π·ns1)<1, and
0<ks·λ0/(2π·ns2)<1
in which ns1 and ns2 (ns2≦ns1) are refractive indices of two media abutting on opposite surfaces of the multilayer structure. In this case, refracted light is output to the sides of the both media.
The multilayer structure can be produced in such a manner that an optical multilayer film is formed on a substrate which is transparent to a used wavelength. Generally, one of opposite surfaces of the multilayer structure abuts on the substrate whereas the other surface abuts on an air or vacuum layer.
An intermediate layer having a refractive index lower than ns may be formed between the periodic structural portion of the multilayer structure and a medium (refractive index: ns) abutting on a surface serving as the light output surface or the light input surface. Preferably, the intermediate layer has such a thickness that evanescent wave generated from the surface of the periodic structural portion of the multilayer structure can reach the medium through the intermediate layer.
Incidentally, the optical element according to the invention is used when the wavelength λ0 is in a range of from 200 nm to 20 μm, both inclusively.
The optical element constituted by the multilayer structure can be used for forming a spectroscopic device. That is, there can be provided a spectroscopic device having: the optical element constituted by the multilayer structure; a unit for inputting mixture light flux of a plurality of wavelengths into the optical element through an end surface of the periodic structural portion of the multilayer structure; and a unit for detecting light rays output from a light output surface of the multilayer structure at angles different in accordance with the wavelengths.
The optical element may be constituted by a multilayer structure which is formed on a substrate transparent to the wavelength λ0 so that a surface of the multilayer structure opposite to the substrate abuts on an air or vacuum layer and which satisfies the conditions:
0<ks·λ0/(2π·ns1)<1, and
1<ks·λ0/(2π·ns2)
in which ns1 is the refractive index of the substrate, and ns2 is the refractive index of the air or vacuum layer. In this case, there can be provided a spectroscopic device in which refracted light is output to only the substrate side. Light rays output to the substrate side are refracted by a surface of the substrate so as to be output to the air or vacuum layer.
The present disclosure relates to the subject matter contained in Japanese patent application No. P2002-041160 (filed on Feb. 19, 2002), which is expressly incorporated herein by reference in its entirety.
Embodiments of the invention will be described below specifically.
Among optically functional elements, an optical element constituted by a multilayer film which is made of thin films each having a thickness substantially equal to or smaller than the wavelength of light and laminated on a substrate such as silica or glass and which is used as an anti-reflection film, a polarized light separating filter, a wavelength selecting filter or the like has been already put into practical use. The optical element is used widely as an optically functional element.
Incidentally, in most cases, the optical multilayer film is used on the assumption that light rays generally pass through the multilayer film provided on a surface of a substrate, from the uppermost surface to the lowermost surface. There is no example but the following examples showing the case where an end surface of the multilayer film, that is, an exposed surface of the multilayer structure is used as a light input surface or as a light output surface.
Theoretical analysis of the direction of light rays incident on a section of an inclined multilayer film has been described (Applied Physics B, Vol. 39, p. 231, 1986). The fact that the same polarized light separating effect as obtained by a birefringent material is obtained by using the property (so-called structural birefringence) in which the refractive index of the multilayer film widely varies according to TE/TM polarization (polarization in TE/TM mode) has been disclosed (Optics Letters, Vol. 15, No. 9, p. 516, 1990). The fact that very large dispersion (super-prism effect) is obtained because the first band is shaped linearly in a neighbor of a band gap when the periodic multilayer film is regarded as a one-dimensional photonic crystal has been reported (“International Workshop on Photonic and Electromagnetic Crystal Structures” Technical Digest, F1-3).
The inventors have invented the following optical element on the basis of suggestions given from the fruits of these basic investigations.
According to the inventors' experiment, when light flux 3 at a wavelength λ0 in a vacuum is input to a polished end surface 1a of the multilayer film 1, a part of light serves as guided light 6 in the inside of the multilayer film 1 and a part of light serves as refracted light 5 to the substrate side or as refracted light 4 to the medium M1 side. The directions (angles θ1 and θ2) of the refracted light rays 4 and 5 are nearly constant with respect to the wavelength λ0, so that the refractive light 4 or 5 is formed as light flux excellent in directivity. Because the values of θ1 and θ2 widely vary in accordance with the wavelength λ0, the optical element can be used as a spectroscopic element of high resolution.
The theory of the aforementioned phenomenon will be described in brief.
When how to propagate light at a wavelength λ0 through the multilayer film is analyzed while the light is input to the end surface 1a (e.g., generally, a surface not parallel to layer surfaces) of the periodic multilayer film 1 in
A method for expressing refraction of light in an interface between two media uniform in refractive index by a graph will be described with reference to
The angle θ can be obtained on the basis of a graph using two circles CA and CB having radii proportional to nA and nB respectively. As shown in
It is also known that a band chart of the periodic multilayer film can be calculated on the basis of the theory of photonic crystal. For example, a method of band calculation has been described in detail in “Photonic Crystals”, Princeton University Press (1995) or Physical Review B, Vol. 44, No. 16, p. 8565, 1991.
Assume that the periodic multilayer film shown in
nA=1.44(tA=0.5a)
nB=2.18(tB=0.5a)
The term “TE polarization” means polarization in the case where the direction of an electric field is equal to the X-axis direction. The term “TM polarization” means polarization in the case where the direction of a magnetic field is equal to the X-axis direction.
In each of
ωa/2πc
in which ω is the angular frequency of input light, a is a period in the structure, and c is the velocity of light in a vacuum.
Because the normalized frequency can be also expressed as a/λ0 using the wavelength λ0 of the input light in a vacuum, the normalized frequency will be described as a/λ0 simply. Because there is no periodicity in the Z-axis direction, there is no Brillouin zone boundary in the horizontal axis in each of
As shown in
λA1=2π/kA1
through the photonic crystal in the Z-axis direction.
On the other hand, when the wavelength of input light is λB in a vacuum, there are wave number vectors kB1 and kB3 corresponding to the first and third bands. The second band is ignored because it is “dissociative”. Accordingly, the first band light at a wavelength λB1=2π/kB1 and a wave (hereinafter referred to as “third band light”) at a wavelength
λB3=2π/kB3
are propagated through the photonic crystal in the Z-axis direction. Incidentally, the theory of the dissociative band has been described in the following papers.
Physical Review B, Vol. 52, p. 7982, 1995
Physical Review Letters, Vol. 68, No. 13, p. 2023, 1995
A value obtained by dividing a wavelength (λA, λB, etc.) in a vacuum by a corresponding wavelength (λA1, λB3, etc.) in the photonic crystal is defined now as “effective refractive index”. It is to be understood from
kz<2πn1/λ0
Because the angle θ1 of the refracted light is constant, the output light is provided as light flux very excellent in directivity. It is a matter of course that the same relation holds in the medium M2 side.
Because the third band light exhibits very large wavelength dispersion whereas the first band light exhibits wavelength dispersion approximately equal to that of a general homogeneous medium, the multilayer structure can be used as a wavelength dispersion element. This is a kind of so-called super-prism effect. The super-prism effect has been proposed in the following paper.
Physical Review B, Vol. 58, No. 16, p. R10096, 1998
Though not shown in
Because the multilayer film shown in
Thus, both separation of light by wavelength and separation of polarized light can be performed simultaneously according to the invention. Hence, the functions obtained by a combination of a diffraction grating and a polarized light separating element can be achieved by a single element to thereby simplify an optical system.
As shown in
(1) refracted light is generated on neither M1 side nor M2 side;
(2) refracted light is generated on only the M2 side; and
(3) refracted light is generated on both M1 side and M2 side.
If refracted light needs to be concentrated in a single side, the condition (2) must be selected. If refracted light needs to be used in both sides individually, the condition (3) must be selected. It is a matter of course that refracted light rays equal to each other in angle of refraction can be taken out from both sides if the two media are made of one substance.
Specifically, when the refractive indices of the media M1 and M2 are ns1 and ns2 respectively (ns1≦ns2), the condition (2) can be obtained if the following relations are satisfied.
0<ks·λ0/(2π·ns2)<1, and
1<ks·λ0/(2π·ns1)
The condition (3) can be obtained if the following relations are satisfied.
0<ks·λ0/(2π·ns1)<1, and
0<ks·λ0/(2π·ns2)<1
In the periodic structural portion according to the invention, the first band light is always propagated when the third band light is propagated. According to the inventors' experiment and electromagnetic wave simulation, when the first band propagated light is present in a neighbor of a surface of the multilayer structure, the waveform of refracted light may be disordered because the waveform of an electric field in the surface is formed in such a manner that the wavelength of the first band light and the wavelength of the third band light are mixed with each other. Because wave motion is apt to be disordered particularly when the multilayer film becomes thin, it is preferable that the number of periods in the multilayer film is not smaller than 10, possibly not smaller than 15, as will be shown in Calculation Examples.
As means for reducing the disorder of wave motion, an intermediate layer having a refractive index lower than that of a medium may be provided between the periodic structural portion and the medium.
1<ks·λ0/(2π·ni)
is provided in each of opposite surfaces of the periodic multilayer film. In this condition, no refracted light is generated but evanescent wave 7 is generated from each surface 1b of the periodic structural portion toward the medium Mi portion. The evanescent wave is attenuated rapidly as it becomes far from the surface.
According to the inventors' electromagnetic wave simulation, it is found that the disorder of wave motion of the evanescent wave 7 in a position a certain distance from the surface is less than that in the surface even in the case where wave motion in the surface 1b is disordered as described above.
Therefore, when the medium Mi is made thin and a medium Ms is brought into contact with the medium Mi as shown in
0<ks·λ0/(2π·ns)<1
If the medium Mi is too thin, the effect of reducing the disorder of wave motion is weakened. If the medium Mi is too thick, the intensity of refracted light becomes very weak because of attenuation of the evanescent wave. Accordingly, the thickness of the medium Mi needs to be selected suitably on the basis of a simulation or experiment. When the thickness of the medium Mi is adjusted, the intensity of refracted light can be controlled.
The periodic structural portion of the multilayer structure according to the invention is not limited to the configuration obtained by two kinds of substances as shown in
nM=(t1·n1+t2·n2+ . . . +tm·nm)/a
in which a is one period represented by the equation:
a=t1+t2+ . . . +tm
The average refractive index nM of the periodic structural portion is present only in the first band (see
a/λ0≦0.5/nM
Therefore, for use of the second or higher bands, the period a of the multilayer structure needs to satisfy the following relation for the used wavelength λ0.
λ0/2nM≦a
If the period a is smaller than λ0/2nM, the characteristic of the multilayer structure approximates to that of a homogeneous medium having the average refractive index because no light but the first band light is propagated.
For use of refracted light due to the third band, it is further preferable that the period a of the multilayer structure satisfies the following relation for λ0.
0.2≦λ0/(a·nM2)<0.4
If the value of λ0/(a·nM2) is smaller than 0.2, there is fear that propagation due to the higher-order band may occur. If the value of λ0/(a·nM2) is larger than 0.4, the effective refractive index becomes so small that the angle of refraction becomes large and the intensity of refracted light is lowered.
As described above, when the refractive index of the medium with respect to the used wavelength λ0 is ns and a wave number vector in a band capable of coupling but not the lowest is ks, the condition for occurrence of refraction is as follows.
0<ks<2π·ns/λ0
According to the inventors' experiment, particularly intensive refracted light can be obtained when the angle θ of refraction is in a range of from 20° to 60°. Accordingly, it is further preferable that the following condition for setting the angle of refraction in a range of from 20° to 60° is satisfied.
cos 60°≦ks·λ0/(2π·ns)≦cos 20°
Specific conditions for achieving the optical element having the structure shown in
The optical element having the structure shown in
The material of the multilayer film used in the invention is not particularly limited if transparency can be obtained surely in the used wavelength range. For example, a material such as silica, silicon, titanium oxide, tantalum oxide, niobium oxide, or magnesium fluoride, which is generally used as a multilayer film material and which is excellent in terms of durability and film-forming cost can be used preferably. The material can form a multilayer film easily by a known method such as sputtering, vacuum vapor deposition, ion assist vapor deposition, or plasma CVD.
As is obvious from
It is however sufficiently possible to obtain wavelength dispersion larger than that of a general diffraction grating even in the case where materials low in refractive index ratio are combined so that facilitation of producing the multilayer structure is preferred. It is however preferable that the refractive index ratio is selected to be not lower than 1.2 because there is fear that the modulating function may be weakened so that the expected function cannot be obtained if the refractive index ratio is too low. It is however actually difficult to combine materials to make the refractive index ratio higher than 5.
If materials are selected suitably, the effect of the invention can be obtained in a generally used wavelength range of from about 200 nm to about 20 μm.
The simplest structure of the multilayer film is obtained when two layers physically equal in thickness to each other are formed in one period. Demultiplexing characteristic, polarizing characteristic and efficiency of utilizing input light can be improved when the average refractive index and the band structure are adjusted by the following means:
(1) means for changing the thickness ratio between the two layers;
(2) means for providing three or more layers; and
(3) means for providing three or more kinds of film materials.
Even in the case where each of layers constituting the multilayer film has a refractive index changing continuously, the characteristic of the multilayer film can be substantially kept constant if the refractive index difference is kept constant.
The material of the substrate is not particularly limited if transparency can be obtained surely in a used wavelength range. Examples of the material preferably used include soda-lime glass, optical glass, silica, silicon, and compound semiconductor such as gallium arsenide. A plastic material may be also used if there is little limitation in temperature characteristic or the like.
As the refractive index of the substrate increases, wavelength dispersion of substrate side refracted light has a tendency to increase. In this respect, when the refractive index of the substrate is as high as possible, a preferred result can be obtained. It is however a matter of course that the refractive index of the substrate must be selected so that refracted light can be generated on the basis of the band chart of the multilayer film as shown in
The mode of use of refracted light in the invention will be described below.
As described above, when refracted light needs to be taken out on a single side of the multilayer structure and used, a low-refractive-index medium M1 (e.g., an air layer in the simplest case) and a high-refractive-index medium M2 (e.g., a substrate) may be provided as shown in
When refracted light needs to be taken out only on the M1 side (generally, the air layer), a reflecting layer 9 may be provided on the substrate side surface of the multilayer structure so that refracted light can be concentrated and intensified (see
When refracted light needs to be taken out only on the substrate side, the interface between the substrate and the air may be used for forming configurations as shown in
As shown in
For example, refracted light in the invention is converged by a convex lens 10 as shown in
The invention may be also applied to the case where input light and output light are replaced by each other.
Specific examples of configuration of the spectroscopic device will be described below.
A multilayer film constituted by SiO2 layers and Si layers was formed on a single surface of a 1 mm-thick parallel plane substrate (made of silica glass) by a reactive counter DC sputtering apparatus. The configuration (20 layers) of the multilayer film was as follows.
(Air layer)/{Si(400 nm thick)+SiO2(400 nm thick)}×10 periods/Substrate
The substrate was cut in directions perpendicular to a substrate surface and polished to form a 1 mm-wide 20 mm-long sample shown in
An optical system shown in
A multilayer film constituted by SiO2 layers and TiO2 layers was formed on a single surface of a 1 mm-thick 30 mm-diameter parallel plane substrate made of soda-lime glass. The configuration (40 layers) of the multilayer film was as follows.
(Air layer)/SiO2(2000 nm thick)/TiO2(306 nm thick)/{TiO2(306 nm thick)+SiO2(306 nm thick)}×19 periods/Substrate
The substrate was cut in directions perpendicular to a substrate surface and polished to form a 5 mm-wide 20 mm-long sample. A right-angle prism (made of optical glass BK7) 5 mm each side was bonded to a surface (opposite to the multilayer film) of the sample (see
An optical system shown in
As a result, linear refracted light having a predetermined angle θp of refraction and spreading in the X-axis direction was detected on the air side. The spread of the refracted light in the X-axis direction reflected the spread of incident light flux.
Examples of configuration of the optical element constituted by a multilayer film formed on a parallel plane substrate have been described as typical examples of the multilayer structure. A subject of the invention is not limited to the multilayer structure formed on a surface of the substrate. As is obvious from the above description, the invention has an effect on the multilayer structure but the substrate is not an essential constituent member. If the conditions for the multilayer structure are satisfied, the substrate merely serves as one of media abutting on the periodic multilayer structure in an optical sense or merely serves as a support for supporting the structure in a dynamic sense.
The light input means of the spectroscopic device is not limited to a method of inputting a laser beam from a space as described above. For example, an optical fiber or the like may be used as the light input means. Means fit to the purpose can be also used as the light detecting means. For example, light may be directly input to a photo detector or light may be detected after the light is converged by a lens or the like and incident on and propagated through an optical fiber or the like.
Results of simulation of propagation and refraction of light in the multilayer structure by a finite-element method are listed below.
In the calculation examples, the multilayer structure is shown, while being classified into the following parts:
a homogeneous medium A;
a portion near the homogeneous medium A;
a periodic structural portion (period a);
a portion near a homogeneous medium B; and
the homogeneous medium B.
The length is normalized on the basis of the length of the period a of the periodic structural portion. For example, what is meant by the structure of Calculation Example 1 is as follows.
Homogeneous Medium A (Refractive Index: 1.00)
First layer is a layer having a refractive index of 3.48 and a thickness of 0.50a.
Second layer is a layer having a refractive index of 1.44 and a thickness of 0.50a.
(Third to twenty-eighth layers are repetition of the first and second layers.)
Twenty-ninth layer is a layer having a refractive index of 3.48 and a thickness of 0.50a.
Homogeneous Medium B (Refractive Index: 1.44)
Unless the incident angle is not designated specifically, light is perpendicularly applied onto an end surface of the multilayer structure.
In Calculation Example 1, the medium A was made of air, the medium B was made of a substrate (n=1.44), and the multilayer film had a structure simply constituted by two kinds of layers. One period of the multilayer film was constituted by two layers equal in thickness to each other. The refractive indices of the two layers were 3.48 and 1.44 respectively.
According to results of band calculation (
Medium A (air) side: no refracted light generated
Medium B (substrate) side: third band refracted light generated (θ=35.7°)
The condition for Calculation Example 2 is substantially the same as that for Calculation Example 1 except that the refractive index of a layer abutting on the medium A (air) is 1.44. Results of band calculation are equivalent to that shown in
The condition for Comparative Calculation Example 1 is the same as that for Calculation Example 1 except that the wavelength of input light is 1.409a. Results of band calculation are equivalent to that shown in
Effective refractive indices for the first and third band light rays propagated through the periodic structural portion are 3.29 and 1.62 respectively. It is predictable that the following result can be obtained.
Medium A (air) side: no refracted light generated
Medium B (substrate) side: no refracted light generated
The condition for Calculation Example 3 is substantially the same as that for Calculation Example 1 except that the wavelength of input light is 1.987a. Results of band calculation are equivalent to that shown in
Effective refractive indices for the first and third band light rays propagated through the periodic structural portion are 3.167 and 0.704 respectively. It is predictable that the following result can be obtained.
Medium A (air) side: third band refracted light generated (θ=45.3°)
Medium B (substrate) side: third band refracted light generated (θ=60.7°)
In Calculation Example 4, the medium A was made of air, the medium B was made of a substrate (n=1.745), and the multilayer film had a structure simply constituted by two kinds of layers. One period of the multilayer film was constituted by two layers equal in thickness to each other. The refractive indices of the two layers were 3.48 and 1.44 respectively. Results of band calculation are equivalent to those obtained in
Effective refractive indices for the first and third band light rays propagated through the periodic structural portion are 3.24 and 1.29 respectively. It is predictable that the following result can be obtained.
Medium A (air) side: no refracted light generated
Medium B (substrate) side: third band refracted light generated (θ=42.3°)
The condition for Calculation Example 5 is substantially the same as that for Calculation Example 4 except that the refractive index of the medium A is selected to be equal to that (n=1.745) of the medium B. Results of band calculation are equivalent to that shown in
It is predictable from effective refractive indices of the periodic structural portion that the following result can be obtained.
Medium A side: third band refracted light generated (θ=42.3°)
Medium B side: third band refracted light generated (θ=42.3°)
The condition for Calculation Example 6 is substantially the same as that for Calculation Example 2 except that the number of periods in the multilayer film is small and the multilayer film is thin. Results of band calculation are equivalent to that shown in
It is predictable from effective refractive indices of the periodic structural portion that the following result can be obtained.
Medium A (air) side: no refracted light generated
Medium B (substrate) side: third band refracted light generated (θ=35.7°)
In Calculation Example 7, the medium A was made of air, the medium B was made of a substrate (n=1.44), and the multilayer film had a structure simply constituted by two kinds of layers. One period of the multilayer film was constituted by two layers different in thickness. The refractive indices of the two layers were 1.44 (thickness: 0.8a) and 2.88 (thickness: 0.2a) respectively.
According to results of band calculation (
Medium A (air) side: no refracted light generated
Medium B (substrate) side: third band refracted light generated (θ=29.8°)
In Calculation Example 8, the medium A was made of air, the medium B was made of a substrate (n=1.44), and the refractive index ratio of the multilayer film was low. One period of the multilayer film was constituted by two layers different in thickness. The refractive indices of the two layers were 1.75 (thickness: 0.8a) and 1.44 (thickness: 0.2a) respectively.
According to results of band calculation (
Medium A (air) side: no refracted light generated
Medium B (substrate) side: third band refracted light generated (θ=32.6°)
In Calculation Example 9, the medium A was made of air, the medium B was made of a substrate (n=3.40), and the refractive index ratio of the multilayer film was high. One period of the multilayer film was constituted by two layers equal in thickness to each other. The refractive indices of the two layers were 4.80 and 1.44 respectively.
According to results of band calculation (
Medium A (air) side: no refracted light generated
Medium B (substrate) side: third band refracted light generated (θ=60.6°)
As described above, in accordance with the invention, refracted light from the multilayer structure has excellent directivity and the direction of the refracted light has strong dependence on wavelength. This wavelength dependence property can be used for achieving a spectroscopic device or polarized light separating device of high resolution without increase in device size. Because the multilayer structure can be mass-produced relatively inexpensively by an existing technique, reduction in cost of these optical elements can be attained.
Number | Date | Country | Kind |
---|---|---|---|
P2002-041160 | Feb 2002 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
5033810 | Inoue et al. | Jul 1991 | A |
6591035 | Miller et al. | Jul 2003 | B1 |
20020027655 | Kittaka et al. | Mar 2002 | A1 |
20020122613 | Kittaka et al. | Sep 2002 | A1 |
Number | Date | Country |
---|---|---|
1 184 708 | Mar 2002 | EP |
1 211 531 | Jun 2002 | EP |
1 219 939 | Jul 2002 | EP |
2 187 569 | Sep 1987 | GB |
Number | Date | Country | |
---|---|---|---|
20030174402 A1 | Sep 2003 | US |