This disclosure generally relates to an optical encoder and, more particularly, to an optical encoder that adopts additional control photodiodes for turning on and off gain regulation of the index output.
Please refer to
The longitudinal distance can be different due to the assembling process. Since an emission angle of the light source 10 is not changed, when the longitudinal distance is increased, light intensity of light reflected by the code disk 30 to the position photodiode 21 becomes lower, and light intensity of light reflected by the code disk 30 to the index photodiode 23 does not have a significant variation due to a longer distance from the light source 10, as shown in
For keeping incident light intensity of the position photodiode 21 to be substantially identical, it is known that this can be achieved by regulating emission light intensity of the light source 10. For example, when the longitudinal distance is smaller, the emission light intensity of the light source 10 is decreased, or otherwise when the longitudinal distance is larger, the emission light intensity of the light source 10 is increased. In this way, the position photodiode 21 can output substantially identical photocurrent as shown in
In
A pulse width of the index output is determined by voltage values converted from photocurrents outputted by the two index photodiode. It is seen from
Accordingly, the present disclosure further provides an optical encoder that adjusts emission light intensity of a light source corresponding to different longitudinal distances in conjunction with keeping a pulse width of the index output to be substantially identical by regulating a gain of index output.
The present disclosure provides an optical encoder that keeps a pulse width of the index output to be substantially identical by arranging additional control photodiodes for turning on and turning off gain regulation of output signals of the index photodiode.
The present disclosure further provides an optical encoder with comparators having programmable hysteresis corresponding to a rotating speed of an encoding medium (indicating motor speed or shaft speed) so as to reduce the error state in increasing the rotating speed.
The present disclosure further provides an optical encoder with benefits of cost effective and time saving since it can be adapted to a wider operation frequency without re-investing new configurations for different rotating speeds.
The present disclosure provides an optical encoder including a phase shifter circuit, a comparison circuit and a frequency detector. The phase shifter circuit is configured to receive a first input signal, a second input signal, a third input signal and a fourth input signal, and output multiple phase shifted signals based on the first input signal, the second input signal, the third input signal and the fourth input signal. The comparison circuit has multiple hysteresis comparators each being configured to compare a couple of phase shifted signals among the multiple phase shifted signals using an operation hysteresis level. The frequency detector is configured to detect a signal frequency according to at least one of the first input signal, the second input signal, the third input signal and the fourth input signal, and select the operation hysteresis level of each of the multiple hysteresis comparators according to the detected signal frequency.
The present disclosure further provides an operating method of an optical encoder. The optical encoder includes multiple hysteresis comparators and a frequency detector. The operating method includes the steps of: comparing, by each of the multiple hysteresis comparators, a couple of phase shifted signals among multiple phase shifted signals using a first operation hysteresis group; detecting, by the frequency detector, an input signal frequency; and changing, by the frequency detector, the first operation hysteresis group to a second operation hysteresis group when the detected input signal frequency exceeds a frequency threshold.
The present disclosure provides an optical encoder including a phase shifter circuit and multiple hysteresis comparators. The phase shifter circuit is configured to receive four input signals, and output multiple phase shifted signals based on the four input signals. Each of the multiple hysteresis comparators is configured to use a changeable operation hysteresis level to compare a couple of phase shifted signals among the multiple phase shifted signals, wherein the changeable operation hysteresis level is determined corresponding to a signal frequency of the four input signals.
Other objects, advantages, and novel features of the present disclosure will become more apparent from the following detailed description when taken in conjunction with the accompanying drawings.
It should be noted that, wherever possible, the same reference numbers will be used throughout the drawings to refer to the same or like parts.
The optical encoder of the present disclosure is adaptable to a reflective type optical encoder that regulates emission intensity of a light source corresponding to a longitudinal distance (or Z distance) between an encoding medium and a light source to cause photocurrent outputted by the position photodiode to be substantially fixed. In the present disclosure, in order to cause a pulse width of an index pulse generated by the index photodiode to be fixed at the same time, gain regulation is further performed on the index voltage signal (e.g., generated from index photocurrent passing a trans-impedance amplifier). In addition, in order not to disturb the index pulse, the gain regulation is turned off within an interval during which the index pulse is generated. The gain regulation is turned on to maintain a reference value of the index signal to be within a predetermined range only within an interval during which the index pulse is not generated.
Please refer to
The substrate 50 has a longitudinal distance from the encoding medium 530 in the Z direction. The optical encoder 500 further includes a light source 59 for illuminating the encoding medium 530 to generate modulated light to be reflected to the light sensing device on the substrate 50. In the present disclosure, the light source 59 generates emission light of different intensity to illuminate the encoding medium 530 to keep modulated reflective light to have substantially identical intensity. The light source 59 is, for example, a light emitting diode, for emitting light of an identifiable spectrum, e.g., red light and/or infrared light.
The encoding medium 530 includes an index pattern 531. The index pattern 531 is a reflective surface (reflecting light of the light source 59) or a light absorbing surface (absorbing light of the light source 59) depending on different applications. The relative movement between the encoding medium 530 and the substrate 50 along the first direction causes the index pattern 531 to periodically (under fixed moving speed) move across the light sensing device of the substrate 50. It should be mentioned that the encoding medium 530 further includes the position pattern (or called AB pattern) arranged at a different track from the index pattern 531. Since the position pattern is known to the art and not a main objective of the present disclosure, details thereof are not described herein.
The substrate 50 is selected from a printed circuit board (PCB) or a flexible substrate without particular limitations. The light sensing device on the substrate 50 includes a first index photodiode 511 (shown as I+), a second index photodiode 513 (shown as I−), a first control photodiode 521 (shown as M+) and a second control photodiode 523 (shown as M−). The first index photodiode 511 and the second index photodiode 513 are arranged between the first control photodiode 521 and the second control photodiode 523 along the first direction. The first control photodiode 521 and the second control photodiode 523 are used to define a range of the first index photodiode 511 and the second index photodiode 513 on the substrate 50.
It should be mentioned that the light sensing device on the substrate 50 further includes position photodiodes (or called AB photodiodes) for detecting reflective light from the position pattern on the encoding medium 530. Since the position photodiodes are known to the art and not a main objective of the present disclosure, details thereof are not described herein.
In one aspect, a sensing area of the first control photodiode 521 and the second control photodiode 523 is identical to a sensing area of each of the first index photodiode 511 and the second index photodiode 513. Although
In one aspect, the first control photodiode 521 and the second control photodiode 523 as well as the first index photodiode 511 and the second index photodiode 513 are corresponding to the same track (e.g., same radial position) of the encoding medium 530. Meanwhile, the first control photodiode 521 and the second control photodiode 523 are corresponding to different tracks of the encoding medium 530 from the position photodiodes on the substrate 50. In this aspect, said same track refers to that in the relative movement along the first direction, the index pattern 531 sequentially moves across the first control photodiode 521, the first index photodiode 511, the second index photodiode 513 and the second control photodiode 523, or vice versa.
Although
In one aspect, distances between the first control photodiode 521 and the first index photodiode 511 as well as between the second control photodiode 523 and the second index photodiode 513 along the first direction are larger than or equal to a width of the index pattern 531 along the first direction, but said distances are not particularly limited.
The first index photodiode 511 and the second index photodiode 513 are adjacent to each other in the first direction, and respectively generate index signals I+_I and I−_I, wherein I+_I and I−_I are current signals. After passing the trans-impedance amplifiers TIA+ and TIA− (as shown in
The first control photodiode 521 generates a first control signal M+_I. The second control photodiode 523 generates a second control signal M−_I. Similarly, M+_I and M−_I are current signals. After passing the trans-impedance amplifiers TIA+ and TIA− (as shown in
The optical encoder 500 further includes a gain control circuit 54 electrically connected to the first index photodiode 511 and the second index photodiode 513 so as to receive the index current signals I+_I and I−_I. The gain control circuit 55 amplifies the index voltage signals I+_V and I−_V using a gain. For example, when the signal intensity of the index signals I+_I and I−_I (or I+_V and I−_V) is larger (corresponding to stronger emission light), the gain is smaller; on the contrary, when the signal intensity of the index signals I+_I and I−_I (or I+_V and I−_V) is smaller (corresponding to weaker emission light), the gain is larger. In this way, the amplified index signals I+_IDX and I−_IDX (referring to
Please refer to
That is, in the aspect shown in
The optical encoder 500 further includes a regulation control circuit 54 electrically connected to the first control photodiode 521 and the second control photodiode 523 so as to receive the first control signal M+_I and the second control signal M−_I. The regulation control circuit 54 outputs a regulation control signal Cal_V to the gain control circuit 55 according to the first control signal M+_I and the second control signal M−_I to turn on or turn off gain regulation of the gain control circuit 55.
Please refer to
After the first control signal M+_V passes a comparator C+ and an inverter 631, a first regulation control signal CM+_V (e.g., referring to
In the present disclosure, the first regulation control signal CM+_V and the second regulation control signal CM−_V are the output after being compared and inverted from the first control signal M+_V and the second control signal M−_V, and thus are corresponding to the first control signal M+_V and the second control signal M−_V based on the parameter of the comparators C+ and C− as well as the inverters 631 and 632. For simplification purposes, the first regulation control signal CM+_V and the second regulation control signal CM−_V are also respectively called the first control signal and the second control signal indicating that they are associated with the first control photodiode 521 and the second control photodiode 523. For example, in one aspect, the trans-impedance amplifiers TIA+ and TIA−, the comparators C+ and C−, the inverters 631 and 632 are arranged in the same conversion circuit, which receives the signals M+_I and M−_I and outputs signals CM+_V and CM−_V to the OR gate 65. High and low levels of the signals in
The regulation control circuit 54 further includes a flip flop 61 connected to an output terminal of the OR gate 65 for changing (from High to Low or from Low to High) a voltage value of a regulation control signal Cal_V outputted by the regulation control circuit 54 according to the first control signal CM+_V and the second control signal CM−_V, as shown in
For example referring to
The gain control circuit 55 includes a control switch Sr that is used to turn on or turn off the gain regulation of the gain control circuit 55 according to the voltage value of the regulation control signal Cal_V.
In another aspect, according to a different circuit configuration, the gain regulation of the gain control circuit 55 is turned on when the regulation control signal Cal_V is at a low level (within the first interval), and the gain regulation of the gain control circuit 55 is turned off when the regulation control signal Cal_V is at a high level (outside the first interval).
Please refer to
In the present disclosure, the gain regulation of the gain control circuit 55 is used to keep a pulse width PW of the index pulse IDX to be substantially similar as shown in
It should be mentioned that the values mentioned in the above embodiment, including resistors, voltage values, thresholds, a number of thresholds, a number of photodiodes, a number of switches, a number of comparators, a number of resistors, the spatial distance and the component shape, are only intended to illustrate but not to limit the present disclosure.
In the present disclosure, the gain regulation of the gain control circuit 55 is referred to conducting the control switch Sr by the regulation control signal Cal_V such that it is able to connect or disconnect the switches S1 to S4 based on the comparison result of comparators C1 to C4 and C1′ to C4′ so as to regulate a gain for amplifying index signals I+_V and I−_V.
The present disclosure further provides an optical encoder for outputting interpolated output signals based on four input signals, which are generated by position photodiodes, e.g., element 21 shown in
Please refer to
The photodiodes 1001 include four position photodiodes for detecting modulated light (e.g., shown as L in
For examples, the four input signals include a first input signal, a second input signal, a third input signal and a fourth input signal. The first input signal and the second input signal are phase quadrature, the first input signal and the third input signal are out of phase, and the second input signal and the fourth input signal are out of phase. In
The phase shifter circuit 1003 receives the four input signals, and outputs multiple phase shifted signals based on the four input signals, wherein a number of the multiple phase shifted signals is determined according to the interpolation factor of output signals, e.g., shown as CHA and CHB.
Referring to
It should be mentioned that the phase shifter circuit 1003 is not limited to generate the multiple phase shifted signals using resistor string(s), which may be replaced by other known methods.
The comparison circuit 1005 includes multiple hysteresis comparators, e.g., shown as C1 to C8 in
In one aspect, the rotating speed is determined according to a signal frequency of the four input signals sin+, cos+, sin− and cos−. For example, the signal frequency is determined by detecting, at time domain or frequency domain, at least one of the four input signals.
For example, the optical encoder 1000 further includes a frequency detector 1009 for detecting a signal frequency according to at least one of the first input signal, the second input signal, the third input signal and the fourth input signal. That is, the frequency detector 1009 receives at least one of the four input signals without being limited to receive all of the four input signals. The frequency detector 1009 is coupled to each of the multiple hysteresis comparators. The frequency detector 1009 is implemented by hardware and/or firmware, and selects the operation hysteresis level of each of the multiple hysteresis comparators according to the detected signal frequency. For example, the frequency detector 1009 changes a value of a resistor coupled between a non-inverted input terminal and an output terminal of each of the multiple hysteresis comparators to adjust the operation hysteresis level, but not limited to.
In the present disclosure, each of the multiple hysteresis comparators has at least two predetermined hysteresis levels to be selected by the frequency detector 1009 as the operation hysteresis level. The at least two predetermined hysteresis levels of each of the multiple hysteresis comparators are determined according to peak-to-peak voltages of the couple of phase shifted signals to be compared thereby because it is known that the multiple phase shifted signals generated by resistor string(s) have different peak-to-peak voltages that can degrade output performance of an interpolation circuit adopted in optical encoders.
Please refer to
In one aspect, each of the multiple hysteresis comparators has more than two pre-set hysteresis levels, and the frequency detector 1009 is used to change the operation hysteresis level of each of the multiple hysteresis comparators every signal frequency step, e.g., every 100 KHz, but not limited to. Said signal frequency step is constant or non-constant frequency range.
Referring to
Please refer to
Step S133: The frequency detector 1009 detects an input signal frequency Fin according to at least one of sin+, cos+, sin− and cos−. When the input signal frequency Fin is still lower than a frequency threshold Fth, the frequency detector 1009 does not change the operation hysteresis level currently being used in each of the multiple hysteresis comparators.
Step S135: When the input signal frequency Fin is higher than or equal to the frequency threshold Fth, the frequency detector 1009 respectively changes HA1 to HB1, changes HA2 to HB2, changes HA3 to HB3 and also changes first hysteresis levels of other comparators C3 to C8 to second hysteresis levels.
On the other hand, if the rotating speed is progressively decreased to be lower than the frequency threshold Fth, the frequency detector 1009 changes the second operation hysteresis group to the first operation hysteresis group.
More specifically, the first operation hysteresis group (e.g., including HA1, HA2, HA3 . . . ) is associated with a first frequency range (e.g., 50-100 KHZ, but not limited to), and the second operation hysteresis group (e.g., including HB1, HB2, HB3 . . . ) is associated with a second frequency range (e.g., 100-200 KHZ, but not limited to) different from the first frequency range. The suitable operation hysteresis group corresponding to each frequency range is previously determined and set before the shipment of the optical encoder 1000.
As mentioned above, the input signal frequency Fin is determined according to a rotating speed of an encoding medium (e.g., indicating a motor speed or shaft speed) to be detected by the optical encoder 1000. If a range of the rotating speed is larger, more hysteresis steps are pre-set to have fine tuning ability.
The logic circuit 1007 receives the multiple phase shifted signals (e.g., shown as sin 0° to sin 337.5°) from the comparison circuit 1005 and generates interpolated output signals CHA and CHB. For example, the logic circuit 1007 includes multiple XOR gates to generate N-fold interpolation signals, e.g., referring to U.S. Pat. No. 11,108,385 B1 assigned to the same assignee of the present application as an example.
It is appreciated that although
It should be mentioned that although the frequency detector 1009 is shown as an independent circuit in
It is appreciated that a number of comparators, phase shifted signals and resistors in a resistor string is determined according to an interpolation factor of the optical encoder 1000. In the present disclosure, a number of selectable hysteresis levels is determined according to an operable range of the motor/shaft to be detected by as well as the acceptable performance of the optical encoder.
As mentioned above, the error state of conventional optical encoders is increased when a motor/shaft speed is increased. Accordingly, the present disclosure further provides an optical encoder capable of adjusting hysteresis of every comparator corresponding to different input signal frequencies (e.g.,
Although the disclosure has been explained in relation to its preferred embodiment, it is not used to limit the disclosure. It is to be understood that many other possible modifications and variations can be made by those skilled in the art without departing from the spirit and scope of the disclosure as hereinafter claimed.
The present application is a continuation-in-part application of U.S. patent application Ser. No. 17/240,140 filed on, Apr. 26, 2021, the disclosure of which is hereby incorporated by reference herein in its entirety.
Number | Date | Country | |
---|---|---|---|
Parent | 17240140 | Apr 2021 | US |
Child | 17582194 | US |