The present invention generally relates to touchscreen systems, and more particularly relates to methods and devices for eliminating or reducing optical artifacts such as Moire patterns.
The prevalence of display systems and devices that include touch screens is increasing. However, in certain cases optical artifacts such as Moire patterns occur. These effects can happen, for example, when one manufacturer's touchscreen is coupled to another vendor's LCD display. It has been determined that both devices incorporated patterned substructure within individual layers. Despite being highly transparent, the usual touch screen layers exhibited sufficient transmittance modulation of the pixelated LCD display output to result in Moiré-style interference artifacts (e.g., spatial “beat frequencies”) which were readily visible.
When appropriate time and resources are available, it should be possible to custom design suitably compatible displays using touch screens such that artifacts are minimized or eliminated. However, in other applications and in varied environments, the opportunity for developing optimal touchscreen systems is cost prohibitive.
Accordingly, it is desirable to devise a system or means to attenuate or eliminate optical artifacts independently of the underlying design of the touchscreen. In other words, it is desirable to minimize optical artifacts without the redesign or modification of the touchscreen device of concern.
The present invention will hereinafter be described in conjunction with the following drawing figures, wherein like numerals denote like elements, and
The following detailed description is merely exemplary in nature and is not intended to limit the invention or the application and uses of the invention. As used herein, the word “exemplary” means “serving as an example, instance, or illustration.” Thus, any embodiment described herein as “exemplary” is not necessarily to be construed as preferred or advantageous over other embodiments. All of the embodiments described herein are exemplary embodiments provided to enable persons skilled in the art to make or use the invention and not to limit the scope of the invention which is defined by the claims. Furthermore, there is no intention to be bound by any expressed or implied theory presented in the preceding technical field, background, brief summary, or the following detailed description.
The approach developed herein to reduce the optical artifacts to an acceptable threshold level included the insertion of a specially selected light scattering diffusion film having a suitably broadened Full Width Half Maximum profile (w) relative to the physical dimensions of the pixel of the LCD stack between the LCD and the touchscreen (e.g., pixel pitch, pixel dimensions, substrate thickness, thickness of air gap, angle of incidence, refractive index, etc.) (See,
The particular diffusion film utilized is a surface relief diffuser as opposed to a volume diffuser. The surface structure of the surface relief diffuser selected may either have diffusing particles applied to the surface of the diffuser or the diffuser may be cast or embossed with a scattering structure or pattern. The applied particles or scattering structure is very fine (i.e., high resolution) where the typical feature size is preferably smaller than, and more preferably at least 3 times smaller than the size of the underlying LCD pixels and/or subpixels. A suitable volume diffuser with similar operational qualities to the comparable surface diffuser may also be used. Here, the term volume diffuser implies that at least a portion of the light scattering by the diffuser is due to refractive index variations within the bulk of the diffuser, rather than solely due to one or more surfaces of the diffuser. The criteria for selection of an effective diffusion film involve the relationships between several parameters, described in more detail below.
The LCD layer stack 10 as disclosed herein also includes a diffuser or diffusing layer 6 between the LCD panel 2 and the touchscreen 5. The diffuser 6 may be either a surface diffuser or a volume diffuser. In either case the diffuser 6 has a very high fill factor of scattering features, meaning that the distance between scattering features is small, preferably smaller than and more preferably many times (e.g., at least 3 times) smaller than the size of the underlying LCD pixels and/or subpixels 13. The high fill factor substantially minimizes the passage of undeflected image rays. In contrast, many conventional anti-glare surface treatments still allow a noticeable portion of light to be transmitted without significant deflection, and would therefore not satisfy the requirements of the current subject matter. Hence, typical anti-glare films are not good candidates for this application, per se.
A proper construction of an LCD layer stack 10 to deal with optical artifacts calls for a suitable separation distance (d) between the diffuser 6 and one or both of the touchscreen 5 and the LCD panel 2 internal pixelated or otherwise finely patterned layers. This allows, for example, the light incident on the rear of the diffuser 6 to be defocused or blurred thereby rendering a slightly blurred representation of the display pixels of the LCD panel 2.
The proper construction of the LCD layer stack 10 also calls for small scattering angle or deflection angle θn meaning a relatively high gain diffusion film but where the gain is a lower gain than the gain of a conventional antiglare film. The scattering angle θn is small (i.e., on the order of a few degrees) but large enough to suppress or reduce both the number and amplitudes of the spatial harmonics associated with the effective pixel profile (i.e., band-limit) when reproducing the input image and to suppress spatial frequency harmonics, but still small enough to avoid substantial degradation of the desired image content. Thus, the scattering angle θn is still small enough to avoid substantial degradation of the desired image content. Further, definition of the scattering angle and the desired range of scattering angles is discussed in more detail below, especially as it relates to other parameters such as the separation between the layers (d) (see
θn=a sin ((sin θair)/n)
x=d tan(θn)
The exemplary subpixel luminance profile 21 (e.g., luminance versus x) is thereby convolved with the effective scattering profile f(θair) 22 to determine the observed, blurred subpixel profile 20, shown in the lower right of
This blurred subpixel profile is shown more clearly in
The subject matter disclosed herein requires that the characteristics listed above work together to optically blend or suppress individual spatial harmonic Fourier peaks or frequency components of the display so as to preclude or significantly reduce interference with the spatial harmonic peaks of the touch screen. The blurring and broadening of the subpixel profiles (See,
It should be stressed that the subject matter being disclosed herein is not merely simple combinations of an anti-glare display surface and a touchscreen. To illustrate this distinction,
In contrast, a diffuser as described herein broadened the original profile to a FWHM of w, where w>s. The separations and measurement geometries for each of these representative curves were the same. The ratio of w/s is preferably greater than 1.2, and more preferably greater than 1.5. In the example of
As shown in
While Moiré-style interference artifacts can in general appear quite complex, it is not uncommon that any visible Moiré modulation can be more significant along a first axis than along a second axis at some non-zero angle (e.g., ninety degrees) with respect to the first axis. For example, for a subpixel arrangement where
Exemplary diffusion profiles for such an anisotropic diffuser are shown shown in
Numerous variations on the described configurations are possible. The diffusion layer 6 can be free-standing or can be laminated to either the substrate 3 or the touch screen 5, provided the surface relief diffusing structure 6 is exposed to a suitable low index medium such as air (index (n)=1.0). Alternately, a suitable volume diffuser 6 can be used, which would then allow lamination on both sides if desired. Anti-reflection coatings and other measures such as polarization techniques can be implemented to minimize specular or diffuse reflections associated with the inclusion of the diffusion layer. Other pixelated display technologies, such as Active Matrix Organic Light Emitting Diode (AMOLED) displays, can be substituted for the LCD panel and backlight combination.
A factor in the success of the above described configuration is the proper characteristic light scattering due to the diffusion film. Image quality is maximized by incorporating, as described above, very fine scattering granularity with very high fill factor, while at the same time avoiding excessive scattering angles (through directional or high-gain diffusion) and avoiding separations (d), which are too large or too small, as discussed above in terms of in terms w/p and w/s. In this way the underlying display image can be band-limited to remove spatial harmonics without significantly degrading the desired image content.
In some embodiments, the diffusion layer is sufficiently dense and disposed far enough from the modulated (active) layer of the display such that it substantially hides the pixel substructure when viewed visually such that the pixel substructure is difficult or impossible to detect by eye while only minimally degrading the intended displayed image if at all. In other equivalent embodiments, the scattering and location of the diffusion layer are sufficient to substantially mask substructure (e.g. non-zero frequency components or harmonics) in the Fourier spectrum or coherent diffraction pattern that specifically contribute to Moire patterns when combined with a patterned touch screen. Both of these scenarios served to reduce or eliminate Moire patterns due to the optical stacking of the display and touch screen.
In this document, relational terms such as first and second, and the like may be used solely to distinguish one entity or action from another entity or action without necessarily requiring or implying any actual such relationship or order between such entities or actions. Numerical ordinals such as “first,” “second,” “third,” etc. simply denote different singles of a plurality and do not imply any order or sequence unless specifically defined by the claim language. The sequence of the text in any of the claims does not imply that process steps must be performed in a temporal or logical order according to such sequence unless it is specifically defined by the language of the claim. The process steps may be interchanged in any order without departing from the scope of the invention as long as such an interchange does not contradict the claim language and is not logically nonsensical.
Furthermore, depending on the context, words such as “connect” or “coupled to” used in describing a relationship between different elements do not imply that a direct physical connection must be made between these elements. For example, two elements may be connected to each other physically, electronically, logically, or in any other manner, through one or more additional elements.
While at least one exemplary embodiment has been presented in the foregoing detailed description of the invention, it should be appreciated that a vast number of variations exist. It should also be appreciated that the exemplary embodiment or exemplary embodiments are only examples, and are not intended to limit the scope, applicability, or configuration of the invention in any way. Rather, the foregoing detailed description will provide those skilled in the art with a convenient road map for implementing an exemplary embodiment of the invention. It being understood that various changes may be made in the function and arrangement of elements described in an exemplary embodiment without departing from the scope of the invention as set forth in the appended claims.
The instant application is a utility patent application the claims priority pursuant to 37 C.F.R. §1.120 to provisional application 61/541,263 filed on Sep. 30, 2011, which is incorporated herein by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
61541263 | Sep 2011 | US |