1. Field of the Disclosure
The technology of the disclosure relates to optical fiber-based distributed antenna systems for distributing radio frequency (RF) signals over optical fiber to remote antenna units and related control systems and methods.
2. Technical Background
Wireless communication is rapidly growing, with ever-increasing demands for high-speed mobile data communication. As an example, so-called “wireless fidelity” or “WiFi” systems and wireless local area networks (WLANs) are being deployed in many different types of areas (e.g., coffee shops, airports, libraries, etc.). Wireless communication systems communicate with wireless devices called “clients,” which must reside within the wireless range or “cell coverage area” in order to communicate with an access point device.
One approach to deploying a wireless communication system involves the use of “picocells.” Picocells are radio frequency (RF) coverage areas. Picocells can have a radius in the range from a few meters up to twenty meters as an example. Combining a number of access point devices creates an array of picocells that cover an area called a “picocellular coverage area.” Because the picocell covers a small area, there are typically only a few users (clients) per picocell. This allows for minimizing the amount of RF bandwidth shared among the wireless system users. It may be desirable to provide picocells in a building or other facility to provide wireless communication system access to clients within the building or facility. However, it may be desirable to employ optical fiber to distribute communication signals. Benefits of optical fiber include higher signal-to-noise ratios and increased bandwidth.
Embodiments disclosed in the detailed description include optical fiber-based distributed antenna systems that provide communication signals over optical fiber to clients. The communication signals may be wireless communication signals. The distributed antenna systems may be provided as part of an indoor distributed antenna system (IDAS) to provide wireless communication services to clients inside a building or other facility, as an example. The systems may distribute communication signals by employing Radio-over-Fiber (RoF) communications utilizing fiber optic cable distribution.
In one embodiment, a wireless communication system comprises a downlink base transceiver station (BTS) interface configured to receive downlink electrical radio frequency (RF) signals from at least one BTS, and at least one optical interface module (OIM). The OIM is configured to receive and convert the downlink electrical RF signals from the downlink BTS interface into downlink Radio-over-Fiber (RoF) signals on at least one communication downlink, and receive and convert uplink RoF signals from at least one remote antenna unit (RAU) into uplink electrical RF signals on at least one communication uplink. The system further comprises an uplink BTS interface configured to receive and communicate the uplink electrical RF signals from the at least one communication uplink to the at least one BTS, and a controller. The controller is configured to inject at least one calibration signal over the at least one communication downlink, calibrate at least one downlink gain in the at least one communication downlink based on a loss incurred in the at least one calibration signal in the at least one communication downlink, cause the at least one calibration signal to be switched from the at least one communication downlink to the at least one communication uplink, and calibrate at least one uplink gain in the at least one communication uplink based on a loss incurred in the at least one calibration signal in the at least one communication uplink.
Additional features and advantages will be set forth in the detailed description which follows, and in part will be readily apparent to those skilled in the art from that description or recognized by practicing the invention as described herein, including the detailed description that follows, the claims, as well as the appended drawings.
It is to be understood that both the foregoing general description and the following detailed description present embodiments, and are intended to provide an overview or framework for understanding the nature and character of the disclosure. The accompanying drawings are included to provide a further understanding, and are incorporated into and constitute a part of this specification. The drawings illustrate various embodiments, and together with the description serve to explain the principles and operation of the concepts disclosed.
Reference will now be made in detail to exemplary embodiments, examples of which are illustrated in the accompanying drawings, in which some, but not all embodiments are shown. Indeed, the concepts may be embodied in many different forms and should not be construed as limiting herein; rather, these embodiments are provided so that this disclosure will satisfy applicable legal requirements. Whenever possible, like reference numbers will be used to refer to like components or parts.
Embodiments disclosed in the detailed description include optical fiber-based distributed antenna systems that provide communication signals over optical fiber to clients. The communication signals may be wireless communication signals. The distributed antenna systems may be provided as part of an indoor distributed antenna system (IDAS) to provide wireless communication services to clients inside a building or other facility, as an example. The systems may distribute communication signals by employing Radio-over-Fiber (RoF) communications utilizing fiber optic cable distribution.
In one embodiment, the optical fiber-based wireless systems can employ a head-end unit (HEU) or controller that receives radio frequency (RF) carrier signals from one or more service or carrier providers. The HEU is a host neutral device that supports and distributes carrier signal communications over optical fibers to end points, which may be remote antenna units (RAUs). The RF carrier signals are converted to RoF signals and provided to the RAUs, wherein the RoF signals are converted back to electrical RF signals and wirelessly communicated to client devices in the coverage area of the RAUs. The RAUs can be installed in locations throughout a building or facility to form a seamless coverage area. The HEU can be configured to interface with a desired number of RAUs to define coverage areas.
In one embodiment, the HEU contains a downlink base transceiver station (BTS) interface and an uplink BTS interface to support interfacing with downlink and uplink communication links for one or more BTSs. The downlink BTS interface is configured to receive electrical RF signals from multiple BTSs and provide the electrical RF signals to optical interface modules (OIMs). The OIMs contain electrical-to-optical (E/O) converters that convert the electrical RF signals received on the downlink into RoF signals (for transmission over optical fiber to RAUs supported by the OIMs. The RoF signals received by the RAUs on the downlink are converted into electrical RF signals using an optical-to-electrical (O/E) converter and radiated through antennas to client devices in range of the antennas to establish downlink communications between client devices and the BTSs. For uplink communications, the RAUs are also configured to receive electrical RF signals at the antennas from clients, which are converted to RoF signals and communicated back to the OIM over an uplink optical fiber link. The RoF signals received by the OIMs are converted to electrical RF signals, which are then communicated to the HEU and to the appropriate BTS to establish uplink communications between the client devices and the BTSs.
In one embodiment, calibration of the communication downlinks and uplinks in the optical fiber-based wireless system can be performed to compensate for losses that may occur therein. For example, the HEU controller may be configured to calibrate a downlink gain for the communication downlink. The calibration downlink gain may be determined for each RAU. The calibration downlink gain may be applied in the downlink BTS interface and/or for each RAU. The HEU controller may also be configured to calibrate an uplink gain for the communication uplink. The calibration uplink gain may be applied in the uplink BTS interface and/or for each OIM. The BTS error component of the calibration gains may be determined to calibrate BTS interfaces separate from the RAUs and OIMs. The calibration gains may be determined by injecting one or more calibration signals on the communication downlink and/or communication uplink. The calibration signal injected on the communication downlink may also be used to calibrate the communication uplink, or a separate calibration signal(s) may be injected on the communication uplink.
Before discussing the various features and their details regarding the microcontroller or microprocessor-based control system or controllers that may be provided in components of the system, examples of optical fiber-based distributed antenna systems are their RF communications functionalities are first described below with regard to
In this regard,
The service unit 50 is electrically coupled to an electrical-to-optical (E/O) converter 60 that receives an electrical RF service signal from the service unit and converts it to a corresponding RoF signal, as discussed in further detail below. RoF refers to a technology whereby light is modulated by an electrical RF signal and transmitted over an optical fiber link to facilitate wireless access. For example, a data-carrying RF signal at a given frequency is imposed on a lightwave signal before being transported over an optical link. Therefore, wireless signals are optically distributed at the given frequency and converted from the optical to the electrical domain before being amplified and radiated by an antenna. As a result, no frequency up/down conversion is required, thereby resulting in simple and rather cost-effective implementations. Advantages of RoF include reduced attenuation of the RF signal over an optical medium when compared to wireless medium, and further travel of the RF signal without the need for as many repeaters. Further, because optical fibers are designed to handle Gigabit data rates, RoF implementations will be easily adapted in the future for higher speed networks with protocol and bit-rate transparency.
In an example embodiment, the E/O converter 60 includes a laser suitable for delivering sufficient dynamic range for the RoF applications, and optionally includes a laser driver/amplifier electrically coupled to the laser. Examples of suitable lasers for the E/O converter 60 include laser diodes, distributed feedback (DFB) lasers, Fabry-Perot (FP) lasers, and vertical cavity surface emitting lasers (VCSELs).
The HEU 20 also includes an optical-to-electrical (O/E) converter 62 electrically coupled to service unit 50. The O/E converter 62 receives an optical RF service signal and converts it to a corresponding electrical signal. In an example embodiment, the O/E converter 62 is a photodetector, or a photodetector electrically coupled to a linear amplifier. The E/O converter 60 and the O/E converter 62 constitute a “converter pair” 66.
In an example embodiment, the service unit 50 includes an RF signal modulator/demodulator unit 70 that generates an RF carrier of a given frequency and then modulates RF signals onto the carrier. The modulator/demodulator unit 70 also demodulates received RF signals. The service unit 50 also includes a digital signal processing unit (“digital signal processor”) 72, a central processing unit (CPU) 74 for processing data and otherwise performing logic and computing operations, and a memory unit 76 for storing data, such as system settings and status information, RFID tag information, etc. In an example embodiment, the different frequencies associated with the different signal channels are created by the modulator/demodulator unit 70 generating different RF carrier frequencies based on instructions from the CPU 74. Also, as described below, the common frequencies associated with a particular combined picocell are created by the modulator/demodulator unit 70 generating the same RF carrier frequency.
With continuing reference to
RAUs 30 differ from the typical access point device associated with wireless communication systems in that the preferred embodiment of the RAU 30 has just a few signal-conditioning elements and no digital information processing capability. Rather, the information processing capability is located remotely in the HEU 20, and in a particular example, in the service unit 50. This allows the RAU 30 to be very compact and virtually maintenance free. In addition, the preferred example embodiment of the RAU 30 consumes very little power, is transparent to RF signals, and does not require a local power source, as described below.
With reference again to
In an example embodiment, the optical fiber-based wireless system 10 employs a known telecommunications wavelength, such as 850 nm, 1300 nm, or 1550 nm. In another example embodiment, the optical fiber-based wireless system 10 employs other less common but suitable wavelengths such as 980 nm.
Example embodiments of the optical fiber-based wireless system 10 include either single-mode optical fiber or multi-mode optical fiber for downlink and the uplink optical fibers 136D and 136U. The particular type of optical fiber depends on the application of the optical fiber-based wireless system 10. For many in-building deployment applications, maximum transmission distances typically do not exceed 300 meters. The maximum length for the intended RF-over-fiber transmission needs to be taken into account when considering using multi-mode optical fibers for the downlink and uplink optical fibers 136D and 136U. For example, it has been shown that a 1400 MHz·km multi-mode fiber bandwidth-distance product is sufficient for 5.2 GHz transmission up to 300 m.
In an example embodiment, a 50 μm multi-mode optical fiber is used for the downlink and uplink optical fibers 136D and 136U, and the E/O converters 60 operate at 850 nm using commercially available VCSELs specified for 10 Gb/s data transmission. In a more specific example embodiment, OM3 50 μm multi-mode optical fiber is used for the downlink and uplink optical fibers 136D and 136U.
The optical fiber-based wireless system 10 also includes a power supply 160 that generates an electrical power signal 162. The power supply 160 is electrically coupled to the HEU 20 for powering the power-consuming elements therein. In an example embodiment, an electrical power line 168 runs through the HEU 20 and over to the RAU 30 to power the E/O converter 60 and O/E converter 62 in the converter pair 66, the optional RF signal-directing element 106 (unless element 106 is a passive device such as a circulator), and any other power-consuming elements (not shown). In an example embodiment, the electrical power line 168 includes two wires 170 and 172 that carry a single voltage and that are electrically coupled to a DC power converter 180 at the RAU 30. The DC power converter 180 is electrically coupled to the E/O converter 60 and the O/E converter 62, and changes the voltage or levels of the electrical power signal 162 to the power level(s) required by the power-consuming components in the RAU 30. In an example embodiment, the DC power converter 180 is either a DC/DC power converter, or an AC/DC power converter, depending on the type of electrical power signal 162 carried by the electrical power line 168. In an example embodiment, the electrical power line 168 includes standard electrical-power-carrying electrical wire(s), e.g., 18-26 AWG (American Wire Gauge) used in standard telecommunications and other applications. In another example embodiment, the electrical power line 168 (dashed line) runs directly from the power supply 160 to the RAU 30 rather than from or through the HEU 20. In another example embodiment, the electrical power line 168 includes more than two wires and carries multiple voltages. In an example embodiment, the HEU 20 is operably coupled to an outside network 223 via a network link 224.
With reference to the optical fiber-based wireless system 10 of
The optical signal SD′ travels over the downlink optical fiber 136D to the output end 140, where it is received by the O/E converter 62 in RAU 30. The O/E converter 62 converts the optical signal SD′ back into an electrical signal SD, which then travels to the RF signal-directing element 106. The RF signal-directing element 106 then directs the electrical signal SD to the antenna 100. The electrical signal SD is fed to the antenna system 100, causing it to radiate a corresponding electromagnetic downlink RF service signal SD″ (“electromagnetic signal SD″”).
Because the client device 45 is within the picocell 40, the electromagnetic signal SD″ is received by the client device antenna 46, which may be part of a wireless card, or a cell phone antenna, for example. The antenna 46 converts the electromagnetic signal SD″ into an electrical signal SD in the client device (signal SD is not shown therein). The client device 45 then processes the electrical signal SD, e.g., stores the signal information in memory, displays the information as an e-mail or text message, or other display of information, etc. The client device 45 can generate electrical uplink RF signals SU (not shown in the client device 45), which are converted into electromagnetic uplink RF service signals SU″ (electromagnetic signal SU″”) by the antenna 46.
Because the client device 45 is located within the picocell 40, the electromagnetic signal SU″ is detected by the antenna system 100 in the RAU 30, which converts this signal back into an electrical signal SU. The electrical signal SU is directed by the RF signal-directing element 106 to the E/O converter 60, which converts this electrical signal into a corresponding optical uplink RF service signal SU′ (“optical signal SU′”), which is then coupled into the input end 142 of the uplink optical fiber 136U. The optical signal SU′ travels over the uplink optical fiber 136U to the output end 144, where it is received by the O/E converter 62 at the HEU 20. The O/E converter 62 converts the optical signal SU′ back into electrical signal SU, which is then directed to the service unit 50. The service unit 50 receives and processes the electrical signal SU, which in an example embodiment includes one or more of the following: storing the signal information; digitally processing or conditioning the signals; sending the signals to one or more outside networks 223 via network links 224; and sending the signals to one or more client devices 45 in the picocellular coverage area 44. In an example embodiment, the processing of the electrical signal SU includes demodulating this electrical signal SU in the RF signal modulator/demodulator unit 70, and then processing the demodulated signal in the digital signal processor 72.
In an example embodiment, the optical fiber-based wireless system 200 further includes a main controller 250 operably coupled to the service units 50 and adapted to control and coordinate the operation of the service units 50 in communicating with the RAUs 30. In an example embodiment, the main controller 250 includes a central processing unit (CPU) 252 and a memory unit 254 for storing data. The CPU 252 is adapted (e.g., is programmed) to process information provided to the main controller 250 by one or more of the service units 50. In an example embodiment, the main controller 250 is or includes a programmable computer adapted to carry out instructions (programs) provided to it or otherwise encoded therein on a computer-readable medium.
The central HEU 210 further includes a downlink RF signal multiplexer (“downlink multiplexer”) 270 operably coupled to the main controller 250. The downlink multiplexer 270 has an input side 272 and an output side 274. RF transmission lines 230 are electrically connected to the downlink multiplexer 270 at the input side 272.
In an example embodiment, the downlink multiplexer 270 includes an RF signal-directing element 280 (e.g., a RF switch) that allows for selective communication between the service units 50 and the RAUs 30, as described below. In an example, the selective communication involves sequentially addressing RAUs 30 for polling corresponding picocells 40. Such sequential polling can be used, for example, when one of the service units 50 is an RFID reader searching for RFID tags 290 in picocells 40 (
The central HEU 210 also includes an uplink RF signal multiplexer (“uplink multiplexer”) 320 operably coupled to the main controller 250 and having an input side 322 and an output side 324. Receiving lines 232 are electrically connected to the uplink multiplexer 320 at the output side 324. In an example embodiment, the uplink multiplexer 320 includes an RF signal-directing element 328.
The central HEU 210 also includes a number of E/O converters 60 that make up an E/O converter array 360, and a corresponding number of O/E converters 62 that make up an O/E converter array 362. The E/O converters 60 are electrically coupled to the output side 274 of downlink multiplexer 270 via electrical lines 330, and are optically coupled to the input ends 138 of corresponding downlink optical fibers 136D. The O/E converters 62 are electrically coupled to the input side 322 of the uplink multiplexer 320 via electrical lines 332, and are optically coupled to the output ends 144 of corresponding uplink optical fibers 136U. The downlink optical fibers 136D constitute a downlink optical fiber cable 378 and the uplink optical fibers 136U constitute an uplink optical fiber cable 380.
With reference to
Thus, one, some, or all of the E/O converters 60 in the E/O converter array 360 receive the electrical signals SD from the downlink multiplexer 270. The addressed E/O converters 60 in the E/O converter array 360 convert the electrical signals SD into corresponding optical signals SD′, which are transmitted over the corresponding downlink optical fibers 136D to the corresponding RAUs 30. The addressed RAUs 30 convert the optical signals SD′ back into electrical signals SD, which are then converted into electromagnetic signals SD″ that correspond to the particular service unit application.
In an example embodiment, the uplink multiplexer 320 and the RF signal-directing element 328 therein are controlled by the main controller 250 via a control signal S2 (
In an example embodiment, a single electrical power line 168 from the power supply 160 at central HEU 210 is incorporated into the optical fiber cable 220 and is adapted to power each RAU 30, as shown in
Each E/O converter array 360 is electrically coupled to the downlink multiplexer 270 in the corresponding multiplexer unit 414. Likewise, each O/E converter array 362 is electrically coupled to the uplink multiplexer 320 in the corresponding multiplexer unit 414. The service units 50 are each electrically coupled to both downlink and uplink multiplexers 270 and 320 within each multiplexer unit 414. Respective downlink and uplink optical fiber cables 378 and 380 optically couple each converter array unit 410 to a corresponding optical fiber cable 220. In an example embodiment, the central HEU 210 includes connector ports 420 and the optical cables 220 include connectors 422 adapted to connect to the connector ports 420. In an example embodiment, the connectors 422 are MT (“Mechanical Transfer”) connectors, such as the UNICAM® MTP connector available from Corning Cable Systems, Inc., Hickory, N.C. In an example embodiment, the connectors 422 are adapted to accommodate the electrical power line 168 connected to the connector port 420.
In
The optical fiber-based wireless system 400 operates in a manner similar to the optical fiber-based wireless system 200 as described above, except that instead of the RAUs 30 being in a single optical fiber cable 220, they are distributed over two or more optical fiber cables 220 through the use of corresponding two or more converter array units 410. Electrical signals SD from the service units 50 are distributed to each multiplexer unit 414. The downlink multiplexers 270 therein convey electrical signals SD to one, some, or all of the converter array units 410, depending on which RAUs 30 are to be addressed by which service unit 50. Electrical signals SD are then processed as described above, with downlink optical signals SD′ being sent to one, some or all of RAUs 30. Uplink optical signals SU′ generated by client devices 45 in the corresponding picocells 40 return to the corresponding converter array units 410 at the central HEU 210. The optical signals SU′ are converted to electrical signals SU at the receiving converter array unit(s) 410 and are then sent to the uplink multiplexers 320 in the corresponding multiplexer unit(s) 414. The uplink multiplexers 320 therein are adapted (e.g., programmed by the main controller 250) to direct electrical signals SU to the service unit(s) 50 that require(s) receiving electrical signals SU. The receiving service units 50 process the electrical signals SU, which as discussed above in an example embodiment includes one or more of storing the signal information; digitally processing or conditioning the signals; sending the signals to one or more outside networks 223 via network links 224; and sending the signals to one or more client devices 45 in the picocellular coverage area 44.
In an example embodiment, the centralized optical fiber-based wireless system 400 includes a main cable 540 having a number of different sections that facilitate the placement of a large number of RAUs 30 in the building infrastructure 500.
The main cable 540 enables multiple optical fiber cables 220 to be distributed throughout the building infrastructure 500 (e.g., fixed to the ceilings 512, 522 and 532) to provide an extended picocellular coverage area 44 for the first, second and third floors 501, 502 and 503. An example type of MC connector 550 is a “patch panel” used to connect incoming and outgoing optical fiber cables in an optical telecommunication system.
In an example embodiment of the multi-section main cable 540, the electrical power line 168 from the power supply 160 runs from the central HEU 210 through the riser section 542 and branches out into the optical fiber cables 220 at the MC connectors 550 (
In an example embodiment, the central HEU 210 and the power supply 160 are located within the building infrastructure 500 (e.g., in a closet or control room), while in another example embodiment one or both are located outside of the building at a remote location.
An example embodiment involves tailoring or designing the picocellular coverage areas 44 for the different floors to suit particular needs.
Referring first to
According to one aspect, each interconnect unit 660 can provide a low voltage DC current to the electrical conductors in the optical fiber cables 644 for powering the RAUs 650. For example, the interconnect units 660 can include an AC/DC transformer to transform 110V AC power that is readily available in the building infrastructure 620. In one embodiment, the transformers supply a relatively low voltage DC current of 48V or less to the optical fiber cables 644. An uninterrupted power supply could be located at the interconnect units 660 and at the HEU 610 to provide operational durability to the optical fiber-based wireless system 600. The optical fibers utilized in the optical fiber cables 644 can be selected based upon the type of service required for the system, and single mode and/or multi-mode fibers may be used.
The main cable 640 enables multiple optical fiber cables 644 to be distributed throughout the building infrastructure 620 (e.g., fixed to the ceilings or other support surfaces of each floor 601, 602 and 603) to provide the coverage area 630 for the first, second and third floors 601, 602 and 603. In an example embodiment, the HEU 610 is located within the building infrastructure 620 (e.g., in a closet or control room), while in another example embodiment it may be located outside of the building at a remote location. A base transceiver station (BTS) 670, which may be provided by a second party such as cellular service provider, is connected to the HEU 610, and can be co-located or located remotely from the HEU 610. A BTS is any station or source that provides an input signal to the HEU 610 and can receive a return signal from the HEU 610. In a typical cellular system, for example, a plurality of BTSs are deployed at a plurality of remote locations to provide wireless telephone coverage. Each BTS serves a corresponding cell and when a mobile station enters the cell, the BTS communicates with the mobile station. Each BTS can include at least one radio transceiver for enabling communication with one or more subscriber units operating within the associated cell.
The optical fiber-based wireless system 600 shown schematically in
Note that the OIMs 770 are shown as supporting up to six RAUs 650, but the OIMs 770 in this embodiment consist of two optical interface card (OICs) each supporting up to three RAUs 650 each. This is further illustrated in alternative exemplary HEU 610′ in
As illustrated in
The functions that the RAU 650 may perform include setting the output power or gain of the downlink signals, providing signal conditioning for the uplink to properly interface radio signals to the optical conversion module, and providing status information back to a HEU 610. The signal on the optical link can be broadband containing the bands of signals supported by the optical fiber-based wireless system 600. The RAU 650 splits these signals in three and routes them to separate band-limited circuits. For each band, the signal path consists of amplifiers, filters and attenuators that adjust the signal to the proper level at the antenna 858 for transmission. The minimum gain of the signal path may be determined from the maximum output power that can be transmitted (+14 dBm) and from a minimum desired input power for the multi-band downlink 818. For example, to transmit at a level of +14 dBm (composite total across the band) Code Division Multiple Access (CDMA) signal formats (which have peak to average power ratios of 10 dB), the output stage of the downlink signal must have a one dB compression point of +24 dBm. The output of the amplifier goes through a duplexor that combines the bands before it is transmitted.
The downlink circuitry may have the ability to be turned on or off based upon the user setup for the optical fiber-based wireless system 600. It may be desired to turn off unused circuits, for example, for power conservation and to also reduce the possibility of interference or crosstalk between the other frequency bands. The downlink also detects and measures the calibration signals B1, B2, B3 generated by the multi-band downlink 818 (
The downlink circuitry carries RF communication signals to the E/O converter 824 to be communicated to the RAU 650 and to client devices wireless communicating with the RAUs 650. The uplink circuitry conditions signals received at the antenna 858 from client devices and converts them to optical signals for transmission to the OIM 770 via the optical fiber cables 644. The uplink circuitry provides gain for the signal prior to the optical conversion, injects the calibration signal for calculation of the uplink gain, and inserts the data communications signal. The amount of gain for the uplink amplifiers is set from the requirement for the maximum input signal received by the antenna 858, and also by the maximum signal level that can be input into the transmitting optical subassembly. The RAU 650 can communicate with the OIM 770 to pass status information to the OIM 770 and to receive operational and configuration information from the RAU 650. An amplitude-modulated signal can be combined with radio signals to allow communications between the RAU 650 and the OIM 770. Simple On/Off keying of the frequency source should provide a low cost and sufficient solution. The carrier frequency is 10.7 MHz using a standard RS-232 protocol. The
According to the above embodiments, a variety of wireless services may be provided to a coverage area. Optical signals are used to transmit data to the RAUs 650, which allows the RAUs 650 to operate using a relatively low voltage source. A low operating voltage of 48V or less, for example, avoids many of the more onerous requirements of the National Electrical Code. The optical fiber-based wireless system 600 provides the advantage of modularity in that the RAUs 650 can be selected to have a number of differing functionalities, with the HEUs 610 also being capable of multiple functionalities, such as varying operating bands. The exemplary optical fiber-based wireless system 600 is described as supporting three bands to support a variety of services for the coverage area of the optical fiber-based wireless system 600. The optical fiber-based wireless system 600 can be adapted, however, to support additional frequency bands. The RAUs 650 can be placed selectively in the coverage area to ensure a good signal at each subscriber location. After the passive cabling has been deployed, client devices can be added at any time. Frequency bands can also be added or changed after initial deployment to support capacities such as 3G, cellular, WIMAX, LTE, retail, healthcare applications, RFID tracking, WiFi, and other capabilities.
An optical fiber-based wireless system 600 as illustrated in
To provide flexibility in installing, operating, and maintaining an optical fiber-based wireless system, microprocessors that execute software of firmware (referred to collectively herein as “software”) can be employed in such systems and their components to provide certain functionalities. Such optical fiber-based wireless systems can include the optical fiber-based wireless system 100, 200, 400, and 600 previously described. Software provides flexibility in system operation and communication between various components of an optical fiber-based wireless system for a variety of purposes and functionality, as will be described in more detail below.
For example, as illustrated in
The HEU 902 also includes downlink and uplink BICs 903 that receive and transmit RF carrier signals, respectively, to and from one or more RAUs (RAUs) 906 via optical fiber links, as previously discussed. The downlink and uplink BICs (not shown) in the HEU 902 also contain one or more microprocessors or microcontrollers that execute software for performance in this embodiment, as will be described in more detail below. The RAUs 906 are interfaced to the HEU 902 via OIMs 910 as previously discussed to transport Radio-over-Fiber (RoF) communication signals (or “optical RF signals”) between the BICs 903 and the RAUs 906 over the optical fiber links 904, as previously discussed. The OIMs 910 in this embodiment also contain one or more microprocessors executing software, as will be described in more detail below. The RAUs 906 include optical-to-electrical converters (not shown) to convert received RoF signals from the OIMs 910 into RF signals that are radiated via antennas 905 connected to the RAUs 906. The RAUs 906 also each contain one or more microprocessors that execute software, as will be described in more detail below. More detail regarding the components of the optical fiber-based wireless system 900 and their operability is discussed in more detail below with regard to
With continuing reference to
As also illustrated in
As illustrated in
The communication services provided by the interface layer 918 to the clients 920 may be provided according to any communication interface and protocol desired. As illustrated in
The HTTP interface module 940 facilitates interfacing with web browser clients executing a web browser (e.g., Internet Explorer®, Firefox®, Chrome®, and Safari® browsers, etc.). The MI interface module 942 facilitates interfacing with an MI client through an MI protocol. An example of an MI protocol is Simple Network Management Protocol (SNMP). In this example, the MI protocol interface 942 could be an SNMP agent. Certain features may be exclusively accessible through certain interface modules 938, 940, 942. More detail regarding the interface layer 918 and accessing of the optical fiber-based wireless system 900 via the interface layer 918 and the services 919 provided by the optical fiber-based wireless system 900, including through the interface layer 918, are described in more detail below.
Before discussing the various features and functions provided by the optical fiber-based wireless system 900 and the HEU 902 in this embodiment via software-based applications executing on microprocessors, an exemplary hardware and software deployment diagram of the optical fiber-based wireless system 900 and external components is first discussed. In this regard,
As illustrated in
The HEU controller 958 includes several software components or modules that provide the features and functionality of the HEU 902 and optical fiber-based wireless system 900, as will be described in more detail below. As illustrated in
The HEU controller 958 in this embodiment also includes a communications module (COMMS) 970 that contains the communications layer for the HEU controller software module 964. The HEU controller software module 964 initiates the communications module 970 to communicate with the other modules and components of the HEU 902, including the downlink and uplink BICs 949, 950 and the OIMs 910, to carry out features and functionalities in the optical fiber-based wireless system 900. During initialization, the software in the communications module 970 dynamically links HEU controller software module 964. In this manner, the communications layer provided in the communications module 970 is abstracted from the HEU controller software module 964 to provide flexibility for updating or altering the communications layers in the HEU 902 without requiring updating of the HEU controller software module 964.
In this embodiment, the communications module 970 communicates to the downlink and uplink BICs 949, 950 and the OIMs 910 via addressable messages communicated over an I2C communication bus 972, as illustrated in
The downlink and uplink BICs 949, 950 each have their own microprocessors or microcontrollers 965, 967 that execute software stored in their respective datastore 969, 971, respectively, to process the I2C messages from the communications module 970, and to provide responses over the I2C communication bus 972 to the communications module 970 to be passed on to the HEU controller software module 964 and additionally to control board functions. The microprocessors 965, 967 communicate with components in their respective downlink and uplink BICs 949, 950 to provide services requested by the HEU controller software module 964. The OIMs 910 also each have their own microprocessor 973 that executes software stored in datastore 975 to process the I2C messages from the communications module 970. The microprocessor 973 messages to microprocessors 977 in the RAUs 906 over direct links 979 to configure RAUs 906 and to provide other functionalities initiated by the HEU controller 958 and the HEU controller software module 964, as will be described in more detail below. As illustrated in
The HEU controller 958 in this embodiment also includes an interface manager module (INTERFACE MANAGER) 974 that controls the interface between the HEU controller software module 964 and the interface modules 940, 942. In this embodiment, the interface module 940 is a web server, and the interface module 942 is an SNMP agent. When the HEU controller software module 964 communicates to the interface modules 940, 942, the HEU controller software module 964 calls upon the interface manager module 974 which in turn calls upon the appropriate interface modules 940, 942 for external communications to clients 920 (
Visual indicators, such as light emitting diodes (LEDs) for example, may be included in the HEU 902 and its various components and the RAU 906 to visually indicate the status of such components to a technician or other personnel when on-site at the HEU 902 and/or RAUs 906. In this manner, general status information can be determined without having to log in to the HEU 902, unless desired. In this regard,
In this embodiment, the HEU controller 958 is a distinct system from the RF modules (i.e., downlink BIC 949, uplink BIC 950, OIMs, 910, and RAUs 906) and their components. Thus, the HEU controller 958 can operate even if the RF modules and their components are not operational, and vice versa. This allows the HEU controller 958 to operate to perform various functions, including without limitation monitoring and generating alarms and logs, and other tasks as will be described in greater detail below, for RF components without interrupting the RF signals communicated in the RF modules. These various functions are provided by the HEU controller 958 carrying out communication operations with modules in the system 900 including the downlink BIC 949, the uplink BIC 950, the OIMs 910, and/or the RAUs 906. This provides an advantage of being able to power-down, reboot, troubleshoot, and/or load or reload software into the HEU controller 958 without interrupting RF communications in the HEU 902 or RAUs 906. Further, because the HEU controller 958 can be distinct from RF communications, swapping in and out the modules in the HEU 902 and RAU 906 is possible without interrupting or requiring the HEU controller 958 to be disabled or powered-down. The HEU controller 958 can continue to perform operations for other RF modules that have not been removed while other RF-based module(s) can be removed and replaced.
An example of a hardware address format 984 is provided in
Clients 920 accessing the optical fiber-based wireless system 900 may be interested in points for a variety of reasons. For example, by monitoring a point, a check on status and health of a component in the optical fiber-based wireless system 900 can be performed. The points can be monitored and used to calculate alarms (e.g., if a particular hardware component is operating outside a tolerable range). Points can also be used to provide information or point values to clients 920 and used to calculate and/or generate alarms. Multiple points can be associated with the different hardware boards in the optical fiber-based wireless system 900 (i.e., HEU 902, downlink BIC 949, uplink BIC 950, OIMs 910, and RAUs 906). The point values monitored can also be used to determine aging of the modules. For example, the degradation of performance can be tracked over time by tracking the performance indicators communicated in points from the modules to the HEU 902.
Different microprocessors for different components of the HEU 902 and optical fiber-based wireless system 900, as previously described and illustrated in
The point abbreviation name 998B may follow a standard configuration. For example, the first letter in the point abbreviate name 998B may be the board type (e.g., “R”=RAU; “D”=downlink BIC; “U”=uplink BIC; and “O”=OIM). The second and third letters in the point abbreviation name 998B may be the direction of the point (e.g., “IN”=input; “OU”=output; “MO”=module; “Bx”=band number, “Ox”=oscillator number, etc.). The fourth letters in the point abbreviation name 998B may be the component type (e.g., “A”=amplifier; “N”=attenuator; “O” is oscillator, “S”=switch, etc.). The fifth and sixth letters in the point abbreviation name 998B may be the component characteristic (e.g., “L”=level; “S”=status; “E”=enable/disable, etc.) and its instance identification.
As discussed above, points are defined by the optical fiber-based wireless system 900. More particularly, the component of the optical fiber-based wireless system 900 responsible for providing particular points is also responsible for providing characteristic information regarding the points to the HEU controller 958, and more particularly to the HEU controller software module 964 when the component is enumerated or initialized. In this manner, each component in the optical fiber-based wireless system 900 can provide information on the meaning of points under its responsibility and how such points should be handled or treated by the HEU controller software module 964 for flexibility. The enumeration process for components of the optical fiber-based wireless system 900 will be described in more detail below.
As illustrated in
With continuing reference to
Bit numbers 13-12 in this embodiment (UNALLOCATED) are unallocated. Bit number 10 (VALUE) indicates whether a point value is present for the point followed in an enumeration query. Bit number 9 (NAME) indicates that there is an ASCII character name associated with the point. Bit number 8 (SETPOINT) indicates that there is a 16-bit setpoint associated with the point. Bit number 7 (THRESHOLD) indicates that there is a 16-bit threshold value associated with the point. Bit number 6 (HYSTERESIS) indicates that there is a 16-bit hysteresis value associated with the point. Bit numbers 5 and 4 (MIN THRESHOLD and MAX THRESHOLD) indicate that there are minimum and maximum threshold values associated with the point. Bit numbers 3 and 2 (MIN HYSTERESIS and MAX HYSTERESIS) indicate that there are minimum and maximum hysteresis values associated with the point. Bit number 1 (STEP SIZE) indicates that there is a 32-bit floating point step size associated with the point. Bit number 0 (OFFSET) indicates that there is a 32-bit float point offset associated with the point.
Against the backdrop of the microprocessor and software architecture and communication of the HEU 902 and the HEU controller 958 discussed above, the remainder of this disclosure will discuss the exemplary features and functions that can be carried out by the HEU controller 958. In this regard,
As illustrated in
Another thread 1002 initiated by the HEU controller process 1001 that is executed by the HEU microprocessor 960 is the scheduler thread 1007 (SCHEDULER). Among other features, the scheduler thread 1007 is responsible for discovering and initializing or enumerating components or modules in the HEU 902 and the optical fiber-based wireless system 900, generating point list information based on the flagbits 999 (
A datastore module 1012 is also provided in the HEU controller 958 to store data in datastore 966 from other threads 1002. The datastore 966 can involve different and multiple memory types and include separate partitions for configurations information, alarm information, and log information as will be described in more detail below. The datastore module 1012 also facilitates the storage of information, including lists or tables of modules present, their points and point information, and configuration information of the HEU 902 and optical fiber-based wireless system 900, in datastore 966 for retrieval, when needed or requested. This information may be obtained from the datastore 966 by the threads 1002 and the clients 920 via the external interface thread 1010. The datastore module 1012 can provide one or more registers for writing and reading data regarding the optical fiber-based wireless system 900 stored in datastore 966. However, the datastore module 1012 is not a separate thread in this embodiment. The datastore module 1012 is provided as part of the HEU controller software module 964 and its process.
Because the datastore 966 is provided apart and distinct from the RF communications in the HEU 902, any information stored in the datastore 966, such as configuration information for example, can be retained and preserved even if RF modules are disabled, interrupted, or otherwise not operating. When an RF module is disabled and restored for example, after the module is discovered, the configuration information stored in the datastore 966 for such module can be reestablished.
With continuing reference to
With continuing reference to
With continuing reference to
Lastly, as illustrated in
With reference back to
The normal HEU controller process 1001 involves checking the communications thread 1006 queue length to ensure that any communications bottlenecks that occur between inter-thread communications to the communications thread 1006 are resolved. The main features and functions of the HEU controller 958 are performed within the other threads 1002, as will be discussed in more detail below. In this regard, the HEU controller process 1001 sends a message to the communications thread 1006 to get the length of the communications thread 1006 get request queue (block 1066). The get request queue is a message queue provided in datastore 966 that the communications thread 1006 reviews to receive communications requests from the scheduler thread 1007 (see
Thereafter, the HEU controller process 1001 sends a message to the communications thread 1006 to obtain the length of the set request queue (block 1072). The set request queue is the message queue provided in datastore 966 that the communications thread 1006 reviews to receive communications requests from the external interface thread 1010. If the length of the set request queue is longer than a given threshold limit (block 1074), the set request threshold provided in the external interface thread 1010 is lowered (block 1076). This is because the external interface thread 1010 may be responsible for providing a request rate to the communications thread 1006 that exceeds a desired threshold limit for the set request queue, thus providing a latency issue.
Next, with continuing reference to
With reference to
With continuing reference to
Each module contains certain configured points that provide either static or dynamic information about the module and its components to the HEU controller 958. In this manner, the modules are responsible for reporting their point capabilities to the HEU controller 958 for flexibility. In this embodiment, the first point communicated back to the schedule thread 1007 indicates the total number of points for the module that can be requested by the HEU controller 958. After a module is discovered, the scheduler thread 1007 places the discovered module list of all modules as well as their configured points in datastore 966 (
The module discovery determines the number of OIMs 910 provided in the HEU 902 and in which slots the OIMs 910 are connected to the downlink and uplink BICs 949, 950. In this embodiment, up to two hundred fifty-six (256) modules can be discovered by the HEU controller 958, however, such is not a limitation. Further, module discovery also determines the RAUs 906 connected to each OIM 910 via communications from the communications thread 1006 to the OIM 910. As previously discussed, the RAUs 906 are not directly addressable on the I2C communication bus 972, but each RAU 906 has a unique I2C address for access via the OIMs 910 (
Turning back to
The scheduler thread 1007 generates the enumerating points request (block 1126) and sends the enumerating points request for a discovered module to the communications thread 1006 destined for the module via I2C communications (block 1128). The module receives the enumerating points request 1122 from the communications thread 1006 while in the module discovered state 1116, as illustrated in
As also illustrated in
In this embodiment, there are four types of alarms that are either calculated by the HEU controller 958, and the scheduler thread 1007 in this embodiment, or by the module that provides the point. Bit number 23 in the flagbit 999 settings for each point previously discussed and illustrated in
This alarm scheme allows any point to be defined as an alarm as needed for any module. When the points are enumerated by the scheduler thread 1007, as discussed above, the HEU controller 958 will know which points are alarm from the flagbits 999 and also whether each alarm is to be calculated, either by the HEU controller 958 or the module itself. This allows flexibility for any modules to provide its own alarms rather than requiring the HEU controller 958 to calculate an alarm. As an example, an example of a module determined alarm may be a point named “RINMVL” which means that RAU 906 input module voltage level. The scheduler thread 1007 will have noticed the alarm module bit (bit number 23) in the flagbits 999 is set for this point alarm during enumeration of the module and understand that this alarm point is calculated or set by the RAU 906. When the alarm point is obtained as a dynamic point as part of the get alarm point processing by the scheduler thread 1007 discussed below, the scheduler thread 1007 will receive the Boolean value of the alarm and report the alarm for posting.
Returning to
Alarmable points are points in which an alarm can be calculated or determined by the scheduler thread 1007 according to conditions provided for the point in the flagbits 999, as previously discussed (
Another type of request performed by the scheduler thread 1007 in the request stage 1104 is the get points request 1150. For modules that are in the initialized state (block 1152), the scheduler thread 1007 generates a point list based on the enumeration response from the discovered modules (block 1154). The scheduler thread 1007 then sends a get points request to the initialized modules via the communications thread 1006 (block 1156). The module receives the get points request, via the communications thread 1006, while in the initialized state 1134 (
After the scheduler thread 1007 performs the request stage 1104, the scheduler thread 1007 performs the response stage 1108. The scheduler thread 1007 checks the scheduler response queue in datastore 966 to determine if any responses are pending in the queue from other threads 1002 (block 1160). Responses can be generated and placed in the scheduler response queue in response to requests in the request stage 1104 of the scheduler thread 1007. As continued on
The scheduler thread 1007 will continue to process responses until the response queue is lower than the threshold value (blocks 1166, 1160). If the pending requests were not higher than the threshold value (block 1166), the scheduler thread 1007 reports a system error event since requests are not being received in response to responses (block 1168). The scheduler thread 1007 then determines if a stop operation request has been received (block 1170). If not, the process returns to the request stage 1104 (block 1106). If a stop operation has been received (block 1170), the scheduler thread 1007 waits for pending requests to complete (block 1172) and performs a clean up procedure (block 1174) before exiting the scheduler thread 1007 (block 1176). In this case, the scheduler thread 1007 is no longer active and the scheduler thread 1007 must be reinitiated by the HEU controller process 1001 in order to be reactivated.
If the scheduler response queue is not empty (block 1162), this means there is a response in the scheduler response queue to be processed. In this event, the scheduler thread 1007 determines the response type (block 1178). If the response type is a module communication or discovery error, the module state is updated to an uninitialized state in the HEU controller 958 (block 1180) and this information is updated in the datastore 966 via a call to the datastore module 1012 (block 1182). If the response type is a module enumerated response, the module is discovered. The scheduler thread 1007 updates the points for the discovered module to the scheduler thread 1007 via the communications thread 1006 (block 1183). The points include the point itself as well as characteristics of the point according to the flagbits 999 (
With continuing reference to
With continuing reference to
In this regard, taking the example of the scheduler thread 1007 reporting a system event for logging, the scheduler thread 1007 calls upon the common module 968 to log a system event (block 1232). The common module 968 places the log request into the logger queue 1214 (block 1234) (see also,
Another feature provided for the optical fiber-based wireless system 900 by the HEU 902 in this embodiment is calibration. Calibration involves determining the signal strength loss as a result of conversion of the electrical RF signal to an RoF signal on a downlink and vice versa on an uplink and compensating for such losses. Signal strength loss can be encountered on the downlink communication path when incoming electrical RF signals from the BTSs 956 provided to the downlink BIC 949 are converted to RoF signals in the OIMs 910 and communicated to the RAUs 906. Gains in the various components in the communication path between the BTSs 956 and the RAUs 906 can be adjusted to compensate for such losses. Calibration can also involve determining the signal strength loss encountered on the uplink communication path. Signal strength losses can also be incurred when incoming electrical RF signals to the RAUs 906 are converted to RoF signals and communicated to the OIMs 910, which are converted back to electrical RF signals to communicate such signals to the uplink BIC 950. As provided for the downlink communication path, gains in the various components in the communication path between the RAUs 906 and the BTSs 956 can also be adjusted to compensate for such losses. Typically, the gain is set to increase the power level of the signals communicated in the downlink and uplink communication paths, although the gains could be set to decrease the signal strength. For example, it may be desirable to normalize the signal strengths between the various signal inputs among different BTS inputs 957 (
To facilitate further discussion of calibration, the schematic diagrams of
To calibrate the optical fiber-based wireless system 900 and its components in this embodiment, two calibration oscillators 1258A, 1258B are provided in the downlink BIC 949, as illustrated in
In this embodiment, the HEU microprocessor 960 can instruct the downlink BIC microprocessor 965 to switch the frequency switches 1262A, 1262B via I2C communications between the HEU microprocessor 960 and the downlink BIC microprocessor 965. This calibration action or mode propagates the calibration signals 1260A, 1260B over the downlink communication path 1250 through the downlink BIC 949 and its components. In this manner, the calibration signals 1260A, 1260B are downlink calibration signals. The signal strength of the calibration signals 1260A, 1260B are measured by calibration measuring components 1263A, 1263B for comparison purposes to determine the loss as a result of the conversion of the electrical RF signals to RoF signals. This signal strength level is the expected signal strength for the calibration signals 1260A, 1260B. The calibration signals 1260A, 1260B will reach the OIMs 910 and their components, where the calibration signals 1260A, 1260B will be converted into RoF signals for communication to the RAUs. 906. The calibration signals 1260A, 1260B in this embodiment are carried over the same RF links that carry the electrical RF signals so that calibration can be performed while RF communications are being provided by the HEU 902.
In this embodiment, one calibration frequency is for high frequency communication calibration and the other calibration frequency is for low frequency communication calibration. For example, the two calibration frequencies could be 915 MHz and 2017 MHz. In this manner, the optical fiber-based wireless system 900 is calibrated for both high and low frequency signals. The frequencies of the calibration signals 1260A, 1260B are selected in this embodiment to not overlap and thus interfere with the expected frequencies of RF signals communicated over the downlink communication path 1250 and/or the uplink communication path 1254 so that calibration can occur even while RF communications are occurring and without requiring RF communications to be disabled. However, note that any number of calibration signals 1260 may be employed and at any frequency or frequencies desired.
Eventually, the RoF signals generated as a result of the OIM's 910 receipt and conversion of the calibration signals 1260A, 1260B to RoF signals will reach the RAUs 906, as illustrated in
In this regard, the power or signal strength of the electrical RF signals 1268 can be measured by the downlink calibration measurement components 1265 to be compared against the expected power or signal strength of the calibration signals 1260A, 1260B as measured by the calibration measuring components 1263A, 1263B (block 1321). Losses can be determined as a result of the calibration signals 1260A, 1260B being propagated along the downlink communication path 1250. Losses may be incurred due to propagation of the calibration signals 1260A, 1260B through various components in the downlink communication path 1250 as well as from conversion of the calibration signals 1260A, 1260B from electrical RF signals to RoF signals in the OIMs 910. Losses can also be incurred when the RoF signals are converted back to electrical RF signals in the RAUs 906. Gains can be adjusted in components present in the downlink communication path 1250 of the optical fiber-based wireless system 900, including but not limited to adjustments to gains in amplifiers and/or attenuators, to compensate for such losses, as will be described in more detail below. As illustrated, the downlink communication path 1250 is split into three bands in this embodiment, although any number may be included. In this embodiment, the gain adjustment for calibration of the downlink communication path 1250 will be performed in the RAUs 906, as discussed in more detail below.
Similarly, the uplink communication path 1254 can also be calibrated to compensate for losses incurred from converting received electrical RF signals 1270 from the antennas 905 of the RAUs 906 on the uplink communication path 1254 into RoF signals 1254. Losses can be incurred by converting the received electrical RF signals 1270 to RoF signals in the RAUs 906 and back to electrical RF signals in the OIMs 910 before being communicated to the uplink BIC 950. Gain adjustments can also be made to compensate for these losses in the uplink communication path 1254 in the optical fiber-based wireless system 900. In this regard, the same calibration signals 1260A, 1260B that are used to calibrate the downlink communication path 1250 can also be used to calibrate the uplink communication path 1254, although such is not required.
As illustrated in
Alternatively, instead of the calibration signals 1260A, 1260B being redirected to the uplink communication path 1254 to calibrate the uplink as discussed above, uplink calibration signal generators separate from the calibration oscillators 1258A, 1258B. It may be desirable to provide separate uplink calibration signal generators if the losses in the downlinks cause the signal strength of the calibration signals 1260A, 1260B to be too weak for use to measure losses on the uplinks, as one example. In this regard, uplink calibration oscillators could be employed in the RAUs 910 to generate uplink calibration signals overt the uplink communication path 1254 to determine the losses on the uplinks. The signal strength of the uplink calibration signals could be measured in the RAUs 910 and then measured as the UL-BIC 950, just as described above, to calculate the loss in the uplinks.
The RoF signals 1278 on the uplink communication path 1254 will reach the uplink BIC 950, as illustrated in
The calibration of the optical fiber-based wireless system 900 is performed for each of the calibration oscillators 1258A, 1258B in this embodiment. Further, the calibration of the optical fiber-based wireless system 900 may be performed for each of the four (4) possible BTS inputs 957, for up to a total of thirty-six (36) possible RAUs 906 (i.e., three (3) bands times twelve (12) OIMs 910 times three (3) RAUs 906 per OIM 910). This involves a possible total of four hundred thirty-two (432) calibration processes for the optical fiber-based wireless system 900 in this embodiment. By the module discovery process previously described above, the calibration performed for the optical fiber-based wireless system 900 will automatically and adaptively be performed and adapted to the downlink and uplink communication paths 1250, 1254 and the OIMs 910 and RAUs 906 present. Thus, if temperature variations or an aging effect cause changes in the gain or loss of the components, recalibration of the OIMs 910 and RAUs 906 will account for such changes automatically and periodically. Gain adjustments made in the RAUs 906 as part of the gain adjustment during calibration will only affect the individual RAU 906 and not other RAUs 906.
To allow the HEU controller 958 to control the calibration process, the calibration thread 1008 is provided in the HEU controller 958 and executed by the HEU microprocessor 960. The calibration thread 1008 was previously introduced and illustrated in
In this regard,
With continuing reference to
The signal strength of the calibration signal 1260 is measured by 1263A, 1263B. The downlink BIC microprocessor 965 will send an acknowledgement (ACK) message back to the HEU controller 958 to acknowledge receipt of the calibration message (block 1322).
When the acknowledgement message is received by the calibration thread 1008 from the downlink BIC 949 (block 1324), the calibration thread 1008 next issues a calibration request for the selected calibration band to the selected RAU 906 (block 1326). The selected RAU 906, and more particularly the RAU microprocessor 977 in this embodiment (see
Next, the uplink communication path 1254 involving the selected RAU 906 is calibrated. In this regard, the selected RAU 906 switches the downlink calibration switches 1272 to send the electrical RF signals representative of the calibration signal 1260 to the RAU band amplifiers 1276 for uplink calibration, as previously discussed (block 1338). The calibration measurement components 1276 measure the expected signal strength (block 1339). The selected RAU 906 then sends an acknowledgement (ACK) message back to the HEU controller 958 to indicate that the downlink calibration process is complete (blocks 1340, 1342). Thereafter, as illustrated in
The uplink BIC 950 receives the calibration request from the HEU controller 958 (block 1358). The uplink BIC 950 sets the uplink calibration frequency switches 1286 to the selected BTS input 957 (block 1360). The signal strength of the calibration signal is then measured and the loss calculated using the uplink calibration measurement component 1284 (blocks 1362, 1364). The uplink BIC 950 then sends an acknowledgement (ACK) return message to the HEU controller 958 along with the calculated loss (blocks 1366, 1368). The HEU controller 958 then sends a request for setting the downlink calibration switches 1274 to the downlink (block 1369) to set up the next calibration loop, in which case the RAU 906 receives the message and sets the RAU calibration switch 1274 to the downlink setting (block 1371). The calibration thread 1008 then returns to calibrate the other BTS inputs 957 (block 1384). Thereafter, RAUs 906 are selected for the BTS inputs 957 until all discovered and initialized RAUs 906 are calibrated for the selected calibration band (block 1386). Then, the same process is repeated for the previously unselected calibration band (block 1388) to complete the calibration loop 1300.
When calculations in the required attenuations for the downlink (block 1391 in
The total error for each communication uplink from each RAU 906 to the UL-BIC 950 is determined and stored in a similar manner to the downlinks. The total error for the uplinks in this embodiment is the input calibration signal strength (block 1321 in
When the attenuations levels are calculated, the attenuation levels can be applied, as illustrated in block 1392 in
The calibration thread 1008 checks to see if calibration has been turned off before repeating (block 1389), in which case it is turned off (block 1390). If calibrations are required, they are calculated (block 1391) and applied to the attenuators (block 1392). For the downlinks, the RAU microprocessor 977 can set the gain of two RAU attenuators 1336A, 1336B (
As previously discussed, the embodiment of the HEU 902 is configured to support up to thirty-six (36) RAU s 906, via up to twelve (12) OIMs 910 supporting up to three (3) RAUs 906 each. However, in certain configurations, more than thirty-six (36) RAUs 906 may be needed or desired to provide the desired coverage areas. For example, the RAUs 906 may provide picocellular coverage areas. In this regard, a plurality of HEUs 902 may be provided 902A, 902B, 902N as illustrated in
As previously discussed and illustrated in
The web server 940 in this embodiment can support a number of the previously described features provided in the HEU 902. For example, the web server 940 can allow a client 920 to configure the HEU 902. This includes enabling or disabling BTS 956 bands, adjusting BTS input 957 power levels, and setting gains for RAUs 906. The web server 940 in this embodiment also allows configuring network addresses for the HEU 902, user access management, saving the configuration of the HEU 902 to an external file or uploading a configuration from a file, configuring the SNMP interface, and managing floor plans for the optical fiber-based wireless system 900.
The web server 940 also allows a client 920 to monitor the overall status of the optical fiber-based wireless system 900. The client 920 can view the status of the points by allowing access to the point list 993. The web server 940 also allows a client 920 to set properties for the points. The web server 940 allows client 920 access to alarms and logs reported by the HEU controller 958. The web server 940 also allows a client 920 to upgrade firmware or software for the various microprocessor-based components of the optical fiber-based wireless system 900. These same features and services can also be provided by the SNMP agent 942.
In this regard,
The status of each HEU 1516 is shown in a status icon 1526 to provide a visual status indication of the component shown, which in this example is an HEU 902. For example, the status icons 1526 could be color coded. A green color could indicate no errors or warning for the HEU 902 and its components in this embodiment. A yellow color could indicate that at least one warning is present for the HEU 902 in this embodiment. A red color could indicate a critical error is present for the HEU 902 in this embodiment. Beside the status icons 1526 are flags 1528 that are provided if a component within the HEU 902 has a fault, which in this case would be either an OIM 910 or a RAU 906. The feature section 1526 includes a banner 1530 that provides the various functions and features made available to the client 920 with regard to the selected HEU(s) 902 or modules. The “System Status” tab 1532 can be selected to view the status of a selected HEU 902. The “Config” tab 1534 can be selected to configure certain aspects of the HEU 902 or its modules. The “Monitor” tab 1536 can be selected to monitor the selected HEU 902 and its modules that have been discovered and initialized. The “Alarms” tab 1538 can be selected to view alarms either reported by the modules or calculated by the scheduler thread 1007 in an HEU controller 958. The “Logs” tab 1540 can be selected to view the log of system events recorded by the logger thread 1004 in a HEU controller 958. The “Properties” tab 1542 can be selected to provide certain properties about selected HEUs 902 or other components. The “Installation” tab 1544 can be selected to provide information about installation. The “Service Status” tab 1546 can be selected to view the overall status of a selected HEU 902 or module. The “System Information” tab 1547 can be selected to display a table of module information for each detected module in the HEU 902 and RAUs 906 connected thereto. Each of the features available through the external interface functionality of the HEU 902 will be discussed in more detail below. A tracer event can also be displayed in the trace message section 1527.
The optical-fiber based wireless system discussed herein can encompass any type of electronic or fiber optic equipment and any type of optical connections and receive any number of fiber optic cables or single or multi-fiber cables or connections. Further, as used herein, it is intended that terms “fiber optic cables” and/or “optical fibers” include all types of single mode and multi-mode light waveguides, including one or more bare optical fibers, loose-tube optical fibers, tight-buffered optical fibers, ribbonized optical fibers, bend-insensitive optical fibers, or any other expedient of a medium for transmitting light signals. Many modifications and other embodiments set forth herein will come to mind to one skilled in the art to which the embodiments pertain having the benefit of the teachings presented in the foregoing descriptions and the associated drawings.
Therefore, it is to be understood that the description and claims are not to be limited to the specific embodiments disclosed and that modifications and other embodiments are intended to be included within the scope of the appended claims. It is intended that the embodiments cover the modifications and variations of the embodiments provided they come within the scope of the appended claims and their equivalents. Although specific terms are employed herein, they are used in a generic and descriptive sense only and not for purposes of limitation.
This application is a continuation of U.S. application Ser. No. 13/194,410, filed Jul. 29, 2011, which is a continuation of International Application No. PCT/US2010/022857, filed Feb. 2, 2010, which claims the benefit of priority of U.S. Provisional Application No. 61/149,553, filed Feb. 3, 2009 and entitled “Distributed Antenna System,” and to U.S. Provisional Application No. 61/230,463, filed Jul. 31, 2009 and entitled “Optical Fiber-Based Distributed Antenna Systems, Components, and Related Methods for Calibration Thereof,” the contents of which are relied upon and incorporated herein by reference in their entireties. This application is related to International Application No. PCT/US2010/022847, filed Feb. 2, 2010, and to U.S. Provisional Application No. 61/230,472 filed Jul. 31, 2009 and entitled “Optical Fiber-Based Distributed Antenna Systems, Components, and Related Methods for Monitoring the Status Thereof,” which are incorporated herein by reference in their entireties.
Number | Name | Date | Kind |
---|---|---|---|
4365865 | Stiles | Dec 1982 | A |
4449246 | Seiler et al. | May 1984 | A |
4573212 | Lipsky | Feb 1986 | A |
4665560 | Lange | May 1987 | A |
4867527 | Dotti et al. | Sep 1989 | A |
4889977 | Haydon | Dec 1989 | A |
4896939 | O'Brien | Jan 1990 | A |
4916460 | Powell | Apr 1990 | A |
4939852 | Brenner | Jul 1990 | A |
4972346 | Kawano et al. | Nov 1990 | A |
5039195 | Jenkins et al. | Aug 1991 | A |
5042086 | Cole et al. | Aug 1991 | A |
5056109 | Gilhousen et al. | Oct 1991 | A |
5059927 | Cohen | Oct 1991 | A |
5125060 | Edmundson | Jun 1992 | A |
5187803 | Sohner et al. | Feb 1993 | A |
5189718 | Barrett et al. | Feb 1993 | A |
5189719 | Coleman et al. | Feb 1993 | A |
5206655 | Caille et al. | Apr 1993 | A |
5208812 | Dudek et al. | May 1993 | A |
5210812 | Nilsson et al. | May 1993 | A |
5260957 | Hakimi | Nov 1993 | A |
5263108 | Kurokawa et al. | Nov 1993 | A |
5267122 | Glover et al. | Nov 1993 | A |
5268971 | Nilsson et al. | Dec 1993 | A |
5278690 | Vella-Coleiro | Jan 1994 | A |
5278989 | Burke et al. | Jan 1994 | A |
5280472 | Gilhousen et al. | Jan 1994 | A |
5299947 | Barnard | Apr 1994 | A |
5301056 | O'Neill | Apr 1994 | A |
5325223 | Bears | Jun 1994 | A |
5339058 | Lique | Aug 1994 | A |
5339184 | Tang | Aug 1994 | A |
5343320 | Anderson | Aug 1994 | A |
5377035 | Wang et al. | Dec 1994 | A |
5379455 | Koschek | Jan 1995 | A |
5381459 | Lappington | Jan 1995 | A |
5396224 | Dukes et al. | Mar 1995 | A |
5400391 | Emura et al. | Mar 1995 | A |
5420863 | Taketsugu et al. | May 1995 | A |
5424864 | Emura | Jun 1995 | A |
5444564 | Newberg | Aug 1995 | A |
5457557 | Zarem et al. | Oct 1995 | A |
5459727 | Vannucci | Oct 1995 | A |
5469523 | Blew et al. | Nov 1995 | A |
5519830 | Opoczynski | May 1996 | A |
5543000 | Lique | Aug 1996 | A |
5546443 | Raith | Aug 1996 | A |
5557698 | Gareis et al. | Sep 1996 | A |
5574815 | Kneeland | Nov 1996 | A |
5598288 | Collar | Jan 1997 | A |
5606725 | Hart | Feb 1997 | A |
5615034 | Hori | Mar 1997 | A |
5627879 | Russell et al. | May 1997 | A |
5640678 | Ishikawa et al. | Jun 1997 | A |
5642405 | Fischer et al. | Jun 1997 | A |
5644622 | Russell et al. | Jul 1997 | A |
5648961 | Ebihara | Jul 1997 | A |
5651081 | Blew et al. | Jul 1997 | A |
5657374 | Russell et al. | Aug 1997 | A |
5668562 | Cutrer et al. | Sep 1997 | A |
5677974 | Elms et al. | Oct 1997 | A |
5682256 | Motley et al. | Oct 1997 | A |
5694232 | Parsay et al. | Dec 1997 | A |
5703602 | Casebolt | Dec 1997 | A |
5708681 | Malkemes et al. | Jan 1998 | A |
5726984 | Kubler et al. | Mar 1998 | A |
5765099 | Georges et al. | Jun 1998 | A |
5790536 | Mahany et al. | Aug 1998 | A |
5790606 | Dent | Aug 1998 | A |
5793772 | Burke et al. | Aug 1998 | A |
5802173 | Hamilton-Piercy et al. | Sep 1998 | A |
5802473 | Rutledge et al. | Sep 1998 | A |
5805975 | Green, Sr. et al. | Sep 1998 | A |
5805983 | Naidu et al. | Sep 1998 | A |
5809395 | Hamilton-Piercy et al. | Sep 1998 | A |
5809431 | Bustamante et al. | Sep 1998 | A |
5812296 | Tarusawa et al. | Sep 1998 | A |
5818619 | Medved et al. | Oct 1998 | A |
5818883 | Smith et al. | Oct 1998 | A |
5821510 | Cohen et al. | Oct 1998 | A |
5825651 | Gupta et al. | Oct 1998 | A |
5838474 | Stilling | Nov 1998 | A |
5839052 | Dean et al. | Nov 1998 | A |
5852651 | Fischer et al. | Dec 1998 | A |
5854986 | Dorren et al. | Dec 1998 | A |
5859719 | Dentai et al. | Jan 1999 | A |
5862460 | Rich | Jan 1999 | A |
5867485 | Chambers et al. | Feb 1999 | A |
5867763 | Dean et al. | Feb 1999 | A |
5881200 | Burt | Mar 1999 | A |
5883882 | Schwartz | Mar 1999 | A |
5896568 | Tseng et al. | Apr 1999 | A |
5903834 | Wallstedt et al. | May 1999 | A |
5910776 | Black | Jun 1999 | A |
5913003 | Arroyo et al. | Jun 1999 | A |
5917636 | Wake et al. | Jun 1999 | A |
5930682 | Schwartz et al. | Jul 1999 | A |
5936754 | Ariyavisitakul et al. | Aug 1999 | A |
5943372 | Gans et al. | Aug 1999 | A |
5946622 | Bojeryd | Aug 1999 | A |
5949564 | Wake | Sep 1999 | A |
5953670 | Newson | Sep 1999 | A |
5959531 | Gallagher, III et al. | Sep 1999 | A |
5960344 | Mahany | Sep 1999 | A |
5969837 | Farber et al. | Oct 1999 | A |
5983070 | Georges et al. | Nov 1999 | A |
5987303 | Dutta et al. | Nov 1999 | A |
6005884 | Cook et al. | Dec 1999 | A |
6006069 | Langston et al. | Dec 1999 | A |
6006105 | Rostoker et al. | Dec 1999 | A |
6011980 | Nagano et al. | Jan 2000 | A |
6014546 | Georges et al. | Jan 2000 | A |
6016426 | Bodell | Jan 2000 | A |
6023625 | Myers, Jr. | Feb 2000 | A |
6037898 | Parish et al. | Mar 2000 | A |
6061161 | Yang et al. | May 2000 | A |
6069721 | Oh et al. | May 2000 | A |
6088381 | Myers, Jr. | Jul 2000 | A |
6118767 | Shen et al. | Sep 2000 | A |
6122529 | Sabat, Jr. et al. | Sep 2000 | A |
6127917 | Tuttle | Oct 2000 | A |
6128470 | Naidu et al. | Oct 2000 | A |
6128477 | Freed | Oct 2000 | A |
6148041 | Dent | Nov 2000 | A |
6150921 | Werb et al. | Nov 2000 | A |
6157810 | Georges et al. | Dec 2000 | A |
6192216 | Sabat, Jr. et al. | Feb 2001 | B1 |
6194968 | Winslow | Feb 2001 | B1 |
6212397 | Langston et al. | Apr 2001 | B1 |
6222503 | Gietema | Apr 2001 | B1 |
6223201 | Reznak | Apr 2001 | B1 |
6232870 | Garber et al. | May 2001 | B1 |
6236789 | Fitz | May 2001 | B1 |
6236863 | Waldroup et al. | May 2001 | B1 |
6240274 | Izadpanah | May 2001 | B1 |
6246500 | Ackerman | Jun 2001 | B1 |
6268946 | Larkin et al. | Jul 2001 | B1 |
6275990 | Dapper et al. | Aug 2001 | B1 |
6279158 | Geile et al. | Aug 2001 | B1 |
6286163 | Trimble | Sep 2001 | B1 |
6292673 | Maeda et al. | Sep 2001 | B1 |
6295451 | Mimura | Sep 2001 | B1 |
6301240 | Slabinski et al. | Oct 2001 | B1 |
6307869 | Pawelski | Oct 2001 | B1 |
6314163 | Acampora | Nov 2001 | B1 |
6317599 | Rappaport et al. | Nov 2001 | B1 |
6323980 | Bloom | Nov 2001 | B1 |
6324391 | Bodell | Nov 2001 | B1 |
6330241 | Fort | Dec 2001 | B1 |
6330244 | Swartz et al. | Dec 2001 | B1 |
6334219 | Hill et al. | Dec 2001 | B1 |
6336021 | Nukada | Jan 2002 | B1 |
6336042 | Dawson et al. | Jan 2002 | B1 |
6337754 | Imajo | Jan 2002 | B1 |
6340932 | Rodgers et al. | Jan 2002 | B1 |
6353406 | Lanzl et al. | Mar 2002 | B1 |
6353600 | Schwartz et al. | Mar 2002 | B1 |
6359714 | Imajo | Mar 2002 | B1 |
6370203 | Boesch et al. | Apr 2002 | B1 |
6374078 | Williams et al. | Apr 2002 | B1 |
6374124 | Slabinski | Apr 2002 | B1 |
6389010 | Kubler et al. | May 2002 | B1 |
6400318 | Kasami et al. | Jun 2002 | B1 |
6400418 | Wakabayashi | Jun 2002 | B1 |
6404775 | Leslie et al. | Jun 2002 | B1 |
6405018 | Reudink et al. | Jun 2002 | B1 |
6405058 | Bobier | Jun 2002 | B2 |
6405308 | Gupta et al. | Jun 2002 | B1 |
6414624 | Endo et al. | Jul 2002 | B2 |
6415132 | Sabat, Jr. | Jul 2002 | B1 |
6421327 | Lundby et al. | Jul 2002 | B1 |
6438301 | Johnson et al. | Aug 2002 | B1 |
6438371 | Fujise et al. | Aug 2002 | B1 |
6448558 | Greene | Sep 2002 | B1 |
6452915 | Jorgensen | Sep 2002 | B1 |
6459519 | Sasai et al. | Oct 2002 | B1 |
6459989 | Kirkpatrick et al. | Oct 2002 | B1 |
6477154 | Cheong et al. | Nov 2002 | B1 |
6480702 | Sabat, Jr. | Nov 2002 | B1 |
6486907 | Farber et al. | Nov 2002 | B1 |
6496290 | Lee | Dec 2002 | B1 |
6501965 | Lucidarme | Dec 2002 | B1 |
6504636 | Seto et al. | Jan 2003 | B1 |
6504831 | Greenwood et al. | Jan 2003 | B1 |
6512478 | Chien | Jan 2003 | B1 |
6519395 | Bevan et al. | Feb 2003 | B1 |
6519449 | Zhang et al. | Feb 2003 | B1 |
6525855 | Westbrook et al. | Feb 2003 | B1 |
6535330 | Lelic et al. | Mar 2003 | B1 |
6535720 | Kintis et al. | Mar 2003 | B1 |
6556551 | Schwartz | Apr 2003 | B1 |
6577794 | Currie et al. | Jun 2003 | B1 |
6577801 | Broderick et al. | Jun 2003 | B2 |
6580402 | Navarro et al. | Jun 2003 | B2 |
6580905 | Naidu et al. | Jun 2003 | B1 |
6580918 | Leickel et al. | Jun 2003 | B1 |
6583763 | Judd | Jun 2003 | B2 |
6587514 | Wright et al. | Jul 2003 | B1 |
6594496 | Schwartz | Jul 2003 | B2 |
6597325 | Judd et al. | Jul 2003 | B2 |
6598009 | Yang | Jul 2003 | B2 |
6606430 | Bartur et al. | Aug 2003 | B2 |
6615074 | Mickle et al. | Sep 2003 | B2 |
6628732 | Takaki | Sep 2003 | B1 |
6634811 | Gertel et al. | Oct 2003 | B1 |
6636747 | Harada et al. | Oct 2003 | B2 |
6640103 | Inman et al. | Oct 2003 | B1 |
6643437 | Park | Nov 2003 | B1 |
6652158 | Bartur et al. | Nov 2003 | B2 |
6654590 | Boros et al. | Nov 2003 | B2 |
6654616 | Pope, Jr. et al. | Nov 2003 | B1 |
6657535 | Magbie et al. | Dec 2003 | B1 |
6658269 | Golemon et al. | Dec 2003 | B1 |
6665308 | Rakib et al. | Dec 2003 | B1 |
6670930 | Navarro | Dec 2003 | B2 |
6674966 | Koonen | Jan 2004 | B1 |
6675294 | Gupta et al. | Jan 2004 | B1 |
6678509 | Skarman et al. | Jan 2004 | B2 |
6687437 | Starnes et al. | Feb 2004 | B1 |
6690328 | Judd | Feb 2004 | B2 |
6701137 | Judd et al. | Mar 2004 | B1 |
6704298 | Matsumiya et al. | Mar 2004 | B1 |
6704545 | Wala | Mar 2004 | B1 |
6710366 | Lee et al. | Mar 2004 | B1 |
6714800 | Johnson et al. | Mar 2004 | B2 |
6731880 | Westbrook et al. | May 2004 | B2 |
6745013 | Porter et al. | Jun 2004 | B1 |
6758913 | Tunney et al. | Jul 2004 | B1 |
6763226 | McZeal, Jr. | Jul 2004 | B1 |
6771862 | Karnik et al. | Aug 2004 | B2 |
6771933 | Eng et al. | Aug 2004 | B1 |
6784802 | Stanescu | Aug 2004 | B1 |
6785558 | Stratford et al. | Aug 2004 | B1 |
6788666 | Linebarger et al. | Sep 2004 | B1 |
6801767 | Schwartz et al. | Oct 2004 | B1 |
6807374 | Imajo et al. | Oct 2004 | B1 |
6812824 | Goldinger et al. | Nov 2004 | B1 |
6812905 | Thomas et al. | Nov 2004 | B2 |
6823174 | Masenten et al. | Nov 2004 | B1 |
6826163 | Mani et al. | Nov 2004 | B2 |
6826164 | Mani et al. | Nov 2004 | B2 |
6826337 | Linnell | Nov 2004 | B2 |
6836660 | Wala | Dec 2004 | B1 |
6836673 | Trott | Dec 2004 | B1 |
6842433 | West et al. | Jan 2005 | B2 |
6847856 | Bohannon | Jan 2005 | B1 |
6850510 | Kubler | Feb 2005 | B2 |
6865390 | Goss et al. | Mar 2005 | B2 |
6873823 | Hasarchi | Mar 2005 | B2 |
6876056 | Tilmans et al. | Apr 2005 | B2 |
6879290 | Toutain et al. | Apr 2005 | B1 |
6882311 | Walker et al. | Apr 2005 | B2 |
6883710 | Chung | Apr 2005 | B2 |
6885344 | Mohamadi | Apr 2005 | B2 |
6885846 | Panasik et al. | Apr 2005 | B1 |
6889060 | Fernando et al. | May 2005 | B2 |
6909399 | Zegelin et al. | Jun 2005 | B1 |
6915058 | Pons | Jul 2005 | B2 |
6915529 | Suematsu et al. | Jul 2005 | B1 |
6919858 | Rofougaran | Jul 2005 | B2 |
6920330 | Caronni et al. | Jul 2005 | B2 |
6924997 | Chen et al. | Aug 2005 | B2 |
6930987 | Fukuda et al. | Aug 2005 | B1 |
6931183 | Panak et al. | Aug 2005 | B2 |
6931659 | Kinemura | Aug 2005 | B1 |
6933849 | Sawyer | Aug 2005 | B2 |
6934511 | Lovinggood et al. | Aug 2005 | B1 |
6934541 | Miyatani | Aug 2005 | B2 |
6941112 | Hasegawa | Sep 2005 | B2 |
6946989 | Vavik | Sep 2005 | B2 |
6961312 | Kubler et al. | Nov 2005 | B2 |
6963289 | Aljadeff et al. | Nov 2005 | B2 |
6963552 | Sabat, Jr. et al. | Nov 2005 | B2 |
6965718 | Koertel | Nov 2005 | B2 |
6967347 | Estes et al. | Nov 2005 | B2 |
6968107 | Belardi et al. | Nov 2005 | B2 |
6970652 | Zhang et al. | Nov 2005 | B2 |
6973243 | Koyasu et al. | Dec 2005 | B2 |
6974262 | Rickenbach | Dec 2005 | B1 |
6977502 | Hertz | Dec 2005 | B1 |
7002511 | Ammar et al. | Feb 2006 | B1 |
7006465 | Toshimitsu et al. | Feb 2006 | B2 |
7013087 | Suzuki et al. | Mar 2006 | B2 |
7015826 | Chan et al. | Mar 2006 | B1 |
7020473 | Splett | Mar 2006 | B2 |
7020488 | Bleile et al. | Mar 2006 | B1 |
7024166 | Wallace | Apr 2006 | B2 |
7035512 | Van Bijsterveld | Apr 2006 | B2 |
7039399 | Fischer | May 2006 | B2 |
7043271 | Seto et al. | May 2006 | B1 |
7047028 | Cagenius et al. | May 2006 | B2 |
7050017 | King et al. | May 2006 | B2 |
7053838 | Judd | May 2006 | B2 |
7054513 | Herz et al. | May 2006 | B2 |
7069577 | Geile et al. | Jun 2006 | B2 |
7072586 | Aburakawa et al. | Jul 2006 | B2 |
7082320 | Kattukaran et al. | Jul 2006 | B2 |
7084769 | Bauer et al. | Aug 2006 | B2 |
7093985 | Lord et al. | Aug 2006 | B2 |
7103119 | Matsuoka et al. | Sep 2006 | B2 |
7103377 | Bauman et al. | Sep 2006 | B2 |
7106252 | Smith et al. | Sep 2006 | B2 |
7106931 | Sutehall et al. | Sep 2006 | B2 |
7110795 | Doi | Sep 2006 | B2 |
7114859 | Tuohimaa et al. | Oct 2006 | B1 |
7127175 | Mani et al. | Oct 2006 | B2 |
7127176 | Sasaki | Oct 2006 | B2 |
7142503 | Grant et al. | Nov 2006 | B1 |
7142535 | Kubler et al. | Nov 2006 | B2 |
7142619 | Sommer et al. | Nov 2006 | B2 |
7146506 | Hannah et al. | Dec 2006 | B1 |
7160032 | Nagashima et al. | Jan 2007 | B2 |
7171244 | Bauman | Jan 2007 | B2 |
7184728 | Solum | Feb 2007 | B2 |
7190748 | Kim et al. | Mar 2007 | B2 |
7194023 | Norrell et al. | Mar 2007 | B2 |
7199443 | Elsharawy | Apr 2007 | B2 |
7200305 | Dion et al. | Apr 2007 | B2 |
7200391 | Chung et al. | Apr 2007 | B2 |
7228072 | Mickelsson et al. | Jun 2007 | B2 |
7263293 | Ommodt et al. | Aug 2007 | B2 |
7269311 | Kim et al. | Sep 2007 | B2 |
7280011 | Bayar et al. | Oct 2007 | B2 |
7286843 | Scheck | Oct 2007 | B2 |
7286854 | Ferrato et al. | Oct 2007 | B2 |
7295119 | Rappaport et al. | Nov 2007 | B2 |
7310430 | Mallya et al. | Dec 2007 | B1 |
7313415 | Wake et al. | Dec 2007 | B2 |
7315735 | Graham | Jan 2008 | B2 |
7324730 | Varkey et al. | Jan 2008 | B2 |
7343164 | Kallstenius | Mar 2008 | B2 |
7348843 | Qiu et al. | Mar 2008 | B1 |
7349633 | Lee et al. | Mar 2008 | B2 |
7359408 | Kim | Apr 2008 | B2 |
7359674 | Markki et al. | Apr 2008 | B2 |
7366150 | Lee et al. | Apr 2008 | B2 |
7366151 | Kubler et al. | Apr 2008 | B2 |
7369526 | Lechleider et al. | May 2008 | B2 |
7379669 | Kim | May 2008 | B2 |
7388892 | Nishiyama et al. | Jun 2008 | B2 |
7392025 | Rooyen et al. | Jun 2008 | B2 |
7392029 | Pronkine | Jun 2008 | B2 |
7394883 | Funakubo et al. | Jul 2008 | B2 |
7403156 | Coppi et al. | Jul 2008 | B2 |
7409159 | Izadpanah | Aug 2008 | B2 |
7412224 | Kotola et al. | Aug 2008 | B2 |
7424228 | Williams et al. | Sep 2008 | B1 |
7444051 | Tatat et al. | Oct 2008 | B2 |
7450853 | Kim et al. | Nov 2008 | B2 |
7450854 | Lee et al. | Nov 2008 | B2 |
7451365 | Wang et al. | Nov 2008 | B2 |
7454222 | Huang et al. | Nov 2008 | B2 |
7460507 | Kubler et al. | Dec 2008 | B2 |
7460829 | Utsumi et al. | Dec 2008 | B2 |
7460831 | Hasarchi | Dec 2008 | B2 |
7466925 | Iannelli | Dec 2008 | B2 |
7469105 | Wake et al. | Dec 2008 | B2 |
7477597 | Segel | Jan 2009 | B2 |
7483504 | Shapira et al. | Jan 2009 | B2 |
7483711 | Burchfiel | Jan 2009 | B2 |
7496070 | Vesuna | Feb 2009 | B2 |
7496384 | Seto et al. | Feb 2009 | B2 |
7505747 | Solum | Mar 2009 | B2 |
7512419 | Solum | Mar 2009 | B2 |
7522552 | Fein et al. | Apr 2009 | B2 |
7539509 | Bauman et al. | May 2009 | B2 |
7542452 | Penumetsa | Jun 2009 | B2 |
7546138 | Bauman | Jun 2009 | B2 |
7548138 | Kamgaing | Jun 2009 | B2 |
7548695 | Wake | Jun 2009 | B2 |
7551641 | Pirzada et al. | Jun 2009 | B2 |
7557758 | Rofougaran | Jul 2009 | B2 |
7580384 | Kubler et al. | Aug 2009 | B2 |
7586861 | Kubler et al. | Sep 2009 | B2 |
7590354 | Sauer et al. | Sep 2009 | B2 |
7593704 | Pinel et al. | Sep 2009 | B2 |
7599420 | Forenza et al. | Oct 2009 | B2 |
7599672 | Shoji et al. | Oct 2009 | B2 |
7610046 | Wala | Oct 2009 | B2 |
7630690 | Kaewell, Jr. et al. | Dec 2009 | B2 |
7633934 | Kubler et al. | Dec 2009 | B2 |
7639982 | Wala | Dec 2009 | B2 |
7646743 | Kubler et al. | Jan 2010 | B2 |
7646777 | Hicks, III et al. | Jan 2010 | B2 |
7653397 | Pernu et al. | Jan 2010 | B2 |
7668565 | Ylänen et al. | Feb 2010 | B2 |
7675936 | Mizutani et al. | Mar 2010 | B2 |
7688811 | Kubler et al. | Mar 2010 | B2 |
7693486 | Kasslin et al. | Apr 2010 | B2 |
7697467 | Kubler et al. | Apr 2010 | B2 |
7697574 | Suematsu et al. | Apr 2010 | B2 |
7715375 | Kubler et al. | May 2010 | B2 |
7720510 | Pescod et al. | May 2010 | B2 |
7751374 | Donovan | Jul 2010 | B2 |
7751838 | Ramesh et al. | Jul 2010 | B2 |
7760703 | Kubler et al. | Jul 2010 | B2 |
7761093 | Sabat, Jr. et al. | Jul 2010 | B2 |
7768951 | Kubler et al. | Aug 2010 | B2 |
7773573 | Chung et al. | Aug 2010 | B2 |
7778603 | Palin et al. | Aug 2010 | B2 |
7787823 | George et al. | Aug 2010 | B2 |
7805073 | Sabat, Jr. et al. | Sep 2010 | B2 |
7809012 | Ruuska et al. | Oct 2010 | B2 |
7812766 | Leblanc et al. | Oct 2010 | B2 |
7812775 | Babakhani et al. | Oct 2010 | B2 |
7817969 | Castaneda et al. | Oct 2010 | B2 |
7835328 | Stephens et al. | Nov 2010 | B2 |
7848316 | Kubler et al. | Dec 2010 | B2 |
7848770 | Scheinert | Dec 2010 | B2 |
7853234 | Afsahi | Dec 2010 | B2 |
7870321 | Rofougaran | Jan 2011 | B2 |
7880677 | Rofougaran et al. | Feb 2011 | B2 |
7881755 | Mishra et al. | Feb 2011 | B1 |
7894423 | Kubler et al. | Feb 2011 | B2 |
7899007 | Kubler et al. | Mar 2011 | B2 |
7907972 | Walton et al. | Mar 2011 | B2 |
7912043 | Kubler et al. | Mar 2011 | B2 |
7912506 | Lovberg et al. | Mar 2011 | B2 |
7916706 | Kubler et al. | Mar 2011 | B2 |
7917177 | Bauman | Mar 2011 | B2 |
7920553 | Kubler et al. | Apr 2011 | B2 |
7920858 | Sabat, Jr. et al. | Apr 2011 | B2 |
7924783 | Mahany et al. | Apr 2011 | B1 |
7936713 | Kubler et al. | May 2011 | B2 |
7949364 | Kasslin et al. | May 2011 | B2 |
7957777 | Vu et al. | Jun 2011 | B1 |
7962111 | Solum | Jun 2011 | B2 |
7969009 | Chandrasekaran | Jun 2011 | B2 |
7969911 | Mahany et al. | Jun 2011 | B2 |
7990925 | Tinnakornsrisuphap et al. | Aug 2011 | B2 |
7996020 | Chhabra | Aug 2011 | B1 |
8018907 | Kubler et al. | Sep 2011 | B2 |
8023886 | Rofougaran | Sep 2011 | B2 |
8027656 | Rofougaran et al. | Sep 2011 | B2 |
8036308 | Rofougaran | Oct 2011 | B2 |
8082353 | Huber et al. | Dec 2011 | B2 |
8086192 | Rofougaran et al. | Dec 2011 | B2 |
8135102 | Wiwel et al. | Mar 2012 | B2 |
8213401 | Fischer et al. | Jul 2012 | B2 |
8223795 | Cox et al. | Jul 2012 | B2 |
8238463 | Arslan et al. | Aug 2012 | B1 |
8270387 | Cannon et al. | Sep 2012 | B2 |
8290483 | Sabat, Jr. et al. | Oct 2012 | B2 |
8306563 | Zavadsky et al. | Nov 2012 | B2 |
8346278 | Wala et al. | Jan 2013 | B2 |
8428510 | Stratford et al. | Apr 2013 | B2 |
8462683 | Uyehara et al. | Jun 2013 | B2 |
8472579 | Uyehara et al. | Jun 2013 | B2 |
8509215 | Stuart | Aug 2013 | B2 |
8509850 | Zavadsky et al. | Aug 2013 | B2 |
8526970 | Wala et al. | Sep 2013 | B2 |
8532242 | Fischer et al. | Sep 2013 | B2 |
8626245 | Zavadsky et al. | Jan 2014 | B2 |
8737454 | Wala et al. | May 2014 | B2 |
8743718 | Grenier et al. | Jun 2014 | B2 |
8743756 | Uyehara et al. | Jun 2014 | B2 |
8837659 | Uyehara et al. | Sep 2014 | B2 |
8837940 | Smith et al. | Sep 2014 | B2 |
8873585 | Oren et al. | Oct 2014 | B2 |
8929288 | Stewart et al. | Jan 2015 | B2 |
20010036163 | Sabat, Jr. et al. | Nov 2001 | A1 |
20010036199 | Terry | Nov 2001 | A1 |
20020003645 | Kim et al. | Jan 2002 | A1 |
20020009070 | Lindsay et al. | Jan 2002 | A1 |
20020012336 | Hughes et al. | Jan 2002 | A1 |
20020012495 | Sasai et al. | Jan 2002 | A1 |
20020016827 | McCabe et al. | Feb 2002 | A1 |
20020045519 | Watterson et al. | Apr 2002 | A1 |
20020048071 | Suzuki et al. | Apr 2002 | A1 |
20020051434 | Ozluturk et al. | May 2002 | A1 |
20020075906 | Cole et al. | Jun 2002 | A1 |
20020092347 | Niekerk et al. | Jul 2002 | A1 |
20020097564 | Struhsaker et al. | Jul 2002 | A1 |
20020103012 | Kim et al. | Aug 2002 | A1 |
20020111149 | Shoki | Aug 2002 | A1 |
20020111192 | Thomas et al. | Aug 2002 | A1 |
20020114038 | Arnon et al. | Aug 2002 | A1 |
20020123365 | Thorson et al. | Sep 2002 | A1 |
20020126967 | Panak et al. | Sep 2002 | A1 |
20020128009 | Boch et al. | Sep 2002 | A1 |
20020130778 | Nicholson | Sep 2002 | A1 |
20020181668 | Masoian et al. | Dec 2002 | A1 |
20020190845 | Moore | Dec 2002 | A1 |
20020197984 | Monin et al. | Dec 2002 | A1 |
20030002604 | Fifield et al. | Jan 2003 | A1 |
20030007214 | Aburakawa et al. | Jan 2003 | A1 |
20030016418 | Westbrook et al. | Jan 2003 | A1 |
20030045284 | Copley et al. | Mar 2003 | A1 |
20030069922 | Arunachalam | Apr 2003 | A1 |
20030078074 | Sesay et al. | Apr 2003 | A1 |
20030112826 | Smith et al. | Jun 2003 | A1 |
20030141962 | Barink | Jul 2003 | A1 |
20030161637 | Yamamoto et al. | Aug 2003 | A1 |
20030165287 | Krill et al. | Sep 2003 | A1 |
20030174099 | Bauer et al. | Sep 2003 | A1 |
20030209601 | Chung | Nov 2003 | A1 |
20040001719 | Sasaki | Jan 2004 | A1 |
20040008114 | Sawyer | Jan 2004 | A1 |
20040017785 | Zelst | Jan 2004 | A1 |
20040037565 | Young et al. | Feb 2004 | A1 |
20040041714 | Forster | Mar 2004 | A1 |
20040043764 | Bigham et al. | Mar 2004 | A1 |
20040047313 | Rumpf et al. | Mar 2004 | A1 |
20040078151 | Aljadeff et al. | Apr 2004 | A1 |
20040095907 | Agee et al. | May 2004 | A1 |
20040100930 | Shapira et al. | May 2004 | A1 |
20040106435 | Bauman et al. | Jun 2004 | A1 |
20040126068 | Van Bijsterveld | Jul 2004 | A1 |
20040126107 | Jay et al. | Jul 2004 | A1 |
20040139477 | Russell et al. | Jul 2004 | A1 |
20040146020 | Kubler et al. | Jul 2004 | A1 |
20040149736 | Clothier | Aug 2004 | A1 |
20040151164 | Kubler et al. | Aug 2004 | A1 |
20040151503 | Kashima et al. | Aug 2004 | A1 |
20040157623 | Splett | Aug 2004 | A1 |
20040160912 | Kubler et al. | Aug 2004 | A1 |
20040160913 | Kubler et al. | Aug 2004 | A1 |
20040162084 | Wang | Aug 2004 | A1 |
20040162115 | Smith et al. | Aug 2004 | A1 |
20040162116 | Han et al. | Aug 2004 | A1 |
20040165573 | Kubler et al. | Aug 2004 | A1 |
20040175173 | Deas | Sep 2004 | A1 |
20040196404 | Loheit et al. | Oct 2004 | A1 |
20040202257 | Mehta et al. | Oct 2004 | A1 |
20040203703 | Fischer | Oct 2004 | A1 |
20040203704 | Ommodt et al. | Oct 2004 | A1 |
20040203846 | Caronni et al. | Oct 2004 | A1 |
20040204109 | Hoppenstein | Oct 2004 | A1 |
20040208526 | Mibu | Oct 2004 | A1 |
20040208643 | Roberts et al. | Oct 2004 | A1 |
20040215723 | Chadha | Oct 2004 | A1 |
20040218873 | Nagashima et al. | Nov 2004 | A1 |
20040233877 | Lee et al. | Nov 2004 | A1 |
20040258105 | Spathas et al. | Dec 2004 | A1 |
20040267971 | Seshadri | Dec 2004 | A1 |
20050052287 | Whitesmith et al. | Mar 2005 | A1 |
20050058451 | Ross | Mar 2005 | A1 |
20050068179 | Roesner | Mar 2005 | A1 |
20050076982 | Metcalf et al. | Apr 2005 | A1 |
20050078006 | Hutchins | Apr 2005 | A1 |
20050093679 | Zai et al. | May 2005 | A1 |
20050099343 | Asrani et al. | May 2005 | A1 |
20050116821 | Wilsey et al. | Jun 2005 | A1 |
20050123232 | Piede et al. | Jun 2005 | A1 |
20050141545 | Fein et al. | Jun 2005 | A1 |
20050143077 | Charbonneau | Jun 2005 | A1 |
20050147067 | Mani et al. | Jul 2005 | A1 |
20050147071 | Karaoguz et al. | Jul 2005 | A1 |
20050148306 | Hiddink | Jul 2005 | A1 |
20050159108 | Fletcher | Jul 2005 | A1 |
20050174236 | Brookner | Aug 2005 | A1 |
20050176458 | Shklarsky et al. | Aug 2005 | A1 |
20050201323 | Mani et al. | Sep 2005 | A1 |
20050201761 | Bartur et al. | Sep 2005 | A1 |
20050219050 | Martin | Oct 2005 | A1 |
20050224585 | Durrant et al. | Oct 2005 | A1 |
20050226625 | Wake et al. | Oct 2005 | A1 |
20050232636 | Durrant et al. | Oct 2005 | A1 |
20050242188 | Vesuna | Nov 2005 | A1 |
20050252971 | Howarth et al. | Nov 2005 | A1 |
20050266797 | Utsumi et al. | Dec 2005 | A1 |
20050266854 | Niiho et al. | Dec 2005 | A1 |
20050269930 | Shimizu et al. | Dec 2005 | A1 |
20050271396 | Iannelli | Dec 2005 | A1 |
20050272439 | Picciriello et al. | Dec 2005 | A1 |
20060002326 | Vesuna | Jan 2006 | A1 |
20060014548 | Bolin | Jan 2006 | A1 |
20060017633 | Pronkine | Jan 2006 | A1 |
20060028352 | McNamara et al. | Feb 2006 | A1 |
20060045054 | Utsumi et al. | Mar 2006 | A1 |
20060045524 | Lee et al. | Mar 2006 | A1 |
20060045525 | Lee et al. | Mar 2006 | A1 |
20060053324 | Giat et al. | Mar 2006 | A1 |
20060056327 | Coersmeier | Mar 2006 | A1 |
20060062579 | Kim et al. | Mar 2006 | A1 |
20060083520 | Healey et al. | Apr 2006 | A1 |
20060094470 | Wake et al. | May 2006 | A1 |
20060104643 | Lee et al. | May 2006 | A1 |
20060159388 | Kawase et al. | Jul 2006 | A1 |
20060172775 | Conyers et al. | Aug 2006 | A1 |
20060182446 | Kim et al. | Aug 2006 | A1 |
20060182449 | Iannelli et al. | Aug 2006 | A1 |
20060189354 | Lee et al. | Aug 2006 | A1 |
20060209745 | MacMullan et al. | Sep 2006 | A1 |
20060223439 | Pinel et al. | Oct 2006 | A1 |
20060233506 | Noonan et al. | Oct 2006 | A1 |
20060239630 | Hase et al. | Oct 2006 | A1 |
20060268738 | Goerke et al. | Nov 2006 | A1 |
20060274704 | Desai et al. | Dec 2006 | A1 |
20070009266 | Bothwell | Jan 2007 | A1 |
20070050451 | Caspi et al. | Mar 2007 | A1 |
20070054682 | Fanning et al. | Mar 2007 | A1 |
20070058978 | Lee et al. | Mar 2007 | A1 |
20070060045 | Prautzsch | Mar 2007 | A1 |
20070060055 | Desai et al. | Mar 2007 | A1 |
20070071128 | Meir et al. | Mar 2007 | A1 |
20070076649 | Lin et al. | Apr 2007 | A1 |
20070093273 | Cai | Apr 2007 | A1 |
20070149250 | Crozzoli et al. | Jun 2007 | A1 |
20070166042 | Seeds et al. | Jul 2007 | A1 |
20070173288 | Skarby et al. | Jul 2007 | A1 |
20070174889 | Kim et al. | Jul 2007 | A1 |
20070224954 | Gopi | Sep 2007 | A1 |
20070230328 | Saitou | Oct 2007 | A1 |
20070243899 | Hermel et al. | Oct 2007 | A1 |
20070248358 | Sauer | Oct 2007 | A1 |
20070253714 | Seeds et al. | Nov 2007 | A1 |
20070257796 | Easton et al. | Nov 2007 | A1 |
20070264009 | Sabat, Jr. et al. | Nov 2007 | A1 |
20070264011 | Sone et al. | Nov 2007 | A1 |
20070268846 | Proctor et al. | Nov 2007 | A1 |
20070274279 | Wood et al. | Nov 2007 | A1 |
20070292143 | Yu et al. | Dec 2007 | A1 |
20070297005 | Montierth et al. | Dec 2007 | A1 |
20080002652 | Gupta et al. | Jan 2008 | A1 |
20080007453 | Vassilakis et al. | Jan 2008 | A1 |
20080013909 | Kostet et al. | Jan 2008 | A1 |
20080013956 | Ware et al. | Jan 2008 | A1 |
20080013957 | Akers et al. | Jan 2008 | A1 |
20080014948 | Scheinert | Jan 2008 | A1 |
20080026765 | Charbonneau | Jan 2008 | A1 |
20080031628 | Dragas et al. | Feb 2008 | A1 |
20080043714 | Pernu | Feb 2008 | A1 |
20080056167 | Kim et al. | Mar 2008 | A1 |
20080058018 | Scheinert | Mar 2008 | A1 |
20080063397 | Hu et al. | Mar 2008 | A1 |
20080070502 | George et al. | Mar 2008 | A1 |
20080080863 | Sauer et al. | Apr 2008 | A1 |
20080098203 | Master et al. | Apr 2008 | A1 |
20080118014 | Reunamaki et al. | May 2008 | A1 |
20080119198 | Hettstedt et al. | May 2008 | A1 |
20080124086 | Matthews | May 2008 | A1 |
20080124087 | Hartmann et al. | May 2008 | A1 |
20080129634 | Pera et al. | Jun 2008 | A1 |
20080134194 | Liu | Jun 2008 | A1 |
20080145061 | Lee et al. | Jun 2008 | A1 |
20080150514 | Codreanu et al. | Jun 2008 | A1 |
20080166094 | Bookbinder et al. | Jul 2008 | A1 |
20080194226 | Rivas et al. | Aug 2008 | A1 |
20080207253 | Jaakkola et al. | Aug 2008 | A1 |
20080212969 | Fasshauer et al. | Sep 2008 | A1 |
20080219670 | Kim et al. | Sep 2008 | A1 |
20080232305 | Oren et al. | Sep 2008 | A1 |
20080232799 | Kim | Sep 2008 | A1 |
20080247716 | Thomas | Oct 2008 | A1 |
20080253280 | Tang et al. | Oct 2008 | A1 |
20080253351 | Pernu et al. | Oct 2008 | A1 |
20080253773 | Zheng | Oct 2008 | A1 |
20080260388 | Kim et al. | Oct 2008 | A1 |
20080261656 | Bella et al. | Oct 2008 | A1 |
20080268766 | Narkmon et al. | Oct 2008 | A1 |
20080268833 | Huang et al. | Oct 2008 | A1 |
20080273844 | Kewitsch | Nov 2008 | A1 |
20080279137 | Pernu et al. | Nov 2008 | A1 |
20080280569 | Hazani et al. | Nov 2008 | A1 |
20080291830 | Pernu et al. | Nov 2008 | A1 |
20080292322 | Daghighian et al. | Nov 2008 | A1 |
20080298813 | Song et al. | Dec 2008 | A1 |
20080304831 | Miller, II et al. | Dec 2008 | A1 |
20080310464 | Schneider | Dec 2008 | A1 |
20080310848 | Yasuda et al. | Dec 2008 | A1 |
20080311876 | Leenaerts et al. | Dec 2008 | A1 |
20080311944 | Hansen et al. | Dec 2008 | A1 |
20090022304 | Kubler et al. | Jan 2009 | A1 |
20090028087 | Nguyen et al. | Jan 2009 | A1 |
20090028317 | Ling et al. | Jan 2009 | A1 |
20090041413 | Hurley | Feb 2009 | A1 |
20090047023 | Pescod et al. | Feb 2009 | A1 |
20090059903 | Kubler et al. | Mar 2009 | A1 |
20090061796 | Arkko et al. | Mar 2009 | A1 |
20090061939 | Anderson et al. | Mar 2009 | A1 |
20090073916 | Zhang et al. | Mar 2009 | A1 |
20090081985 | Rofougaran et al. | Mar 2009 | A1 |
20090087179 | Underwood et al. | Apr 2009 | A1 |
20090088071 | Rofougaran | Apr 2009 | A1 |
20090088072 | Rofougaran et al. | Apr 2009 | A1 |
20090135078 | Lindmark et al. | May 2009 | A1 |
20090141780 | Cruz-Albrecht et al. | Jun 2009 | A1 |
20090149221 | Liu et al. | Jun 2009 | A1 |
20090154621 | Shapira et al. | Jun 2009 | A1 |
20090169163 | Abbott, III et al. | Jul 2009 | A1 |
20090175214 | Sfar et al. | Jul 2009 | A1 |
20090180407 | Sabat et al. | Jul 2009 | A1 |
20090180426 | Sabat et al. | Jul 2009 | A1 |
20090218407 | Rofougaran | Sep 2009 | A1 |
20090218657 | Rofougaran | Sep 2009 | A1 |
20090237317 | Rofougaran | Sep 2009 | A1 |
20090245084 | Moffatt et al. | Oct 2009 | A1 |
20090245153 | Li et al. | Oct 2009 | A1 |
20090245221 | Piipponen | Oct 2009 | A1 |
20090247109 | Rofougaran | Oct 2009 | A1 |
20090252136 | Mahany et al. | Oct 2009 | A1 |
20090252139 | Ludovico et al. | Oct 2009 | A1 |
20090252205 | Rheinfelder et al. | Oct 2009 | A1 |
20090258652 | Lambert et al. | Oct 2009 | A1 |
20090278596 | Rofougaran et al. | Nov 2009 | A1 |
20090279593 | Rofougaran et al. | Nov 2009 | A1 |
20090285147 | Subasic et al. | Nov 2009 | A1 |
20090316608 | Singh et al. | Dec 2009 | A1 |
20090319909 | Hsueh et al. | Dec 2009 | A1 |
20100002626 | Schmidt et al. | Jan 2010 | A1 |
20100002661 | Schmidt et al. | Jan 2010 | A1 |
20100002662 | Schmidt et al. | Jan 2010 | A1 |
20100014494 | Schmidt et al. | Jan 2010 | A1 |
20100027443 | LoGalbo et al. | Feb 2010 | A1 |
20100056200 | Tolonen | Mar 2010 | A1 |
20100080154 | Noh et al. | Apr 2010 | A1 |
20100080182 | Kubler et al. | Apr 2010 | A1 |
20100091475 | Toms et al. | Apr 2010 | A1 |
20100118864 | Kubler et al. | May 2010 | A1 |
20100127937 | Chandrasekaran et al. | May 2010 | A1 |
20100134257 | Puleston et al. | Jun 2010 | A1 |
20100142598 | Murray et al. | Jun 2010 | A1 |
20100142955 | Yu et al. | Jun 2010 | A1 |
20100144285 | Behzad et al. | Jun 2010 | A1 |
20100148373 | Chandrasekaran | Jun 2010 | A1 |
20100156721 | Alamouti et al. | Jun 2010 | A1 |
20100159859 | Rofougaran | Jun 2010 | A1 |
20100188998 | Pernu et al. | Jul 2010 | A1 |
20100189439 | Novak et al. | Jul 2010 | A1 |
20100190509 | Davis | Jul 2010 | A1 |
20100202326 | Rofougaran et al. | Aug 2010 | A1 |
20100225413 | Rofougaran et al. | Sep 2010 | A1 |
20100225520 | Mohamadi et al. | Sep 2010 | A1 |
20100225556 | Rofougaran et al. | Sep 2010 | A1 |
20100225557 | Rofougaran et al. | Sep 2010 | A1 |
20100232323 | Kubler et al. | Sep 2010 | A1 |
20100246558 | Harel | Sep 2010 | A1 |
20100255774 | Kenington | Oct 2010 | A1 |
20100258949 | Henderson et al. | Oct 2010 | A1 |
20100260063 | Kubler et al. | Oct 2010 | A1 |
20100261501 | Behzad et al. | Oct 2010 | A1 |
20100266287 | Adhikari et al. | Oct 2010 | A1 |
20100278530 | Kummetz et al. | Nov 2010 | A1 |
20100284323 | Tang et al. | Nov 2010 | A1 |
20100290355 | Roy et al. | Nov 2010 | A1 |
20100309049 | Reunamäki et al. | Dec 2010 | A1 |
20100311472 | Rofougaran et al. | Dec 2010 | A1 |
20100311480 | Raines et al. | Dec 2010 | A1 |
20100329161 | Ylanen et al. | Dec 2010 | A1 |
20100329166 | Mahany et al. | Dec 2010 | A1 |
20100329680 | Presi et al. | Dec 2010 | A1 |
20110002687 | Sabat, Jr. et al. | Jan 2011 | A1 |
20110007724 | Mahany et al. | Jan 2011 | A1 |
20110007733 | Kubler et al. | Jan 2011 | A1 |
20110008042 | Stewart | Jan 2011 | A1 |
20110019999 | George et al. | Jan 2011 | A1 |
20110021146 | Pernu | Jan 2011 | A1 |
20110021224 | Koskinen et al. | Jan 2011 | A1 |
20110026932 | Yeh et al. | Feb 2011 | A1 |
20110045767 | Rofougaran et al. | Feb 2011 | A1 |
20110065450 | Kazmi | Mar 2011 | A1 |
20110066774 | Rofougaran | Mar 2011 | A1 |
20110069668 | Chion et al. | Mar 2011 | A1 |
20110071734 | Van Wiemeersch et al. | Mar 2011 | A1 |
20110086614 | Brisebois et al. | Apr 2011 | A1 |
20110116393 | Hong et al. | May 2011 | A1 |
20110116572 | Lee et al. | May 2011 | A1 |
20110122912 | Benjamin et al. | May 2011 | A1 |
20110126071 | Han et al. | May 2011 | A1 |
20110149879 | Noriega et al. | Jun 2011 | A1 |
20110158298 | Djadi et al. | Jun 2011 | A1 |
20110182230 | Ohm et al. | Jul 2011 | A1 |
20110194475 | Kim et al. | Aug 2011 | A1 |
20110200328 | In De Betou et al. | Aug 2011 | A1 |
20110201368 | Faccin et al. | Aug 2011 | A1 |
20110204504 | Henderson et al. | Aug 2011 | A1 |
20110206383 | Chien et al. | Aug 2011 | A1 |
20110211439 | Manpuria et al. | Sep 2011 | A1 |
20110215901 | Van Wiemeersch et al. | Sep 2011 | A1 |
20110222415 | Ramamurthi et al. | Sep 2011 | A1 |
20110222434 | Chen | Sep 2011 | A1 |
20110222619 | Ramamurthi et al. | Sep 2011 | A1 |
20110227795 | Lopez et al. | Sep 2011 | A1 |
20110244887 | Dupray et al. | Oct 2011 | A1 |
20110256878 | Zhu et al. | Oct 2011 | A1 |
20110268033 | Boldi et al. | Nov 2011 | A1 |
20110274021 | He et al. | Nov 2011 | A1 |
20110281536 | Lee et al. | Nov 2011 | A1 |
20120177026 | Uyehara et al. | Jul 2012 | A1 |
20130012195 | Sabat, Jr. et al. | Jan 2013 | A1 |
20130089332 | Sauer et al. | Apr 2013 | A1 |
20130210490 | Fischer et al. | Aug 2013 | A1 |
20140016583 | Smith | Jan 2014 | A1 |
20140140225 | Wala | May 2014 | A1 |
20140146797 | Zavadsky et al. | May 2014 | A1 |
20140146905 | Zavadsky et al. | May 2014 | A1 |
20140146906 | Zavadsky et al. | May 2014 | A1 |
20140219140 | Uyehara et al. | Aug 2014 | A1 |
Number | Date | Country |
---|---|---|
645192 | Oct 1992 | AU |
731180 | Mar 1998 | AU |
2065090 | Feb 1998 | CA |
2242707 | Jan 1999 | CA |
101389148 | Mar 2009 | CN |
101547447 | Sep 2009 | CN |
20104862 | Aug 2001 | DE |
10249414 | May 2004 | DE |
0477952 | Apr 1992 | EP |
0477952 | Apr 1992 | EP |
0461583 | Mar 1997 | EP |
851618 | Jul 1998 | EP |
0687400 | Nov 1998 | EP |
0993124 | Apr 2000 | EP |
1037411 | Sep 2000 | EP |
1267447 | Jan 2001 | EP |
1227605 | Jan 2002 | EP |
1179895 | Feb 2002 | EP |
1267447 | Dec 2002 | EP |
1347584 | Sep 2003 | EP |
1363352 | Nov 2003 | EP |
1391897 | Feb 2004 | EP |
1443687 | Aug 2004 | EP |
1455550 | Sep 2004 | EP |
1501206 | Jan 2005 | EP |
1503451 | Feb 2005 | EP |
1530316 | May 2005 | EP |
1511203 | Mar 2006 | EP |
1267447 | Aug 2006 | EP |
1693974 | Aug 2006 | EP |
1742388 | Jan 2007 | EP |
1179895 | Jul 2007 | EP |
1227605 | Jan 2008 | EP |
1954019 | Aug 2008 | EP |
1968250 | Sep 2008 | EP |
1056226 | Apr 2009 | EP |
1357683 | May 2009 | EP |
2276298 | Jan 2011 | EP |
1570626 | Nov 2013 | EP |
2323252 | Sep 1998 | GB |
2370170 | Jun 2002 | GB |
2399963 | Sep 2004 | GB |
2428149 | Jan 2007 | GB |
H4189036 | Jul 1992 | JP |
05260018 | Oct 1993 | JP |
09083450 | Mar 1997 | JP |
09162810 | Jun 1997 | JP |
09200840 | Jul 1997 | JP |
11068675 | Mar 1999 | JP |
2000152300 | May 2000 | JP |
2000341744 | Dec 2000 | JP |
2002264617 | Sep 2002 | JP |
2002353813 | Dec 2002 | JP |
2003148653 | May 2003 | JP |
2003172827 | Jun 2003 | JP |
2004172734 | Jun 2004 | JP |
2004245963 | Sep 2004 | JP |
2004247090 | Sep 2004 | JP |
2004264901 | Sep 2004 | JP |
2004265624 | Sep 2004 | JP |
2004317737 | Nov 2004 | JP |
2004349184 | Dec 2004 | JP |
2005018175 | Jan 2005 | JP |
2005087135 | Apr 2005 | JP |
2005134125 | May 2005 | JP |
2007228603 | Sep 2007 | JP |
2008172597 | Jul 2008 | JP |
20010055088 | Jul 2001 | KR |
9603823 | Feb 1996 | WO |
9810600 | Mar 1998 | WO |
0042721 | Jul 2000 | WO |
0072475 | Nov 2000 | WO |
0178434 | Oct 2001 | WO |
0184760 | Nov 2001 | WO |
0221183 | Mar 2002 | WO |
0230141 | Apr 2002 | WO |
02102102 | Dec 2002 | WO |
03024027 | Mar 2003 | WO |
03098175 | Nov 2003 | WO |
2004030154 | Apr 2004 | WO |
2004047472 | Jun 2004 | WO |
2004056019 | Jul 2004 | WO |
2004059934 | Jul 2004 | WO |
2004086795 | Oct 2004 | WO |
2004093471 | Oct 2004 | WO |
2005062505 | Jul 2005 | WO |
2005069203 | Jul 2005 | WO |
2005073897 | Aug 2005 | WO |
2005079386 | Sep 2005 | WO |
2005101701 | Oct 2005 | WO |
2005111959 | Nov 2005 | WO |
2006011778 | Feb 2006 | WO |
2006018592 | Feb 2006 | WO |
2006019392 | Feb 2006 | WO |
2006039941 | Apr 2006 | WO |
2006046088 | May 2006 | WO |
2006051262 | May 2006 | WO |
2006060754 | Jun 2006 | WO |
2006077569 | Jul 2006 | WO |
2006105185 | Oct 2006 | WO |
2006133609 | Dec 2006 | WO |
2006136811 | Dec 2006 | WO |
2007048427 | May 2007 | WO |
2007077451 | Jul 2007 | WO |
2007088561 | Aug 2007 | WO |
2007091026 | Aug 2007 | WO |
WO2007091026 | Aug 2007 | WO |
2008008249 | Jan 2008 | WO |
2008027213 | Mar 2008 | WO |
2008033298 | Mar 2008 | WO |
2008039830 | Apr 2008 | WO |
2008116014 | Sep 2008 | WO |
2010090999 | Aug 2010 | WO |
2010132739 | Nov 2010 | WO |
WO2011017700 | Feb 2011 | WO |
2011023592 | Mar 2011 | WO |
2011100095 | Aug 2011 | WO |
2011139939 | Nov 2011 | WO |
2012148938 | Nov 2012 | WO |
2012148940 | Nov 2012 | WO |
2013122915 | Aug 2013 | WO |
Entry |
---|
Arredondo, Albedo et al., “Techniques for Improving In-Building Radio Coverage Using Fiber-Fed Distributed Antenna Networks,” IEEE 46th Vehicular Technology Conference, Atlanta, Georgia, Apr. 28-May 1, 1996, pp. 1540-1543, vol. 3. |
Bakaul, M., et al., “Efficient Multiplexing Scheme for Wavelength-Interleaved DWDM Millimeter-Wave Fiber-Radio Systems,” IEEE Photonics Technology Letters, Dec. 2005, vol. 17, No. 12, pp. 2718-2720. |
Cho, Bong Youl et al. “The Forward Link Performance of a PCS System with an AGC,” 4th CDMA International Conference and Exhibition, “The Realization of IMT-2000,” 1999, 10 pages. |
Chu, Ta-Shing et al. “Fiber optic microcellular radio”, IEEE Transactions on Vehicular Technology, Aug. 1991, pp. 599-606, vol. 40, Issue 3. |
Cooper, A.J., “Fiber/Radio for the Provision of Cordless/Mobile Telephony Services in the Access Network,” Electronics Letters, 1990, pp. 2054-2056, vol. 26. |
Cutrer, David M. et al., “Dynamic Range Requirements for Optical Transmitters in Fiber-Fed Microcellular Networks,” IEEE Photonics Technology Letters, May 1995, pp. 564-566, vol. 7, No. 5. |
Dolmans, G. et al. “Performance study of an adaptive dual antenna handset for indoor communications”, IEE Proceedings: Microwaves, Antennas and Propagation, Apr. 1999, pp. 138-144, vol. 146, Issue 2. |
Ellinger, Frank et al., “A 5.2 GHz variable gain LNA MMIC for adaptive antenna combining”, IEEE MTT-S International Microwave Symposium Digest, Anaheim, California, Jun. 13-19, 1999, pp. 501-504, vol. 2. |
Fan, J.C. et al., “Dynamic range requirements for microcellular personal communication systems using analog fiber-optic links”, IEEE Transactions on Microwave Theory and Techniques, Aug. 1997, pp. 1390-1397, vol. 45, Issue 8. |
Gibson, B.C., et al., “Evanescent Field Analysis of Air-Silica Microstructure Waveguides,” The 14th Annual Meeting of the IEEE Lasers and Electro-Optics Society, 1-7803-7104-4/01, Nov. 12-13, 2001, vol. 2, pp. 709-710. |
Huang, C., et al., “A WLAN-Used Helical Antenna Fully Integrated with the PCMCIA Carrier,” IEEE Transactions on Antennas and Propagation, Dec. 2005, vol. 53, No. 12, pp. 4164-4168. |
Kojucharow, K., et al., “Millimeter-Wave Signal Properties Resulting from Electrooptical Upconversion,” IEEE Transaction on Microwave Theory and Techniques, Oct. 2001, vol. 49, No. 10, pp. 1977-1985. |
Monro, T.M., et al., “Holey Fibers with Random Cladding Distributions,” Optics Letters, Feb. 15, 2000, vol. 25, No. 4, pp. 206-208. |
Moreira, J.D., et al., “Diversity Techniques for OFDM Based WLAN Systems,” The 13th IEEE International Symposium on Personal, Indoor and Mobile Radio Communications, Sep. 15-18, 2002, vol. 3, pp. 1008-1011. |
Niiho, T., et al., “Multi-Channel Wireless LAN Distributed Antenna System Based on Radio-Over-Fiber Techniques,” The 17th Annual Meeting of the IEEE Lasers and Electro-Optics Society, Nov. 2004, vol. 1, pp. 57-58. |
Author Unknown, “ITU-T G.652, Telecommunication Standardization Sector of ITU, Series G: Transmission Systems and Media, Digital Systems and Networks, Transmission Media and Optical Systems Characteristics—Optical Fibre Cables, Characteristics of a Single-Mode Optical Fiber and Cable,” ITU-T Recommendation G.652, International Telecommunication Union, Jun. 2005, 22 pages. |
Author Unknown, “ITU-T G.657, Telecommunication Standardization Sector of ITU, Dec. 2006, Series G: Transmission Systems and Media, Digital Systems and Networks, Transmission Media and Optical Systems Characteristics—Optical Fibre Cables, Characteristics of a Bending Loss Insensitive Single Mode Optical Fibre and Cable for the Access Network,” ITU-T Recommendation G.657, International Telecommunication Union, 20 pages. |
Author Unknown, RFID Technology Overview, 11 pages. |
Opatic, D., “Radio over Fiber Technology for Wireless Access,” Ericsson, Oct. 17, 2009, 6 pages. |
Paulraj, A.J., et al., “An Overview of MIMO Communications—A Key to Gigabit Wireless,” Proceedings of the IEEE, Feb. 2004, vol. 92, No. 2, 34 pages. |
Pickrell, G.R., et al., “Novel Techniques for the Fabrication of Holey Optical Fibers,” Proceedings of SPIE, Oct. 28-Nov. 2, 2001, vol. 4578, 2001, pp. 271-282. |
Roh, W., et al., “MIMO Channel Capacity for the Distributed Antenna Systems,” Proceedings of the 56th IEEE Vehicular Technology Conference, Sep. 2002, vol. 2, pp. 706-709. |
Schweber, Bill, “Maintaining cellular connectivity indoors demands sophisticated design,” EDN Network, Dec. 21, 2000, 2 pages, http://www.edn.com/design/integrated-circuit-design/4362776/Maintaining-cellular-connectivity-indoors-demands-sophisticated-design. |
Seto, I., et al., “Antenna-Selective Transmit Diversity Technique for OFDM-Based WLANs with Dual-Band Printed Antennas,” 2005 IEEE Wireless Communications and Networking Conference, Mar. 13-17, 2005, vol. 1, pp. 51-56. |
Shen, C., et al., “Comparison of Channel Capacity for MIMO-DAS versus MIMO-CAS,” The 9th Asia-Pacific Conference on Communications, Sep. 21-24, 2003, vol. 1, pp. 113-118. |
Wake, D. et al., “Passive Picocell: A New Concept n Wireless Network Infrastructure,” Electronics Letters, Feb. 27, 1997, vol. 33, No. 5, pp. 404-406. |
Windyka, John et al., “System-Level Integrated Circuit (SLIC) Technology Development for Phased Array Antenna Applications,” Contractor Report 204132, National Aeronautics and Space Administration, Jul. 1997, 94 pages. |
Winters, J., et al., “The Impact of Antenna Diversity on the Capacity of Wireless Communications Systems,” IEEE Transcations on Communications, vol. 42, No. 2/3/4, Feb./Mar./Apr. 1994, pp. 1740-1751. |
Yu et al., “A Novel Scheme to Generate Single-Sideband Millimeter-Wave Signals by Using Low-Frequency Local Oscillator Signal,” IEEE Photonics Technology Letters, vol. 20, No. 7, Apr. 1, 2008, pp. 478-480. |
Second Office Action for Chinese patent application 20078002293.6 mailed Aug. 30, 2012, 10 pages. |
International Search Report for PCT/US2010/022847 mailed Jul. 12, 2010, 3 pages. |
International Search Report for PCT/US2010/022857 mailed Jun. 18, 2010, 3 pages. |
Decision on Appeal for U.S. Appl. No. 11/451,237 mailed Mar. 19, 2013, 7 pages. |
Decision on Rejection for Chinese patent application 200780022093.6 mailed Feb. 5, 2013, 9 pages. |
International Search Report and Written Opinion for International patent application PCT/US2007/013802 mailed May 8, 2008, 12 pages. |
Decision on Appeal for U.S. Appl. No. 11/406,976, mailed Nov. 3, 2014, 6 pages. |
Chowdhury et al., “Multi-service Multi-carrier Broadband MIMO Distributed Antenna Systems for In-building Optical Wireless Access,” Presented at the 2010 Conference on Optical Fiber Communication and National Fiber Optic Engineers Conference, Mar. 21-25, 2010, San Diego, California, IEEE, pp. 1-3. |
International Search Report for PCT/US2011/034733 mailed Aug. 1, 2011, 5 pages. |
International Preliminary Report on Patentability for PCT/US2011/034733 mailed Nov. 6, 2012, 7 pages. |
Author Unknown, “VCSEL Chaotic Synchronization and Modulation Characteristics,” Master's Thesis, Southwest Jiatong University, Professor Pan Wei, Apr. 2006, 8 pages (machine translation). |
Translation of the First Office Action for Chinese Patent Application No. 201180008168.1, mailed Jun. 5, 2014, 9 pages. |
Notification of First Office Action for Chinese Patent Application No. 201010557770.8, mailed Jul. 3, 2014, 14 pages. |
Non-final Office Action for U.S. Appl. No. 12/618,613 mailed Dec. 29, 2011, 10 pages. |
Non-final Office Action for U.S. Appl. No. 12/618,613 mailed Jul. 5, 2012, 9 pages. |
Translation of the First Office Action for Chinese Patent Application No. 201080055264.7, mailed Jun. 5, 2014, 6 pages. |
Extended European Search Report for European patent application 12777604.5 mailed Oct. 1, 2014, 7 pages. |
Extended European Search Report for European patent application 12776915.6 mailed Oct. 13, 2014, 7 pages. |
Examiner's Answer to the Appeal Brief for U.S. Appl. No. 12/712/758, mailed Jul. 7, 2014, 12 pages. |
Notice of Allowance for U.S. Appl. No. 13/592,502, mailed May 9, 2014, 9 pages. |
Patent Cooperation Treaty, International Search Report and Written Opinion, Jun. 18, 2010, 13 pages. |
Biton et al., “Challenge: CeTV and Ca-Fi—Cellular and Wi-Fi over CATV,” Proceedings of the Eleventh Annual International Conference on Mobile Computing and Networking, Aug. 28-Sep. 2, 2005, Cologne, Germany, Association for Computing Machinery, 8 pages. |
Seto et al., “Optical Subcarrier Multiplexing Transmission for Base Station With Adaptive Array Antenna,” IEEE Transactions on Microwave Theory and Techniques, vol. 49, No. 10, Oct. 2001, pp. 2036-2041. |
Notice of Reexamination for Chinese patent application 20078002293.6 mailed Nov. 28, 2014, 22 pages. |
Non-final Office Action for U.S. Appl. No. 13/688,448 mailed Dec. 29, 2014, 16 pages. |
Non-final Office Action for U.S. Appl. No. 14/063,245 mailed Jan. 26, 2015, 22 pages. |
Examination Report for European patent application 10702806.0 mailed Nov. 14, 2014, 7 pages. |
Attygalle et al., “Extending Optical Transmission Distance in Fiber Wireless Links Using Passive Filtering in Conjunction with Optimized Modulation,” Journal of Lightwave Technology, vol. 24, No. 4, Apr. 2006, 7 pages. |
Bo Zhang et al., “Reconfigurable Multifunctional Operation Using Optical Injection-Locked Vertical-Cavity Surface-Emitting Lasers,” Journal of Lightwave Technology, vol. 27, No. 15, Aug. 2009, 6 pages. |
Chang-Hasnain, et al., “Ultrahigh-speed laser modulation by injection locking,” Chapter 6, Optical Fiber Telecommunication V A: Components and Subsystems, Elsevier Inc., 2008, 20 pages. |
Cheng Zhang et al., “60 GHz Millimeter-wave Generation by Two-mode Injection-locked Fabry-Perot Laser Using Second-Order Sideband Injection in Radio-over-Fiber System,” Conference on Lasers and Electro-Optics and Quantum Electronics, Optical Society of America, May 2008, 2 pages. |
Chrostowski, “Optical Injection Locking of Vertical Cavity Surface Emitting Lasers,” Fall 2003, PhD dissertation University of California at Berkely, 122 pages. |
Dang et al., “Radio-over-Fiber based architecture for seamless wireless indoor communication in the 60GHz band,” Computer Communications, Elsevier B.V., Amsterdam, NL, vol. 30, Sep. 8, 2007, pp. 3598-3613. |
Hyuk-Kee Sung et al., “Optical Single Sideband Modulation Using Strong Optical Injection-Locked Semiconductor Lasers,” IEEE Photonics Technology Letters, vol. 19, No. 13, Jul. 1, 2007, 4 pages. |
Lim et al., “Analysis of Optical Carrier-to-Sideband Ratio for Improving Transmission Performance in Fiber-Radio Links,” IEEE Transactions of Microwave Theory and Techniques, vol. 54, No. 5, May 2006, 7 pages. |
Lu H H et al., “Improvement of radio-on-multimode fiber systems based on light injection and optoelectronic feedback techniques,” Optics Communications, vol. 266, No. 2, Elsevier B.V., Oct. 15, 2006, 4 pages. |
Pleros et al., “A 60 GHz Radio-Over-Fiber Network Architecture for Seamless Communication With High Mobility,” Journal of Lightwave Technology, vol. 27, No. 12, IEEE, Jun. 15, 2009, pp. 1957-1967. |
Reza et al., “Degree-of-Polarization-Based PMD Monitoring for Subcarrier-Multiplexed Signals Via Equalized Carrier/Sideband Filtering,” Journal of Lightwave Technology, vol. 22, No. 4, IEEE, Apr. 2004, 8 pages. |
Zhao, “Optical Injection Locking on Vertical-Cavity Surface-Emitting Lasers (VCSELs): Physics and Applications,” Fall 2008, PhD dissertation University of California at Berkeley, pp. 1-209. |
Advisory Action for U.S. Appl. No. 12/712,758 mailed Sep. 16, 2013, 3 pages. |
Final Office Action for U.S. Appl. No. 12/712,758 mailed May 24, 2013, 17 pages. |
Non-final Office Action for U.S. Appl. No. 12/712,758 mailed Jan. 10, 2012, 14 pages. |
Examination Report for European patent application 07835803.3 mailed Aug. 13, 2013, 6 pages. |
Extended European Search Report for patent application 10014262.9 mailed Mar. 14, 2011, 6 pages. |
International Search Report and Written Opinion for PCT/US2012/034853 mailed Aug. 6, 2012, 12 pages. |
International Search Report and Written Opinion for PCT/US2012/034855 mailed Jul. 26, 2012, 10 pages. |
Written Opinion of the International Searching Authority for European patent application 11701916.6 mailed Sep. 21, 2012, 10 pages. |
International Search Report for PCT/US2011/021799 mailed Apr. 6, 2011, 4 pages. |
Examination Report for European patent application 10702806.0 mailed Sep. 12, 2013, 11 pages. |
Non-final Office Action for U.S. Appl. No. 13/194,429 mailed Mar. 1, 2013, 22 pages. |
Notice of Allowance for U.S. Appl. No. 13/194,429 mailed Jul. 9, 2013, 9 pages. |
Number | Date | Country | |
---|---|---|---|
20130272696 A1 | Oct 2013 | US |
Number | Date | Country | |
---|---|---|---|
61230463 | Jul 2009 | US | |
61149553 | Feb 2009 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13194410 | Jul 2011 | US |
Child | 13915882 | US | |
Parent | PCT/US2010/022857 | Feb 2010 | US |
Child | 13194410 | US |