This invention relates to detecting acoustic emissions in equipment, and more particularly, to a microphone array including a plurality of sensors each having a compact arrangement of optical fiber.
Distributed sensor networks are frequently used for complex sensing applications including, for example, the monitoring of local events via acoustic sound detection over a large measurement space. This includes the detection of acoustic emission sources such as fluid leaks, mechanical impact, sliding contact, fluid cavitation, wear and friction of large gas turbines and others. Often the events of interest occur at an unknown time and location and can only be observed accurately with nearby sensors. For selected applications, a sensor network may be moved to a nearby sound detection location such as when conducting product sound emission characterization in a controlled test environment.
However, movement of the sensor network is not desirable or feasible for applications wherein large sensor networks are used to monitor sound emissions of equipment in the field, such as in oil exploration, oil field monitoring, submarine detection and other applications. For such applications, it is desirable to monitor an entire sensor network and adaptively focus on areas of interest e.g., if an event of interest occurs at an unpredictable location. Such sensor networks require a relatively large sensor density which results in a relatively large number of sensors. For example, more than 1000 sensors may be used in order to provide sufficient sensor density. However, the sensors used in such networks are expensive and complex. Further, it is important that the exact location of each sensor is known. Thus, it is difficult to deploy such networks in a time and cost effective way since the physical dimensions of each installation vary.
A microphone array is disclosed for detecting acoustic emissions generated by equipment. The array includes at least one grid having a plurality of sensors each including a compact arrangement of optical fiber having first and second optical fiber ends wherein the first optical fiber end of a first sensor is terminated. The array also includes an optoelectronic device coupled to a second optical fiber end of a second sensor, wherein the optoelectronic device generates laser light that is transmitted through the plurality of sensors in the grid and is reflected back to the optoelectronic device to enable detection of acoustic emissions.
Those skilled in the art may apply the respective features of the present invention jointly or severally in any combination or sub-combination.
The teachings of the present disclosure can be readily understood by considering the following detailed description in conjunction with the accompanying drawings, in which:
To facilitate understanding, identical reference numerals have been used, where possible, to designate identical elements that are common to the figures.
Although various embodiments that incorporate the teachings of the present disclosure have been shown and described in detail herein, those skilled in the art can readily devise many other varied embodiments that still incorporate these teachings. The scope of the disclosure is not limited in its application to the exemplary embodiment details of construction and the arrangement of components set forth in the description or illustrated in the drawings. The disclosure encompasses other embodiments and of being practiced or of being carried out in various ways. Also, it is to be understood that the phraseology and terminology used herein is for the purpose of description and should not be regarded as limiting. The use of “including,” “comprising,” or “having” and variations thereof herein is meant to encompass the items listed thereafter and equivalents thereof as well as additional items. Unless specified or limited otherwise, the terms “mounted,” “connected,” “supported,” and “coupled” and variations thereof are used broadly and encompass direct and indirect mountings, connections, supports, and couplings. Further, “connected” and “coupled” are not restricted to physical or mechanical connections or couplings.
Distributed sensing systems that utilize a length of optical fiber to measure acoustic sounds are known. Such systems are used to measure acoustic sounds generated due to traffic monitoring, border/perimeter control, production monitoring in oil and gas wells and other activities. Optical fiber sensitivity in such systems is typically on the order of approximately 60 dBA which is suitable for monitoring large industrial rotating machines such as gas turbines or other large noise generating installations. The spatial resolution of the measured sound, on the other hand, is approximately 1 to 4 meters(m) which is challenging for complex applications including noise generating rotary machines such as gas turbines or other large noise generating installations.
Referring to
In accordance with an aspect of the present invention, a plurality of sensors 10 or microphones may be formed and arranged in a grid pattern 20 as shown in
In an embodiment, the sensors 10 are equally spaced relative to each other. Further, the sensors 10 may be arranged in staggered columns 24 to form a substantially rectangular grid 20. This forms a flexible grid arrangement that can then be rolled up after manufacture and shipped as a roll to a work or installation site. The grid 20 may then be unrolled and cut to size as needed. For example, the grid 20 may be cut along a cut line 28 that extends through a column 24 of sensors 10 in order to meet the size requirements of an installation. In accordance with an aspect of the invention, cutting through a column 24 of sensors 10 does not affect other sensors 10 in the grid 20.
Further, the relative positioning between each sensor 10 remains substantially unchanged after installation so as to facilitate beamforming, e.g., the localization of sound sources for a known acoustic camera thereby enhancing spatial resolution. In an embodiment, a cloth material may be used to cover and protect the grid. Alternatively, at least one additional grid may be aligned with the grid 20 and then connected if, for example, a larger microphone array is desired. Referring to
Known techniques may then be used to detect acoustic sound generated by a rotary machine such as a gas turbine or other large noise generating installation. In particular, laser light is sent into the first end 16 of the optical fiber and through at least one sensor 10 or grid 20 by the optoelectronic device 22. Acoustic sound is then detected by the optoelectronic device 22 based on an interferometric analysis of laser light reflected back via Rayleigh scattering. In an embodiment, multiple laser wavelengths can be used in parallel to allow for higher measurement data throughput.
The present invention provides a relatively large (e.g., greater than 1000 sensor) microphone array that utilizes conventional optical fiber and thus is low cost and robust and further, can be mass produced. The array may be used to monitor any complex industrial installation, especially noise generating rotary machines such as gas turbines. In addition, the array can be readily transported and installed at custom locations while also allowing accurate positioning of the sensors 10. This provides enhanced spatial resolution and results in substantially higher measurement accuracy. In addition, undesirable sparking and electrical interference and related problems that occur with conventional systems are avoided. Further, the structural strength of cable is increased.
The grid 20 of the present invention results in the formation of a relatively large number of sensors 10. For example, a 6 m×2 m grid 20 utilizing sensors 10 having an approximate 2 cm diameter provides approximately 30,000 sensors 10, each sampling at 20 kHz to monitor a full range up to 10 kHz. For standard 16 bit accuracy, the sensors 10 would generate a relatively large amount of data, i.e., approximately 1.2 GB/s of data, and would require substantial computational resources to process. In order to reduce the amount of data, the acoustic space may be sampled by different precomputed beamformers that only use a subset of sensors 10 for a particular focus location. This sensor subset may be selected based on the frequency and area of interest at each point in time. Further, not all sensors 10 add equal value for each beamformer. Thus, the data rate can be significantly reduced. In this regard, a mathematical optimization approach for sparse microphone selection is disclosed in US Patent Publication No. 2014/0314251 A1, published Oct. 23, 2014 and entitled BROADBAND SENSOR LOCATION SELECTION USING CONVEX OPTIMIZATION IN VERY LARGE SCALE ARRAYS, which is hereby incorporated by reference in its entirety. In some applications it may be possible to only connect a costly laser based data acquisition system at periodic time instances for e.g., lifetime assessment or troubleshooting. This further reduces the system deployment costs as only the minimal fiber and installation cost have to be considered.
While particular embodiments of the present disclosure have been illustrated and described, it would be obvious to those skilled in the art that various other changes and modifications can be made without departing from the spirit and scope of the disclosure. It is therefore intended to cover in the appended claims all such changes and modifications that are within the scope of this disclosure.
Number | Name | Date | Kind |
---|---|---|---|
8249400 | Kilic | Aug 2012 | B2 |
9103968 | Carralero | Aug 2015 | B2 |
20040151417 | Lagakos | Aug 2004 | A1 |
20040213502 | Gauthier, Jr. | Oct 2004 | A1 |
20050123303 | Guttman | Jun 2005 | A1 |
20090202194 | Bosselmann | Aug 2009 | A1 |
20110268384 | Akkaya | Nov 2011 | A1 |
20130092371 | Hartog | Apr 2013 | A1 |
20130293116 | Carreras Molins | Nov 2013 | A1 |
20140110124 | Goldner | Apr 2014 | A1 |
20140314251 | Rosca et al. | Oct 2014 | A1 |
20160162519 | Stowe | Jun 2016 | A1 |
Entry |
---|
Michael Mondanos, SILIXA monitoring the future with the next generation of sensors, Monico Workshop NTUA, 2011, pp. 1-19, Silixa Ltd. |
Tom Parker, Sergey Shatalin, Mahmoud Farhadiroushan, Distributed Acoustic Sensing—a new tool for seismic applications, Feb. 2014, pp. 1-9, vol. 32, first break. |
Loudness Comparison Chart, California Department of Transportation. |