The present invention relates to an optical fiber cable that is used in a distributed optical fiber system for measuring distributions of temperature, pressure, and strain using the optical fiber cable; a manufacturing method for the optical fiber cable; and a distributed measurement system for measuring distributions of temperature, pressure, and strain all at once using the optical fiber cable.
Conventionally, a system has been known that is capable of measuring distributions of temperature and pressure of a measurement object with a multilayer armor cable having two kinds of optical fibers as sensors (for example, Patent Document 1). In this system, a Brillouin frequency shift ΔvB and a Rayleigh frequency shift ΔvR of the two kinds of optical fibers are detected for each optical fiber to determine distributions of temperature and pressure of the measurement object from the four values. Specifically, the four values are, for example, a Brillouin frequency shift and a Rayleigh frequency shift of an optical fiber core 10, which is a sensor of an optical fiber cable, and a Brillouin frequency shift and a Rayleigh frequency shift of an FIMT 4 (FIMT is abbreviation of “fiber in metal tube” meaning “metal-tube-covered optical fiber core”. The abbreviation is used hereinafter) (see
Since the pressure and temperature are those of a field where the optical fiber cable exists, the two kinds of optical fibers have the same values. Here, assuming temperatures of each fibers to be T1 and T2, and defining ΔP and ΔT as ΔP=P−Po and ΔT=T1−To=T2−To using a reference pressure Po (for example, atmospheric pressure) and a reference temperature To (for example, room temperature), a relationship expressed by the following Eq. (1) holds true between the pressure change ΔP, the temperature change ΔT, and strain changes Δε1, Δε2, of the measurement object and the four frequency shift values:
Here, the Brillouin frequency shift ΔvB and the Rayleigh frequency shift ΔvR of the optical fiber core 10 and those of the FIMT 4 are distinctively expressed with the superscripts “1” and “2”, respectively, and dij are characteristic coefficients of each optical fiber based on the frequency shifts and are determined as an inverse matrix of sensitivity coefficients of each optical fiber to the frequency shifts.
The pressure and temperature distribution measurement technology using the optical fibers can be applied to distribution measurement of a volumetric change of an object. For example, porous sandstone, because it changes in volume before and after containing liquid, is one application target of the foregoing measurement technology. However, a conventional distributed optical fiber system using an armored cable cannot correctly measure a strain distribution in some cases because of problems in manufacturing the cable.
Patent Document 1: JP 2010-216877 A
For example, a distributed pressure sensor utilizes a Brillouin frequency shift caused by a strain applied to an optical fiber. In order to measure a pressure applied to the optical fiber, the optical fiber sensor is necessarily fixed to a pressure deformable probe. The pressure can thereby be measured from strain of the optical fiber sensor caused by deformation of the probe subject to the pressure. Thus, a pressure distribution along the optical fiber cable can be measured by measuring a Brillouin frequency shift of the optical fiber sensor fixed to the probe.
However, since precise control of fixed positions of the optical fiber and a steel cable wire used in the multilayer armor cable has conventionally been in a difficult situation because of problems in manufacturing the multilayer armor cable, sufficiently accurate values have not been obtained so far in the pressure measurement. The reason for that will be explained below with reference to the drawings.
The cases b and c are explained with reference to a model shown in
The annular body and the pillar body are assumed here to be a circular annular body and a circular pillar body, respectively, and to be formed of homogeneous isotropic elastic materials. Letting the radii of the circular annular body and the circular pillar body be b and a and Lamé constants thereof, which are moduli of elasticity, be λ1, μ1 and λ2, μ2, respectively, a pressure Pi applied to the circular pillar body is evaluated by splitting
σij=2μεij+λεkkδij (2).
In Eq. (2), σ and ε represent stress and strain, respectively, and the subscripts i, j indicate two directions among three directions orthogonal to each other (for example, assuming x-, y-, z-axes to be three axes orthogonal to each other, the x- and the y-axis directions indicate the two directions among them), and δij is Kronecker delta. In general, λ and μ are referred to as Lamé's first parameter and Lamé's second parameter, respectively, and have positive values. And μ is also called modulus of rigidity and is typically expressed by G.
In
Since a<b in
Case 1: when the elastic moduli of the circular annular body and the circular pillar body are equal to each other, i.e., Eq. (4) holds true, it results in Pi=Po.
λ1+μ1=λ2+μ2 (4)
Case 2: when the elastic modulus of the circular annular body is larger than that of the circular pillar body, i.e., Eq. (5) holds true, it results in Pi<Po.
λ1+μ1>λ2+μ2 (5)
Case 3: when the elastic modulus of the circular annular body is smaller than that of the circular pillar body, i.e., Eq. (6) holds true, it results in Pi>Po.
λ1+μ1<λ2+μ2 (6)
That is, in the case 2, the pressure (the stress orthogonal to the radial direction) received by the circular pillar body (corresponding here to the optical fiber) is smaller than that applied to the circular annular body (corresponding here to the multilayer armor cable). In other words, in the cases b and c, the value of the pressure received by the center optical fiber waveguide 11 is smaller than that of the outer pressure applied to the multilayer armor cable 50. Thus, the pressure value of a measurement field outside the armor cable cannot be correctly evaluated.
That is demonstrated below using actual experimental data.
Moreover, since the relative positions of the optical fiber core and the steel cable wire of the multilayer armor cable cannot be controlled in a ganged manner and the measurement is usually performed with the measurement object being fixed to the steel cable wire in the outermost armor layer, it cannot be ensured that strain of the optical fiber core 1 is coincident with that of the measurement object. Thus, the distributed pressure and temperature measurement system (DPTS) has been in a situation of not performing strain distribution measurement with high accuracy.
In spite of such a situation described above, in a technology used in, for example, carbon dioxide capture and storage (CCS), i.e., geological sequestration of CO2 separated and recovered from gases exhausted such as from power plants and factories, strain produced for example by pressure increase associated with CO2 injection and by CO2 infiltration into rock is measurement subject and a precise strain measurement is particularly required to monitor the CO2 stored underground. Furthermore, a technology is desired that is also applicable to production such as of shale gas.
The present invention is made in light of the above-described problem and aimed at making it possible to provide, in a distributed optical fiber measurement system using an armored-type optical fiber cable, an optical fiber cable that has a gap formed between the optical fiber waveguide and the armor cable and has fixing members for fixing the optical fiber waveguide and the armor cable and is capable of accurately measuring all at once distributions of pressure, temperature, and strain of a measurement object using two kinds of optical fibers in the optical fiber cable; and at making it possible to provide a method of manufacturing the optical fiber cable and the distributed measurement system.
An optical fiber cable according to the present invention is installed in or along a measurement object so as to be deformed along with the measurement object, and is for measuring distributions of pressure, temperature, and strain of the measurement object by using a Brillouin frequency shift and a Rayleigh frequency shift of light entered into and scattered in the optical fiber cable. The optical fiber cable includes an optical fiber core for measuring pressure of the measurement object; and a multilayer armor cable for measuring temperature of the measurement object, wherein an annular clearance space is formed between the optical fiber core and the multilayer armor cable, and fixing members are arranged in the clearance space at intervals in the axial direction of the optical fiber cable to fix the optical fiber core and the multilayer armor cable.
A method of manufacturing the optical fiber cable according to the present invention includes the steps of: removing a water resolvable coat after an outermost layer of an optical fiber core of the optical fiber cable measuring pressure is annularly coated with the water resolvable coat having a desired thickness and the optical fiber cable is armored with an armored layer; and fixing the optical fiber core and the armor layers to each other after removal of the water resolvable coat.
A distributed measurement system according to the present invention is configured to measure all at once distributions of pressure, temperature, and strain of a measurement object, using the optical fiber cable, which is installed in or along a measurement object so as to be deformed along with the measurement object and is for measuring distributions of pressure, temperature, and strain of the measurement object by using a Brillouin frequency shift and a Rayleigh frequency shift of light entered into and scattered in the optical fiber cable and includes an optical fiber core for measuring pressure of the measurement object and a multilayer armor cable for measuring temperature of the measurement object wherein an annular clearance space is formed between the optical fiber core and the multilayer armor cable and fixing members are arranged in the clearance space at intervals in the axial direction of the of the optical fiber cable to fix the optical fiber core and the multilayer armor cable and, with a hybrid-type Brillouin and Rayleigh backscattered light measuring instrument analyzing a Brillouin frequency shift and a Rayleigh frequency shift in scattered light scattered in the optical fiber cable and determining distributions of pressure, temperature, and strain of material.
Furthermore, a distributed measurement system according to the present invention is configured to measure, using the optical fiber cable, distributions of pressure, temperature, and strain of a measurement object all at once, from a Rayleigh phase shift instead of a Rayleigh frequency shift, with a Brillouin backscattered light measuring instrument and a Rayleigh phase measuring instrument analyzing a Brillouin frequency shift and a Rayleigh phase shift, respectively, in scattered light scattered in the optical fiber cable and determining distributions of pressure, temperature, and strain of material.
According to the present invention, a remarkable effect can be brought about that makes it possible to provide an optical fiber cable capable of accurately measuring all at once distributions of pressure, temperature, and strain of a measurement object, and to provide a method of manufacturing the optical fiber cable and a distributed measurement system.
Embodiments of the present invention will be described below with reference to the drawings.
Next, a measurement procedure of the measurement system is described. First, the Brillouin frequency shifts ΔvB between the entered light and the scattered light are expressed by Eqs. (7) and (8):
ΔvB1=C111Δε1+C121ΔT+C131ΔP (7)
ΔvB2=C112Δε2+C122ΔT (8).
Here, the superscript numerals of ΔvB denote the kinds of optical fibers: “1” refers to the optical fiber waveguide and “2” refers to the FIMT. The coefficients Cij are sensitivity coefficients specific to the optical fibers, and the superscript numerals refer to the respective kinds of optical fibers. The superscript numerals of ε also refer to the respective kinds of optical fibers as with the above. In addition, that no term relating to ΔP appears in Eq. (8) is due to the fact that the FIMT is isolated from influence of pressure.
Second, the Rayleigh frequency shifts ΔvR are expressed by Eqs. (9) and (10):
ΔvR1=C211Δε1+C221ΔT+C231ΔP (9)
ΔvB2=C212Δε2+C222ΔT (10).
Here, the superscript numerals of ΔvR denote the kinds of optical fibers: “1” refers to the optical fiber waveguide and “2” refers to the FIMT. In addition, that no term relating to ΔP appears in Eq. (10) is due to the fact that the FIMT is isolated from influence of pressure. The definitions of the other symbols are the same as those with ΔvB; hence, they are omitted here.
From these Eqs. (7) to (10), using characteristic coefficients Dij (which are characteristic coefficients based on frequency shifts and determined as the inverse matrix of the sensitivity coefficients Cij), a relationship expressed by Eq. (11) holds true between pressure change ΔP, temperature change ΔT, strain change Δε and ΔvB, ΔvR:
Thus, pressure change ΔP, temperature change ΔT, and strain change Δε of a measurement object can be calculated from frequency shift information using Eq. (11).
While the above describes the outline of procedure for calculating pressure change ΔP, temperature change ΔT, and strain change Δε of the measurement object using frequency information in Brillouin and Rayleigh scattering, a method using phase information is also effective to calculate pressure change ΔP, temperature change ΔT, and strain change Δε of the measurement object. The method using phase information is particularly effective when measurement time is restricted, because measuring a Rayleigh frequency shift usually takes longer time than measuring a Brillouin frequency shift. The following describes the outline of the procedure for calculating pressure change ΔP, temperature change ΔT, and strain change Δε of the measurement object using the phase information.
The method uses phase information in Rayleigh scattering instead of frequency information therein. Letting C3j be sensitivity coefficients for Rayleigh scattering phase shifts, the Rayleigh scattering phase shifts ΔφR of the optical fiber waveguide and the FIMT are respectively expressed by Eqs. (12) and (13):
ΔφR1=C311Δε1+C321ΔT+C331ΔP (12)
ΔφR2=C312Δε2+C322ΔT (13).
Here, Δε is an axial strain of the optical fiber cable under measurement, and C31, C32, C33 are strain, temperature, pressure sensitivity coefficients for Rayleigh phase, respectively. In addition, that no term relating to ΔP appears in Eq. (13) is due to the fact that the FIMT is isolated from influence of pressure. The definitions of the other symbols are the same as those with ΔvB; hence, they are omitted here.
From Eqs. (7) and (8) and Eqs. (12) and (13), using characteristic coefficients Fij (which are characteristic coefficients based on frequency shifts and phase shifts, and determined as an inverse matrix of the sensitivity coefficients C1j and C3j), a relationship expressed by Eq. (14) holds true between pressure change ΔP, temperature change ΔT, strain change Δε and ΔvB, ΔvR:
Thus, pressure change ΔP, temperature change ΔT, strain change Δε of the measurement object can be calculated from frequency shift information and phase shift information using Eq. (14). In this case, a Brillouin backscattered light measuring instrument and a Rayleigh phase measuring instrument are needed instead of the hybrid-type backscattered light measuring instrument. In addition, the method using only phase information is explained in the following reference literatures: (1) Shiuh-Chuan Her, Chih-Min Yang “Dynamic Strain Measured by Mach-Zehnder Interferometric Optical Fiber Sensors”, Sensors Vol. 12 (ISSN 1424-8220), March 2012, pp. 3314-3326; and (2) J. H. Cole, et al., “TWENTY-FIVE YEARS OF INTERFEROMETRIC FIBER OPTIC ACOUSTIC SENSORS AT THE NAVAL RESEARCH LABORATORY”, Washington Academy of Sciences, Fall, 2004, pp. 40-57. It should be noted here that ΔφR in Eqs. (12) to (14) denotes a phase shift due to the interference principle and is physical quantity different from the Rayleigh scattering based entered-light frequency change ΔvR appearing in Eq. (11) and in the equations prior thereto.
The constant gap δ is formed through the following process: a water resolvable coat 14 or the like is formed around the outer circumference of the secondary coat 13 in an initial step of manufacturing the optical fiber cable; and then, after the armor cable is formed around the resin layer in the subsequent step, the water resolvable coat 14 is dissolved in water or hot water by immersing the optical fiber cable 7 in the water or hot water. In this way, the gap is formed as a clearance space having a desired thickness. In actual pressure measurement, a pressure and the others of the measurement object (liquid) flowing into the clearance space are measured with the optical fiber core 1.
Specifically, the water resolvable coat 14 is designed to have a desired thickness (which is the width of the constant gap δ, and is usually about several tens to several hundreds μm in radial direction size), and formed to exhibit necessary mechanical performances such as of abrasion resistance, pressure resistance, and sufficient tensile strength when the optical fiber cable is armored (winding of wires around an optical fiber core is called “armoring”). Immediately after armored, the multilayer armor wires are in contact with the water resolvable coat 14. After that, the optical fiber cable is immersed in water or hot water, to remove the water resolvable coat 14. In addition, if the observation well is an oil well, the constant gap δ can be formed by an oil-soluble resin substituted for the water resolvable coat 14.
Using a low-melting resin for the water resolvable coat 14 is another method of removing the layer. Specifically, forming the water resolvable coat 14 of a material having a melting point of, for example, approximately 100° C. (polyethylene can be used, for example) and forming the primary coat 12 and the secondary coat 13 of materials having melting points of over 200° C., allow the water resolvable coat 14 to be removed by heating the whole optical fiber cable to a temperature of 150° C. after the cable is armored. In addition to the above, instead of the water resolvable coat 14, a material can also be used that has a function of overcoating the optical fiber core 1 and is removable later, specifically such as an oil-soluble material, an alcohol-soluble material, or a polymer glass that become powder when compressed. In addition, the resin layer can also be meltingly removed underground while cementing, after the optical fiber cable provided with a protective resin layer is buried underground.
In this case, since the optical fiber core 1 and the multilayer armor cable 5 may only be fixed to each other, it is sufficient that the fixing members used have a radial size (orthogonal to the axial direction) larger than the radius of the inward side of the annular multilayer armor cable. That is, the fixing members may only have a radius larger than that of a fixing member 3c shown in the figure. A fixing method is usually employed in which the fixing is performed by an adhesive such as resin to the radial position of the innermost layer (the layer indicated by 5a in
In the optical fiber cable made up as shown in
A detail structure of the optical fiber cable thus made up is described further with reference to
In the case of forming the clearance space 2 as described above, pressure distribution data in the axial direction of the optical fiber cable measured over 3 m long along the cable is different from that shown in
A method of manufacturing the optical fiber cable of the present invention by forming the clearance space and by fixing using the fixing members is described below with reference to the flowchart of
The optical fiber cable of the present invention thus manufactured can bring about the following effects. First, pressure measurement can be achieved with high accuracy in the pressure sensible sections indicated by “A” (specifically A1, A2, A3) in
Furthermore, the present optical fiber cable can complete its service life as long as the cable is not broken. Normally, the optical fiber, if armored, should not be broken before the life of steel because the tensile strength of the optical fiber is greater than that of steel. However, a large strain happens to remain in the optical fiber in manufacturing the armor layers, leading to a primary cause of breakage of the optical fiber. In the present invention, the optical fiber is temporarily put into a free state in STEP 3 of
While the optical fiber core is usually overcoated with the water resolvable coat 14 under room temperature of about 20° C. in manufacturing the optical fiber cable, in actually using in an oil well or the like, the oil well is in a high temperature condition of more than 100° C. (maximum of 300° C. in some cases) compared to the ordinary temperature, and the temperature of the optical fiber cable itself rises to a high temperature of more than 100° C. according to the temperature of the oil well. As a result, a strain of about 2000με is produced in the optical fiber core 1, whereby breakage thereof may occur under certain circumferences, posing a problem in ensuring measurement accuracy.
For that reason, in manufacturing the optical fiber cable, the optical fiber core 1 is overcoated with the water resolvable coat 14 not under room temperature but under a high temperature of about 100° C. (100±10° C.) and cooled down to room temperature with it being tensioned. As a result, an overcoated intermediate product of the optical fiber cable is manufactured, with the optical fiber core 1 being strained. Removing the water resolvable coat 14 in the subsequent step, the optical fiber core 1 is situated, with a given strain remaining, at the center of the optical fiber cable, and then fixed at the regular intervals d as shown in
In another situation, a fluid in the shaft of an oil well may in some cases contain material called proppant, which is treated typically as sand. When the optical fiber cable is installed in a fluid containing the proppant, sand in the fluid causes a problem of erosion of the steel cable wires. In particular, when an optical fiber cable is made by tightly twisting the armor wires, the optical fiber cable may be broken in some cases.
In order to prevent such breakage, in a case of employing strands, each are made by twisting a plurality of wires, for the multilayer armor cable 5 used in the optical fiber cable 7, a method is effective in which expansion members 15, which are made such as of a plastic material softer in hardness than ordinary metal wire, are provided in a bag-like form at intervals on each plurality of wires so as to envelop the twisted wires, as shown in
The FIMT constituting the multilayer armor cable described in Embodiment 1 is manufactured usually by welding. A pinhole defect that is not detected by a quality check in manufacturing is in some cases found such as through detection of a leak signal (a part of the signal that changes abruptly) in a verification test of a temperature distribution measurement or the like. In addition, a pinhole defect might be created in on-site installation of the optical fiber cable. If such a pinhole defect exists in the FIMT, gases and oleaginous fluid containing water penetrates into the FIMT during use of the optical fiber cable. This not only affects accuracy of temperature, strain, or pressure distribution measurement of a measurement object but also makes impossible the measurement itself, and may further lead to an accident due to leakage to the ground, such as of high temperature and high pressure oil in the underground oil well. This problem is conventionally dealt with, such as by covering the outer circumference of the optical fiber cable with a polymer resin; however, the covering process takes a long time and also causes a factor of high costs in manufacturing the optical fiber cable.
For that reason, isolating members 16 are provided between the FIMT 4 and the optical fiber core 1 in the radial direction of the optical fiber cable, as shown in
The optical fiber cable described above has what is called a passive configuration as a whole and only transmits light. Thus, the cable itself does not have what is called an active function such as of emitting a signal light and changing the transmission path for transmitting a light signal to a target position. In the present embodiment, it is described below that temperature and strain characteristics of a measurement object can be non-passively grasped by providing in the optical fiber cable a heating wire for heating.
It should be noted that the present invention is not limited to the description of each embodiment, and each embodiment may be freely combined or appropriately modified or omitted within the spirit and scope of the invention.
Number | Date | Country | Kind |
---|---|---|---|
2013-099869 | May 2013 | JP | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/JP2014/059801 | 4/3/2014 | WO | 00 |