The inventive aspects of this disclosure pertain to devices and methods for connecting optical fibers.
Fiber optic cables are widely used to transmit light signals for high speed data transmission. A fiber optic cable typically includes: (1) an optical fiber or optical fibers; (2) a buffer or buffers that surround the fiber or fibers; (3) a strength layer that surrounds the buffer or buffers; and (4) an outer jacket. Optical fibers function to carry optical signals. A typical optical fiber includes an inner core surrounded by a cladding that is covered by a coating. Buffers (e.g., loose or tight buffer tubes) typically function to surround and protect coated optical fibers. Strength layers add mechanical strength to fiber optic cables to protect the internal optical fibers against stresses applied to the cables during installation and thereafter. Example strength layers include aramid yarn, steel, and epoxy reinforced glass roving. Outer jackets provide protection against damage caused by crushing, abrasions, and other physical damage. Outer jackets also provide protection against chemical damage (e.g., ozone, alkali, acids).
Fiber optic cable connection systems are used to facilitate connecting and disconnecting fiber optic cables in the field without requiring a splice. A typical fiber optic cable connection system for interconnecting two fiber optic cables includes fiber optic connectors mounted at the ends of the fiber optic cables and an adapter for mechanically and optically coupling the fiber optic connectors together. Fiber optic connectors often include ferrules that support the ends of the optical fibers of the fiber optic cables. The end faces of the ferrules are typically polished and are often angled. The adapter includes co-axially aligned ports (i.e., receptacles) for receiving the fiber optic connectors desired to be interconnected. The adapter often includes an internal sleeve that receives and aligns the ferrules of the fiber optic connectors when the connectors are inserted within the ports of the adapter. With the ferrules and their associated fibers aligned within the sleeve of the adapter, a fiber optic signal can pass from one fiber to the next. The adapter also typically has a mechanical fastening arrangement (e.g., a snap-fit arrangement) for mechanically retaining the fiber optic connectors within the adapter.
An aspect of the present disclosure relates to an optical fiber connection system including a first optical fiber, a fiber optic adapter, and a first fiber optic connector. The first optical fiber includes an end portion with an end. The fiber optic adapter includes a housing and a fiber alignment apparatus. The housing includes a first port and a second port. The fiber alignment apparatus includes a first V-block and a first gel block. The fiber alignment apparatus is positioned between the first port and the second port. The first fiber optic connector includes a housing and a sheath. The housing extends between a proximal end and a distal end. The first optical fiber extends through the housing and is attached to the housing. The end portion of the first optical fiber is positioned outside the housing and beyond the distal end of the housing. The sheath is slidably connected to the housing. The sheath is slidable between an extended configuration and a retracted configuration. The sheath covers the end portion of the first optical fiber when the sheath is at the extended configuration, and the sheath exposes the end portion of the first optical fiber when the sheath is at the retracted configuration.
Another aspect of the present disclosure relates to a coating included on the first optical fiber. In certain embodiments, the coating is stripped off of the end portion of the first optical fiber. In certain embodiments, the coating is pre-stripped off of the end portion of the first optical fiber before the first optical fiber is attached to the housing. In preferred embodiments, the coating is post-stripped off of the end portion of the first optical fiber after the first optical fiber is attached to the housing.
Still another aspect of the present disclosure relates to the first optical fiber sliding between the first V-block and the first gel block when the first fiber optic connector is connected to the fiber optic adapter. The first gel block cleans contaminants from the end of the first optical fiber when the first optical fiber is sliding between the first V-block and the first gel block.
Yet another aspect of the present disclosure relates to a tool set for connecting a fiber optic cable to the fiber optic connector and/or finishing the end of the optical fiber after termination by the fiber optic connector. The tool set may include a crimping tool and/or a polishing tool. The crimping tool includes an end stop and a housing locating feature that locates the end of the optical fiber relative to the housing of the fiber optic connector while the crimping tool crimps the optical fiber to the housing. The polishing tool defines a polishing plane and includes a housing locating feature that locates a polished end of the optical fiber relative to the housing of the fiber optic connector while the polishing tool polishes the polished end. The polishing tool may uniquely orient and/or angle the polished end relative to the housing and thereby relative to the fiber optic connector.
Still another aspect of the present disclosure relates to a second fiber optic connector and the connection of the first and the second fiber optic connectors via the fiber optic adapter. The second fiber optic connector can be the same as or similar to the first fiber optic connector. The first and the second fiber optic connectors are individually connectable to the fiber optic adapter at the first and the second ports. Components of the first and the second fiber optic connectors and the fiber optic adapter can be assembled in a configuration that ensures a predetermined orientation between the first and the second fiber optic connectors. The components may also ensure a predetermined orientation between the fiber optic adapter and the first and the second fiber optic connectors.
A variety of additional aspects will be set forth in the description that follows. These aspects can relate to individual features and to combinations of features. It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory only and are not restrictive of the broad concepts upon which the embodiments disclosed herein are based.
Reference will now be made in detail to the exemplary aspects of the present disclosure that are illustrated in the accompanying drawings. Wherever possible, the same reference numbers will be used throughout the drawings to refer to the same or like structure.
Referring now to
In the depicted embodiments of the figures, the fiber optic cables 82, 92 each include the optical fiber 88 and the coating 90. In other embodiments, the fiber optic cables may each include multiple optical fibers 88, each with the coating 90. In other embodiments, the fiber optic cables may include strength members, jackets, and other components known in the art of fiber optic cables.
As illustrated at
The fiber optic adapter 300 is adapted to receive the first fiber optic connector 100 and the second fiber optic connector 102. The first fiber optic connector 100 terminates the first end portion 84 of the first fiber optic cable 82, 82′. Likewise, the second fiber optic connector 102 terminates the first end portion 94 of the second fiber optic cable 92, 92′. When the first and the second fiber optic connectors 100, 102 are fully received within the fiber optic adapter 300, the ends 98 of the optical fibers 88 are held in close proximity to each other or in contact with each other, as shown at
Turning now to
The fiber optic connector 100 includes a housing 110, a sheath 130 (i.e., a protective shroud), a spring 170, a plug 180, and a sleeve 210. The fiber optic connector 100 extends between a distal end portion 104 and a proximal end portion 106. The distal end portion 104 generally coincides with or is adjacent to the end 98 of the optical fiber 88, and the proximal end portion 106 is generally connected to and adjacent to a portion of the fiber optic cable 82, 82′ that is external to the fiber optic connector 100.
As illustrated at
The sheath 130 extends between a distal end portion 132 and a proximal end portion 134. The sheath 130 includes a passage 136 that extends between the distal end portion 132 and the proximal end portion 134. A funnel 138 is defined adjacent the proximal end portion 134 of the sheath 130 with a larger portion extending toward the proximal end portion 134. The funnel 138 connects to a bore 142 that continues on to the distal end portion 132. The sheath 130 includes a radial compression feature 140. In the depicted embodiment, the radial compression feature 140 is a collet. In the depicted embodiment, the collet 140 is formed into the sheath 130 by slits 144 that extend between the bore 142 and an exterior 148 of the sheath 130. As depicted, there are two of the slits 144 that form two resilient fingers 158. In other embodiments, more of the slits 144 may be included and thereby form more of the resilient fingers 158. The sheath 130 includes a tapered seat 146. The tapered seat 146 is at the distal end portion 132 of the sheath 130 on the exterior 148. In the depicted embodiment, the radial compression feature 140 is actuated by the tapered seat 146. The exterior 148 of the sheath 130 also includes a cylindrical portion 150 and a step 152 between the tapered seat 146 and the cylindrical portion 150. In the depicted embodiment, the step 152 includes a shoulder. A shoulder 154 is formed adjacent the proximal end portion 134 of the sheath 130. In the depicted embodiment, the shoulder 154 is formed adjacent a cylindrical portion 156 at the proximal end portion 134 of the sheath 130. In the depicted embodiment, the cylindrical portion 156 extends between the shoulder 154 and a proximal end of the proximal end portion 134 of the sheath 130. The sheath 130 includes a spring seat 160 at the proximal end of the proximal end portion 134. In the depicted embodiment, the sheath 130 is a one-piece sheath (e.g. a unitary sheath, a monolithic sheath, etc.).
As illustrated at
The spring 170 of the fiber optic connector 100 extends between a first end 172 and a second end 174. As depicted, the first end 172 is a distal end and the second end 174 is a proximal end. As depicted, the spring 170 is a helical coil spring, including a helical coil 176. The spring 170 biases the sheath 130 toward the extended configuration 162. In other embodiments, other biasing members may be used to bias the sheath 130 toward the extended configuration of 162. The sheath 130 compresses the spring 170 when the sheath 130 is moved from the extended configuration 162 to the retracted configuration 164.
The plug 180 extends from a first end 182 to a second end 184. In the depicted embodiment, the plug 180 is an end plug. In the depicted embodiment, the first end 182 is a distal end and the second end 184 is a proximal end. The plug 180 may be made of a metallic material (e.g. brass, stainless steel, etc.). An interior passage 186 extends between the first end 182 and the second end 184. The interior passage 186 includes a bore portion 188, a compression portion 190, and a stress relief portion 192. The bore portion 188 is adjacent the first end 182. The stress relief portion 192 is adjacent the second end 184. The compression portion 190 is between the bore portion 188 and the stress relief portion 192. The plug 180 includes an exterior 194. The exterior 194 includes a spring seat 196, a connecting portion 198, a crimping portion 200, and a cable entrance 204. The spring seat 196 abuts the second end 174 of the spring 170 when the plug 180 is assembled into the housing 110. The spring 170 is thereby retained within the bore 122 of the housing 110.
The connecting portion 198 of the plug 180 is retained within the bore 122 of the housing 110 (e.g., by a compression fit). In other embodiments, the connecting portion 198 may be retained within the housing 110 by a threaded connection. In still other embodiments, the connecting portion 198 may be adhesively bonded to the bore 122 of the housing 110. The exterior 194 of the plug 180 further includes a transition 202 between the connecting portion 198 and the crimping portion 200. In the depicted embodiment, the transition 202 includes a step. The exterior 194 of the plug 180 further includes a transition 206 between the crimping portion 200 and the cable entrance portion 204. In the depicted embodiment, the transition 206 includes a step. The stress relief portion 192 of the interior passage 186 of the plug 180 smoothly transitions from the compression portion 190 and flares outwardly as the stress relief portion 192 extends toward the second end 184.
In the depicted embodiment, the plug 180 is a one-piece plug (e.g. a unitary plug, a monolithic plug, etc.). In the depicted embodiment, the plug 180 is a multi-function plug (e.g., the plug 180 includes the crimp function, the spring seat function, the connecting functions, and other functions including those mentioned above). In the depicted embodiment, the plug 180 is an integrated multi-function plug. In other embodiments, the various functions of the plug 180 can be separated into separate components. In certain embodiments, some or all of the components may not take the form of a plug.
The sleeve 210 of the fiber optic connector 100 extends from a first end 212 to a second end 214. In the depicted embodiment, the first end 212 is a distal end and the second end 214 is a proximal end. An interior passage 216 extends between the first end 212 and the second end 214. The interior passage 216 includes a bore portion 218, a compression portion 220, and a stress relief portion 222. The bore portion 218 generally coincides with the bore portion 188, the compression portion 220 generally coincides with the compression portion 190, and the stress relief portion 222 generally coincides with the stress relief portion 192. The sleeve 210 includes an exterior 224. The exterior 224 includes an uncompressed portion 226, a compressed portion 228, and a cable entrance 230. In the depicted embodiment, the cable entrance 230 includes a stress relief portion. The uncompressed portion 226 generally coincides with the bore portion 188 of the plug 180. The compressed portion 228 generally corresponds and coincides with the compression portion 190. And, the cable entrance 230 generally coincides with the stress relief portion 192.
In the depicted embodiment, the sleeve 210 performs a stress relief function. In particular, the stress relief portion 222 is shaped to protect the optical fiber 88 from sharp bends as the fiber optic cable 82 exits the fiber optic connector 100. In the depicted embodiment, the sleeve 210 performs a stress distributing function. In particular, the sleeve 210 includes compliant material that distributes pressure generated by the compression portion 190 of the plug 180 to the fiber optic cable 82 and/or the optical fiber 88. In the depicted embodiment, the compliant material of the sleeve 210 substantially reduces or eliminates any peak loads that would otherwise be transferred to the fiber optic cable 82 and/or the optical fiber 88 from the plug 180. In other embodiments, the various functions of the sleeve 210 can be separated into separate components. In certain embodiments, some or all of the components may not take the form of a sleeve. In certain embodiments, the sleeve 210 or portions of the sleeve 210 can be combined with (e.g., integrated with) the plug 180.
As depicted at
In certain embodiments, the buffer tube 108 (if present) and the coating 90 of the fiber optic cables 82, 82′ may be pre-stripped from the fiber optic cable 82, 82′ before insertion of the fiber optic cable 82, 82′ into the fiber optic connector 100. As illustrated at
In embodiments with the buffer layer 108, it is preferred that an end portion of the buffer layer 108 is stripped from the fiber optic cable 82′ before the insertion of the fiber optic cable 82′ into the connector 100 (see
Upon the pre-stripping of the buffer tube 108 (if present) and/or the coating 90 off of the fiber optic cable 82, 82′, the end 98 of the optical fiber 88 is inserted through the proximal end portion 106 of the fiber optic connector 100. In embodiments that do not pre-strip, the end portion 84 of the fiber optic cable 82, 82′ and/or the end 98 of the optical fiber 88 is inserted through the proximal end portion 106 of the fiber optic connector 100. In particular, the end 98 of the optical fiber 88 is inserted through the stress relief portion 222 of the sleeve 210, if present, or the stress relief portion 192 of the plug 180, if the sleeve 210 is not present. The stress relief portion 192 or the stress relief portion 222 thereby may act as a guide to aid the insertion of the end portion 84 of the fiber optic cable 82, 82′ and/or the end 98 of the optical fiber 88.
The end portion 84 of the fiber optic cable 82, 82′ and/or the end 98 of the optical fiber 88 is further slid through the interior passage 216 of the sleeve 210 or the interior passage 186 of the plug 180 and into the spring 170, within the helical coil 176. The insertion of the fiber optic cable 82, 82′ and/or the end 98 of the optical fiber 88 into the connector 100 continues with the end portion 84 of the fiber optic cable 82, 82′ and/or the end 98 of the optical fiber 88 entering the funnel 138 of the sheath 130. The insertion continues through the passage 136 until the end portion 84 and/or the end 98 extends to or beyond the distal end portion 132 of the sheath 130. In certain embodiments, the end 98 of the optical fiber 88 is fully inserted when the end 98 extends about a distance D3 beyond the distal end portion 112 of the housing 110 (see
Upon proper longitudinal positioning of the fiber optic cable 82, 82′ and/or the optical fiber 88 within the fiber optic connector 100, the compression portion 190 of the plug 180 is activated. As will be described in detail below, the compression portion 190 may be activated by the crimp portion 200 of the plug 180. The activation of the compression portion 190 causes the compression portion 190 to compress the compressed portion 228 of the sleeve 210, if present. Upon the compressed portion 228 of the sleeve 210 being compressed by the compression portion 190, the compression portion 220 of the sleeve 210 compresses the fiber optic cable 82. As depicted, the compression portion 220 of the sleeve 210 compresses the coating 90 of the fiber optic cable 82. If the sleeve 210 is not present, the activation of the compression portion 190 causes the compression portion 190 to bear directly against the buffer tube 108 of the fiber optic cable 82′. Upon the activation of the compression portion 190, the longitudinal position of the fiber optic cable 82, 82′ is fixed relative to the longitudinal position of the housing 110 of the fiber optic connector 100.
In the depicted embodiment, the compression portion 190 is activated by crimping. In other embodiments, the compression portion 190 may be activated by other compressing members or member. For example, the compression portion 190 may be activated by activating a collet with a nut.
Upon the fiber optic cable 82, 82′ and/or the optical fiber 88 being longitudinally located within the fiber optic connector 100, the radial compression feature 140 of the sheath 130 is activated and thereby compresses against the fiber optic cable 82, 82′ and/or the optical fiber 88. In certain preferred embodiments where the coating 90 is not pre-stripped (e.g., see
Upon the radial compression feature 140 being activated, the end 98 of the optical fiber 88 is polished. As the radial compression feature 140 is preferably located adjacent the end 98 of the optical fiber 88 and/or the end portion 84 of the fiber optic cable 82, 82′, the end 98 and/or the end portion 84 is/are well supported and located by the radial compression feature 140, when it is activated. As illustrated at
As the compression portion 190 fixes the longitudinal position of the fiber optic cable 82, 82′ relative to the longitudinal position of the housing 110 of the fiber optic connector 100, the polishing process precisely locates the polished end 98′ of the optical fiber 88 relative to the housing 110. The polishing process may further remove a portion of the distal end portion 132 of the sheath 130, as illustrated at
Upon the polishing process being complete, the radial compression feature 140 is deactivated. The deactivation of the radial compression feature 140 allows the sheath 130 to slide freely along the optical fiber 88 and/or the fiber optic cable 82, 82′ between the extended configuration 162 and the retracted configuration 164. In the depicted embodiment, the radial compression feature 140 is deactivated by the resilient fingers 158 returning to a non-engaging configuration and thereby uncompressing the gripping portion 142′ from the fiber optic cable 82, 82′ and/or the optical fiber 88. In the depicted embodiment, the engaging configuration (i.e., the activated configuration) of the resilient fingers 158 has the resilient fingers 158 deformed and actuated, and the non-engaging configuration (i.e., the deactivated configuration) of the resilient fingers 158 has the resilient fingers 158 relaxed and un-actuated. In other embodiments, the engaging configuration (i.e., the activated configuration) of the resilient fingers 158 has the resilient fingers 158 un-actuated, and the non-engaging configuration (i.e., the deactivated configuration) of the resilient fingers 158 has the resilient fingers 158 actuated.
In embodiments where the coating 90 is stripped after the insertion of the fiber optic cable 82, 82′ into the fiber optic connector 100, and/or in embodiments where the coating 90 is partially stripped from the fiber optic cable 82, 82′ before the insertion of the fiber optic cable 82, 82′ into the fiber optic connector 100, the portion of the coating 90 that is to be stripped away may be stripped by putting the sheath 130 at the retracted configuration 164 and then applying a stripping tool (not shown) to the coating 90, adjacent the distal end portion 132 of the sheath 130. The sheath 130 may then be extended to the extended configuration 162. As the sheath 130 is extended to the extended configuration 162, the stripping process may be executed. In particular, the spring 170 may assist in extending the sheath 130 to the extended configuration 162, and thereby the spring 170 may assist in the stripping process as the sheath 130 pushes on the stripping tool. The stripping tool may be similar to a stripping tool known in the art as a “Miller Buffer Stripper”. Various “Miller Buffer Stripper” tools are sold by Go4Fiber Ltd. of 13/F Culturecom Centre, 47 Hung To Road, Kwun Tong, Hong Kong. The “Miller Buffer Stripper” may be modified into the stripping tool by, for example, adding a tip receiving portion to receive the tapered seat 146 and/or the distal end portion 132 of the sheath 130.
After the stripping process, the sheath 130 functions as a protective member over the optical fiber 88. In particular, as illustrated at
Turning now to
In the depicted embodiment, the fiber optic adapter 300 includes a first latch 322 and a second latch 324. The first latch 322 and the second latch 324 are accessible from the exterior 316 of the fiber optic adapter 300. The first latch 322 is adapted to releasably retain the first fiber optic connector 100. And the second latch 324 is adapted to releasably retain the second fiber optic connector 102. The first latch 322 includes a first release 326 that is accessible from the exterior 316 of the fiber optic adapter 300. Likewise, the second latch 324 includes a second release 328 that is accessible from the exterior 316 of the fiber optic adapter 300. By actuating the first release 326, the first fiber optic connector 100 can be released from the fiber optic adapter 300. Likewise, by actuating the second release 328, the second fiber optic connector 102 can be released from the fiber optic adapter 300. The first release 326 corresponds with the first port 312, and the second release 328 corresponds with the second port 314.
The fiber optic adapter 300 includes a keying feature 332 and a keying feature 334. The keying features 332, 334 ensure a proper orientation of the fiber optic adapter 300 when it is installed. The keying features 332, 334 are oriented such that installation of the fiber optic adapter 300 results in an orientation of the fiber optic adapter 300 that is predetermined. In the depicted embodiment, the keying feature 332 and the keying feature 334 are rotated from each other by 180 degrees about an axis A1 (see
In the depicted embodiment, the fiber optic adapter 300 includes the housing 310 that is constructed of a first housing half-piece 340 and a second housing half-piece 342. In the depicted embodiment, the first housing half-piece 340 and the second housing half-piece 342 are identical housing half-pieces 340. In the depicted embodiment, the housing half-piece 340 is a one-piece half-piece (e.g. a unitary half-piece, a monolithic half-piece, etc.). The first housing half-piece 340 extends between a first end 344 and a second end 346. The housing half-piece 340 includes a joining interface 348. The joining interface 348 allows the joining of the first housing half-piece 340 to the second housing half-piece 342. In certain embodiments, an adhesive (e.g., a glue, a bonding agent, etc.) is applied at the joining interface 348 to join the first housing half-piece 340 to the second housing half-piece 342. In other embodiments, one or more fasteners may join the first housing half-piece 340 to the second housing half-piece 342. As the second housing half-piece 342 is identical to the first housing half-piece 340, the second housing half-piece 342 also includes the first end 344 and the second end 346. When connected together, the first end 344 of the first housing half-piece 340 corresponds to the second end 346 of the second housing half-piece 342. Likewise, the second end 346 of the first housing half-piece 340 corresponds with the first end 344 of the second housing half-piece 342. As depicted, the joining interface 348 includes a joining plane 350, a plurality of pins 352, and a plurality of pin holes 354. As illustrated at
The housing half-piece 340 includes a first latch 356 and a second latch 358. Likewise, the second housing half-piece 342 includes the first latch 356 and the second latch 358. When the housing half-pieces 340, 342 are joined into the housing 310, the first latch 356 of the first housing half-piece works in conjunction with the second latch 358 of the second housing half-piece 342 to form the first latch 322. Likewise, the second latch 358 of the first housing half-piece 340 works in conjunction with the first latch 356 of the second housing half-piece 342 to form the second latch 324. The first latch 356 includes a first release surface 398, and the second latch 358 includes a second release surface 400 (see
The first housing half-piece 340 and the second housing half-piece 342 each include a first half port 360 and a second half port 362. When assembled together, the first housing half-piece 340 and the second housing half-piece 342 form the first port 312 from the first half port 360 of the first housing half-piece 340 and the second half port 362 of the second half-piece 342. Likewise, the second port 314 is formed of the second half port 362 of the first housing half-piece 340 and the first half port 360 of the second half-piece 342.
The housing half-piece 340 includes a half flange 364. The half flange 364 of the half-pieces 340, 342 form the mounting flange 308 of the fiber optic adapter 300.
The housing half-piece 340 includes an exterior 366. The housing half-piece 340 also includes an interior 368. A first cut 370, a second cut 372, a third cut 374, and a fourth cut 376 extend between the exterior 366 and the interior 368. The first latch 356 is formed, in part, by the first cut 370 and the second cut 372, and the second latch 358 is formed, in part, by the third cut 374 and the fourth cut 376. A first flexure 378 and a second flexure 380 are formed, in part, by the first cut 370 and the second cut 372. Likewise, a third flexure 382 and a fourth flexure 384 are formed by the third cut 374 and the fourth cut 376. The flexures 378, 380, 382, and 384 are resilient flexures. The flexures 378, 380 allow the first latch 356 to move (e.g., rotate) relative to the remaining portions of the housing half-piece 340. Likewise, the flexures 382, 384 allow the second latch 358 to move (e.g., rotate) relative to the remaining portions of the housing half-piece 340. The flexures 378, 380 bias the first latch 356 toward a latching configuration (illustrated at
As illustrated at
When it is desired to remove the fiber optic connectors 100 and/or 102 from the fiber optic adapter 300, the release surfaces 398, 400 are pressed inwardly toward each other, as illustrated at
As previously mentioned, the fiber optic adapter 300 includes the keying feature 332 and the keying feature 334. The housing half-piece 340 includes an exterior keying feature 402. As the first housing half-piece 340 and the second housing half-piece 342 are the same housing half-piece 340, the second housing half-piece 342 also includes the exterior keying feature 402. When the half-pieces 340, 342 are assembled to form the housing 310, the exterior keying feature 402 of the first housing half-piece 340 forms the keying feature 334. Likewise, the keying feature 402 of the second housing half-piece 342 forms the keying feature 332 (see
As illustrated at
As the first housing half-piece 340 and the second housing half-piece 342 have orientations that are rotated from each other by 180 degrees about the axis A1 (see
The housing half-piece 340 includes a first receiving channel 416 (see
Turning now to
The alignment sleeve assembly 450 includes a first sleeve 480, a second sleeve 482, and a fiber alignment assembly 510 (see
When the first sleeve 480 and the second sleeve 482 are assembled to form the alignment sleeve assembly 450, the inner ends 486 of the first sleeve 480 and the second sleeve 482 abut and seal against each other. The flange portion 496 of the first sleeve 480 and the second sleeve 482 thereby form the flange 456 of the alignment sleeve assembly 450. The first sleeve 480 and the second sleeve 482 have orientations that are rotated from each other by 180 degrees about the axis A1 (see
The first keying feature 488 of the first sleeve 480 forms the first keying surface 460 of the alignment sleeve assembly 450. The second keying feature 490 of the first sleeve 480 forms the second keying surface 462 of the alignment sleeve assembly 450. The second keying feature 490 of the second sleeve 482 forms the third keying surface 464 of the alignment sleeve assembly 450. And, the first keying feature 488 of the second sleeve 482 forms the fourth keying surface 468 of the alignment sleeve assembly 450. When the alignment sleeve assembly 450 is assembled into the fiber optic adapter 300, the first keying surface 460 is adjacent the third interior keying feature 408 of the second housing half-piece 342, the fourth keying surface 468 is adjacent the third interior keying feature 408 of the first housing half-piece 340, the second keying surface 462 is adjacent the fourth interior keying feature 410 of the second housing half-piece 342, and the third keying surface 464 is adjacent the fourth interior keying feature 410 of the first housing half-piece 340.
In the depicted embodiment, the alignment sleeve assembly 450 has the same form, fit, and function when it is rotated about the axis A1 by 180 degrees. Therefore, the first and the fourth keying surfaces 460, 468 may be swapped when installing the alignment sleeve assembly 450 in the fiber optic adapter 300. When the first and the fourth keying surfaces 460, 468 are swapped, the second and the third keying surfaces 462, 464 are also swapped. In other embodiments, the keying surfaces 460, 468 and 462, 464 cannot be swapped, and the alignment sleeve assembly 450 assembles into the fiber optic adapter 300 in a unique orientation.
The tubular portions 494 of the first sleeve 480 and the second sleeve 482 fit within and between the central sleeve portions 424, 434 of the housing half-pieces 340, 342 when the alignment sleeve assembly 450 is assembled in the fiber optic adapter 300. Likewise, the flange portions 496 of the first sleeve 480 and the second sleeve 482 fit within the half pockets 436 of the housing half-pieces 340, 342. The alignment sleeve assembly 450 is thereby retained within the fiber optic adapter 300. In the depicted embodiment, the central sleeve portions 424 and 434 have an interior cross-sectional shape similar to an interior cross-sectional shape of the central connector portions 422 and 432, respectively. In the depicted embodiment, the tubular portion 494 has an exterior cross-sectional shape similar to an exterior cross-sectional shape of the housing 110 of the fiber optic connector 100. A portion of the housing 110, that includes the distal end portion 112, fits within and between the central connector portions 422, 432 when the fiber optic connector 100 is installed into the fiber optic adapter 300. The fit of the portion of the housing 110 between the central connector portions 422 and 432 is similar to or the same as the fit of the tubular portion 494 between the central sleeve portions 424 and 434. In the depicted embodiment, the central connector portions 422 and 432 are continuous with the central sleeve portions 424 and 434, respectively.
As illustrated at
Turning now to
The gel block 540 extends between a first end 544 and a second end 546. The gel block 540 includes a ridge 548 that extends between the first end 544 and the second end 546. The ridge 548 includes a ridge radius 550. As illustrated at
The gel block 540 may be made of a thixotropic material. Example materials included in the gel block 540 may be silicones, urethanes, and/or Kratons (e.g., Krayton® D, Kraton® D (SBS) with styrene and butadiene, Kraton® D (SIS) with styrene and isoprene, Kraton® FG, Kraton® FG with maleic anhydride grafted onto the rubber midblock, Krayton® G, Kraton® G (SEBS, SEPS) with styrene-ethylene/butylene-styrene and/or styrene-ethylene/propylene-styrene, Kraton® IR isoprene rubbers, Kraton® IR Latex polyisoprene latex, Kraton® styrenic block copolymers (SBC), Kraton® triblock polymer, and/or oil gels based on Kraton® polymers). Kratons are marketed by Kraton Polymers U.S. LLC of Houston, Tex. USA. Other example materials included in the gel block 540 may be diblock polymer, polyisoprene, rubbery gels, thermoplastic gels, thermoset gels, thixotropic gels, and/or thixotropic grease. The gel block 540 may be formulated to be tacky, semi-tacky, or non-tacky. The gel block 540 is made of easily deformable material. Other example materials included in the gel block 540 may include siloxanes and/or organosilicon compounds. The gel block 540 may include, but is not limited to including, any of the materials mentioned in this paragraph.
As depicted at
As illustrated at
At an intermediate portion 518 of the fiber alignment assembly 510, the first V-block 520 overlaps with the second V-block 522 and thereby forms an intermediate portion 564 of the passage 516. The intermediate portion 564 of the passage 516 may be sealed by the gel blocks 540, 542 with and/or without one and/or both of the optical fibers 88 present in the passage 516. In the depicted embodiment, the first end 524 and the second end 526 of the V-blocks 520, 522 can be swapped (i.e., interchanged). In the depicted embodiment, the first end 544 and the second end 546 of the gel blocks 540, 542 can be swapped (i.e., interchanged).
At the intermediate portion 564, the passage 516 is formed between the first V-grooves 528 of the V-blocks 520 and 522 (see
An example will now be given on how to connect the first fiber optic cable 82, 82′ to the second fiber optic cable 92, 92′ using the fiber optic connection system 80. The steps given do not necessarily need to be performed in sequence. A first step may include preassembling the fiber optic connectors 100 and 102, as shown at
Turning now to
The end 98 is further inserted through the sleeve 210 and/or into the center of the helical coil 176 of the spring 170. The end 98 of the optical fiber 88 is further inserted into the sheath 130. In particular, the end 98 is inserted into the funnel 138. As the funnel 138 is conically shaped and/or taper shaped, the funnel 138 guides the end 98 into the passage 136 of the sheath 130. The end 98 is further inserted to the distal end portion 132 of the sheath 130. The end 98 may protrude slightly past the distal end portion 132 of the sheath 130 (e.g., to provide the polishing allowance) with the sheath 130 in the extended configuration 162. The fiber optic connector 100, with the fiber optic cable 82, 82′ inserted, is then inserted into a crimping tool.
An example crimping tool 700 is illustrated at
Upon closing the crimping tool 700 to the closed configuration 710, the housing 110 is captured and located in and between the first and the second pockets 722, 724. The chamfers 726 allow the housing 110 to be installed more easily and/or act as a guide when the housing 110 is installed. The chamfers 726 may also accommodate slight misalignments between the first and the second pockets 722, 724. The first pocket 722 includes and extends between a first end 732 and a second end 742. Likewise, the second pocket 724 includes and extends between a first end 734 and a second end 744 (see
Upon the fiber optic connector 100 being installed into the first pocket 722, the fiber optic cable 82, 82′ is slid toward the distal end portion 104 of the fiber optic connector 100 (i.e., in a distal direction), if necessary. The sliding of the fiber optic cable 82, 82′ continues until the end 98 of the optical fiber 88 abuts a stop 756 of the crimping tool 700 (see
By closing the crimping tool 700, the crimp anvils 712 and 714 crimp the crimping portion 200 of the plug 180. By crimping the crimping portion 200 of the plug 180, the optical fiber 88 is longitudinally fixed with respect to the housing 110. Upon crimping the fiber optic connector 100 to the fiber optic cable 82, 82′, the crimping tool 700 may be returned to the open configuration 708. The fiber optic connector 100 may thereafter be removed from the crimping tool 700.
Upon the fiber optic cable 82, 82′ being crimped to the fiber optic connector 100, the fiber optic connector 100 may be placed (e.g., inserted) into a polishing tool. An example polishing tool 800 is illustrated at
The polishing tool 800 also includes a holder 820. The holder 820 includes a base 822. The base 822 interfaces with the abrasive side 812 of the polishing paper 810. The holder 820 also includes a protrusion 824. The protrusion 824 may be used to hold the holder 820. The holder 820 holds the fiber optic connector 100. In particular, the holder 820 includes a connector holder 830. The connector holder 830 includes a pocket 842 that extends between a first end 844 and a second 846. The proximal end portion 114 of the housing 110 abuts the second end 846 of the pocket 842, and/or the distal end portion 112 of the housing 110 abuts the first end 844 of the pocket 842. The housing 110 is thereby accurately located with respect to the holder 820 by a locating feature of the holder 820. As the fiber optic cable 82, 82′ is crimped and joined to the housing 110 by the plug 180, the optical fiber 88 is also accurately located with respect to the holder 820.
Upon the insertion of the fiber optic connector 100 into the polishing tool 800 (e.g., the holder 820), the tapered seat 146 of the radial compression feature 140 of the sheath 130 activates the radial compression feature 140. In particular, as depicted, the tapered seat 146 presses into a tapered seat 834 of the holder 820. Upon the tapered seat 146 being activated by the tapered seat 834, the end 98 of the optical fiber 88 is firmly supported by the sheath 130 via the radial compression feature 140 which, in turn, is firmly supported by the holder 820. A bore 838 and a channel 840 of the holder 820 are adapted to hold the remaining portions of the sheath 130 (see
To allow easy installation of the fiber optic connector 100 into the holder 820, a cut-out 826 is formed through a portion of the protrusion 824 and a portion of the base 822. The cut-out 826 reduces the pocket 842 to about half of the size of the housing 110. The fiber optic cable 82, 82′ may extend through a cable passage 848 of the holder 820 when the fiber optic connector 100 is positioned within the holder 820.
The holder 820 defines a polishing plane 860 at a bottom 852 of the base 822. As illustrated at
Torque that is generated on the distal end portion 132 of the sheath 130 and/or the end 98 of the optical fiber 88 by the polishing motion may be reacted through and/or transferred to the tapered seat 146 and further transferred to the tapered seat 834. The torque therefore does not affect the orientation of the polished end 98′ as the torque is reacted by a torque holding device (e.g., the pair of the tapered seats 146, 834).
As the polishing and repeated polishings occur, the bottom 852 of the base 822 will experience wear from the polishing paper 810. Any wear of the bottom 852 will affect the locational accuracy of the position of the polished end 98′ relative to the housing 110. A relief pocket 828 and/or a relief groove 850 at the bottom 852 can serve as wear indicators. For example, a surface texture may be applied to the relief pocket 828 and/or the relief groove 850. Upon the surface texture changing from direct exposure to the polishing paper 810, the wear limit has been reached, and the holder 820 is due for replacement and/or overhaul.
The holder 820 holds the fiber optic connector 100 at the angle α with respect to the polishing plane 860. Upon the polishing being completed, the angle α is imparted to the polished end 98′ of the optical fiber 88. Upon the polishing being completed, the fiber optic connector 100 and the attached fiber optic cable 82, 82′ may be removed from the holder 820. The fiber optic connector 100 and the fiber optic connector 102, upon being similarly polished and prepared, are ready for connection to the fiber optic adapter 300, and thereby connection to each other.
Turning again to
The fiber optic connectors 100, 102 individually move the corresponding latches 322, 324 of the fiber optic adapter 300 as the fiber optic connectors 100, 102 are inserted into the ports 312, 314 (see
Upon the fiber optic connectors 100, 102 being fully inserted into the fiber optic adapter 300, the corresponding latches 322, 324 retain the fiber optic connectors 100, 102 by latching to the housing 110. In the depicted embodiment, the latches 322, 324 latch onto the proximal end portion 114 of the housing 110, as shown at
As the fiber optic connectors 100, 102 are fully inserted, the optical fibers 88 extend into the alignment sleeve assembly 450. In certain embodiments, the optical fibers 88 each individually extend into the alignment sleeve assembly 450 by a distance equal to or about equal to the distance D1 (see
As the polished end 98′ extends through the passage 516, adjacent the gel blocks 540 or 542 (i.e., the gel-backed portions 560 or 562), the gel block 540 or 542 deforms out of the way thereby opening the passage 516 to the optical fiber 88. In addition, the gel block 540 or 542 cleans the polished end 98′ of the optical fiber 88. Contaminants that may have been present on the polished end 98′ or other portions of the optical fiber 88 are wiped away by the gel block 540 or 542. The angle α angles the polished end 98′ of the optical fiber 88 toward the gel block 540 or 542. The cleaning action of the gel block 540 or 542 may be enhanced by the angle α and/or its orientation with respect to the gel block 540. The angle α at the polished end 98′ prevents a stagnation region from forming at the polished end 98′. If any of the contaminants were located in such a stagnation region, flow of gel of the gel block 540 or 542 may have difficulty removing the contaminants from the stagnation region. In contrast, the flow of the gel of the gel block 540 or 542 carries any contamination away from the angled polished end 98′.
Further insertion of the polished end 98′ into the fiber alignment assembly 510 results in the polished end 98′ entering the intermediate portion 564 of the passage 516 (i.e., the portion between the first V-block 520 and the second V-block 522). In the intermediate portion 564 of the passage 516, the V-groove 528 of the V-block 520 and the V-groove 528 of the V-block 522 retain the optical fiber 88 in a radial direction and thereby locate the optical fiber 88. In the depicted embodiment, a slight clearance exists (e.g., about 1 μm) between the intermediate portion 564 of the passage 516 and the optical fiber 88.
Upon each of the fiber optic connectors 100, 102 being fully inserted, the polished ends 98′ meet near or at a center of the fiber alignment assembly 510 (as shown at
The optical fiber 88 and/or the fiber optic cable 82, 82′ may buckle or slightly buckle between the polished end 98′ and the compression portion 190 of the plug 180 to accommodate slight variations in length (e.g., manufacturing tolerances, polishing tolerances, thermal expansion, etc.).
Upon release of the fiber optic connectors 100, 102 from the fiber optic adapter 300, the spring 170 of the fiber optic connectors 100, 102 may assist in ejecting the fiber optic connectors 100, 102 from the fiber optic adapter 300.
As described above, the fiber optic adapter 300 and the fiber optic connectors 100, 102 assemble to each other in pre-determined orientations. In particular, as illustrated at
As described above, the fiber optic adapter 300 also includes features that prohibit improper assembly of the fiber optic adapter 300. In particular, assembly features of the fiber optic adapter 300 only allow the fiber optic adapter 300 to be assembled in a predetermined configuration/orientation. For example, fastening features (i.e., the pins 352 and the pin holes 354) are arranged such that the first housing half-piece 340 and the second housing half-piece 342 may only be assembled together in a proper predetermined orientation. As another example, the interior keying features 408, 410 and the keying surfaces 460, 462, 464, 468 allow the alignment sleeve assembly 450 to be assembled within the fiber optic adapter 300 in only a proper predetermined orientation. Thus, by including features that prohibit improper assembly at the fiber optic adapter 300 assembly level, the fiber optic connection system 80 is made fool-resistant, more fool-proof, and/or poka-yoke and may prevent errors during the fiber optic adapter 300 assembly process. The fiber optic adapter 300 assembly process may be accomplished at the factory or may be accomplished by an installer of the fiber optic connection system 80 at various field locations.
As depicted at
An alternative alignment sleeve assembly 450′ is illustrated at
Turning now to
The alignment sleeve assembly 450′ includes a first sleeve 480′, a second sleeve 482′, and a fiber alignment assembly 510′. The first sleeve 480′ is positioned adjacent the first end 452′, and the second sleeve 482′ is positioned adjacent the second end 454′. As depicted, the first sleeve 480′ and the second sleeve 482′ are identical sleeves 480′. In other embodiments, the first sleeve 480′ may be different from the second sleeve 482′. The sleeve 480′ includes an outer end 484′ opposite from an inner end 486′. The sleeve 480′ includes a first keying feature 488′ and a second keying feature 490′. As depicted, the first keying feature 488′ and the second keying feature 490′ are the same as or similar to the first keying feature 488 and the second keying feature 490, respectively. The first keying feature 488′ forms the first keying surface 460′ and the fourth keying surface 468′ of the alignment sleeve assembly 450′. The second keying feature 490′ forms the second keying surface 462′ and the third keying surface 464′ of the alignment sleeve assembly 450′. The sleeve 480′ includes an exterior 492′. As depicted, the exterior 492′ is the same as or similar to the exterior 492. The first keying feature 488′ and the second keying feature 490′ are included on the exterior 492′. The sleeve 480′ includes a tubular portion 494′, and a flange portion 496′. In the depicted embodiment, the tubular portion 494′ is positioned adjacent the outer end 484′, and the flange portion 496′ is positioned adjacent the inner end 486′.
When the first sleeve 480′ and the second sleeve 482′ are assembled to form the alignment sleeve assembly 450′, the inner ends 486′ of the first sleeve 480′ and the second sleeve 482′ abut and seal against each other. The flange portion 496′ of the first sleeve 480′ and the second sleeve 482′ thereby form the flange 456′ of the alignment sleeve assembly 450′. The first sleeve 480′ and the second sleeve 482′ have orientations that are rotated from each other by 180 degrees, similar to the first sleeve 480 and the second sleeve 482 described above, when assembled to form the alignment sleeve assembly 450′. The sleeve 480′ includes an interior 498′. The interior 498′ includes a pocket portion 500′ and a funnel portion 502′. A passage 504′ extends between the outer end 484′ and the inner end 486′ of the sleeve 480′ and through the pocket portion 500′ and the funnel portion 502′.
The pocket portion 500′ includes a pocket bottom 506′. The fiber alignment assembly 510′, when assembled into the alignment sleeve assembly 450′, is positioned within the pocket portions 500′ of the first sleeve 480′ and the second sleeve 482′ and is captured between the pocket bottoms 506′ of the first sleeve 480′ and the second sleeve 482′. The fiber alignment assembly 510′, when assembled into the alignment sleeve assembly 450′, may seal against the pocket portions 500′ of the first sleeve 480′ and the second sleeve 482′ and/or may seal against the pocket bottoms 506′ of the first sleeve 480′ and the second sleeve 482′.
To ensure the proper predetermined configuration/orientation of the alignment sleeve assembly 450′, the first sleeve 480′, the second sleeve 482′, and the fiber alignment assembly 510′ include features that prohibit improper assembly of the alignment sleeve assembly 450′. As depicted, a first set and a second set of the features that prohibit the improper assembly of the alignment sleeve assembly 450′ are included. The first set or the second set alone is sufficient to prevent the improper assembly of the alignment sleeve assembly 450′.
The first set of features includes a raised portion 570 within the pocket portions 500′ and a first step 572 and a second step 574 on the fiber alignment assembly 510′. As illustrated at
The second set of features includes a fillet 580 within the pocket portions 500′ and a first chamfer 582 and a second chamfer 584 on the fiber alignment assembly 510′. As illustrated at
The first keying feature 488′ of the first sleeve 480′ forms the first keying surface 460′ of the alignment sleeve assembly 450′. The second keying feature 490′ of the first sleeve 480′ forms the second keying surface 462′ of the alignment sleeve assembly 450′. The second keying feature 490′ of the second sleeve 482′ forms the third keying surface 464′ of the alignment sleeve assembly 450′. And, the first keying feature 488′ of the second sleeve 482′ forms the fourth keying surface 468′ of the alignment sleeve assembly 450′. When the alignment sleeve assembly 450′ is assembled into the fiber optic adapter 300, the first keying surface 460′ is adjacent the third interior keying feature 408 of the second housing half-piece 342, the fourth keying surface 468′ is adjacent the third interior keying feature 408 of the first housing half-piece 340, the second keying surface 462′ is adjacent the fourth interior keying feature 410 of the second housing half-piece 342, and the third keying surface 464′ is adjacent the fourth interior keying feature 410 of the first housing half-piece 340.
In the depicted embodiment, the alignment sleeve assembly 450′ has the same form, fit, and function when it is rotated by 180 degrees, similar to the alignment sleeve assembly 450. Therefore, the first and the fourth keying surfaces 460′, 468′ may be swapped when installing the alignment sleeve assembly 450′ in the fiber optic adapter 300. When the first and the fourth keying surfaces 460′, 468′ are swapped, the second and the third keying surfaces 462′, 464′ are also swapped. In other embodiments, the keying surfaces 460′, 468′ and 462′, 464′ cannot be swapped, and the alignment sleeve assembly 450′ assembles into the fiber optic adapter 300 in a unique orientation.
The tubular portions 494′ of the first sleeve 480′ and the second sleeve 482′ fit within and between the central sleeve portions 424, 434 of the housing half-pieces 340, 342 when the alignment sleeve assembly 450′ is assembled in the fiber optic adapter 300. Likewise, the flange portions 496′ of the first sleeve 480′ and the second sleeve 482′ fit within the half pockets 436 of the housing half-pieces 340, 342. The alignment sleeve assembly 450′ is thereby retained within the fiber optic adapter 300. In the depicted embodiment, the tubular portion 494′ has an exterior cross-sectional shape similar to the exterior cross-sectional shape of the housing 110 of the fiber optic connector 100. The fit of the portion of the housing 110 between the central connector portions 422 and 432 is similar to or the same as the fit of the tubular portion 494′ between the central sleeve portions 424 and 434.
The fiber alignment assembly 510′ extends between a first end 512′ and a second end 514′. The fiber alignment assembly 510′ includes a passage 516′ (see
As depicted, the gel block 540′ is similar to the gel block 540 but has a lower profile. In particular, a back side 590 of the gel block 540′ is opposite a ridge 548 of the gel block 540′. The ridge 548 is the same on the gel blocks 540 and 540′, but the back side 590 of the gel block 540′ is spaced closer to the ridge 548 on the gel block 540′ as compared to a spacing of the back side 590 of the gel block 540 and the ridge 548 on the gel block 540. The backside 590 is adapted to fit adjacent and seal against the raised portion 570 of the pocket portion 500′.
In the embodiment depicted at
The gel blocks 540, 540′ may be made of the same or similar materials, described and listed above. The gel blocks 540, 540′ may have the same or similar sealing arrangement, described in detail above. The gel blocks 540, 540′ may wipe/clean the optical fiber 88 in the same or similar manner, as described above.
As depicted, the V-block 520′ is similar to the V-block 520 but includes a chamfer 592 (see
As depicted at
An alternative holder 820′ is illustrated at
As depicted, the fiber optic connector 100 is not compatible with the connector holder 830′ as the housing 110 of the fiber optic connector 100 would interfere with the alignment feature 870. However, as depicted at
The fiber optic connector 100′ may only be assembled to the holder 820′ in one unique orientation which is a proper predetermined orientation. In particular, the alignment feature 870 of the holder 820′ fits within the alignment feature 872 of the fiber optic connector 100′. By including features that prohibit improper assembly at the polishing process, the fiber optic connection system 80 is made fool-resistant, more fool-proof, and/or poka-yoke and may prevent errors during the polishing process. Upon assembly to the holder 820′, the holder 820′ holds and locates the fiber optic connector 100′ by holding and locating the housing 110′. The housing 110′ is held and located in the same or a similar manner as the holder 830 holds and locates the housing 110, as described above. The housing 110′ is thereby accurately located with respect to the holder 820′. As the fiber optic cable 82, 82′ is crimped and joined to the housing 110′ by the plug 180, the optical fiber 88 is also accurately located with respect to the holder 820′. Upon the insertion of the fiber optic connector 100′ into the holder 820′, the tapered seat 146 of the radial compression feature 140 of the sheath 130 activates the radial compression feature 140 in the same or a similar manner to the activation of the radial compression feature of the fiber optic connector 100. Upon the tapered seat 146 being activated, the end 98 of the optical fiber 88 is firmly supported by the sheath 130 via the radial compression feature 140 which, in turn, is firmly supported by the holder 820′.
Referring now to
When the first fiber optic connector 1100 and the second fiber optic connector 1102 are connected to the fiber optic adapter 1300, they are oriented 180 degrees with respect to each other about the axis A4 (see
As will be discussed in detail below, the fiber optic connection system 1080 includes aspects that are the same as or similar to SC fiber optic connection systems known in the art. In particular, a latching system 1318 includes a release sleeve 1240 and catches 1128 on the fiber optic connector 1100 and latches 1322 on the fiber optic adapter 1300 that are similar to a latching system on the SC fiber optic connection systems. Also, an exterior 1316 of the fiber optic adapter 1300 is similar to an exterior of fiber optic adapters of the SC fiber optic connection systems.
Similar to the fiber optic connection system 80, the fiber optic connection system 1080 allows either or both of the fiber optic connectors 1100, 1102 to be selectively connected and disconnected from the fiber optic adapter 1300.
By individually pulling the release sleeve 1240 of each of the fiber optic connectors 1100, 1102 further away from the fiber optic adapter 1300, the fiber optic connectors 1100, 1102 can be individually fully removed from the fiber optic adapter 1300. Upon removal of the fiber optic connector 1100, 1102 from the fiber optic adapter 1300, the release sleeve 1240 automatically returns to the non-releasing configuration as it is biased toward the non-releasing configuration (e.g., by a spring).
Similar to the fiber optic connectors 100, 102, the fiber optic connectors 1100, 1102 automatically deploy a sheath 1130 to an extended configuration when the fiber optic connectors 1100, 1102 are removed from the fiber optic adapter 1300. In the depicted embodiment, a spring 1170 biases the sheath 1130 toward the extended configuration. In particular, as illustrated at
To individually connect or reconnect either or both of the fiber optic connectors 1100, 1102 to the respective ports 1312, 1314 of the fiber optic adapter 1300, a key 1120 of the release sleeve 1240 of the fiber optic connectors 1100, 1102 is aligned with one of two slots 1402 of the fiber optic adapter 1300. The keys 1120 and the slots 1402 ensure that the fiber optic connectors 1100, 1102 are correctly oriented with respect to each other and with respect to the fiber optic adapter 1300. The keys 1120 and the slots 1402 further ensure poka-yoke assembly between the fiber optic connectors 1100, 1102 and the fiber optic adapter 1300.
Upon aligning the key 1120 and the slot 1402, a distal end portion 1104 of the fiber optic connector 1100, 1102 is inserted into the respective port 1312, 1314 of the fiber optic adapter 1300. Insertion of the distal end portion 1104 into the port 1312, 1314 causes a pair of the latches 1322 of the latching system 1318 to spread apart and allow the distal end portion 1104 to enter between the pair of the latches 1322. Insertion continues until the extended sheath 1130 contacts a fiber alignment portion 1450 of the fiber optic adapter 1300 (see
Upon full insertion of the fiber optic connector 1100, 1102 and full penetration of the end 1098 into the fiber alignment portion 1450, the end 1098 is substantially centered both in the fiber optic connector 1100, 1102 and the fiber alignment portion 1450 (see
Referring now to
As mentioned above, the fiber optic connector 1100 is similar to the fiber optic connector 100. In particular, the connector body 1110 is similar to the housing 110. The connector body 1110 includes an interior 1118 similar to the interior 118 of the housing 110 (see
As mentioned above, the fiber optic connector 1100 has similarities to an SC connector of the SC fiber optic connection system. In particular, an exterior 1116 of the connector body 1110 is similar to an exterior of an SC connector body in that it facilitates the slidable mounting of the release sleeve 1240 over the exterior 1116, and in that the exterior 1116 includes a pair of the catches 1128, mentioned above (see
The cable attachment member 1600 extends between a distal end portion 1602 and a proximal end portion 1604 and includes a pair of tabs 1606 similar to a pair of tabs of the SC connector. The connector body 1110 mounts over the distal end portion 1602 of the cable attachment member 1600, and the pair of the tabs 1606 engages a pair of slots 1129 of the connector body 1110 and thereby connects the connector body 1110 to the cable attachment member 1600.
The release sleeve 1240 is similar to a release sleeve of the SC connector. In particular, the release sleeve 1240 includes a set of releasing ramps 1242 that engages a set of releasing features 1326 of the pair of the latches 1322 of the latching system 1318 to free the pair of the catches 1128 from a pair of hooks 1325 of the latches 1322 (see
In addition to the pair of the tabs 1606, mentioned above, the cable attachment member 1600 includes a passage 1608 and a pair of openings 1610 (see
The fiber optic cables 1082 and 1092 may be the same type of fiber optic cable, or they may be different types of fiber optic cables. The fiber optic cables 1082 and 1092 may be similar to the fiber optic cables 82, 82′, 92, and/or 92′, discussed above. In
The fiber optic connector 1100, as configured at
Other components typically found on SC connectors can be included on the fiber optic connector 1100. For example, a strain-relief boot, a shrink tube, adhesive, epoxy, external clips, straps, a cap, etc. can be included on the fiber optic connector 1100.
An example assembly sequence for connectorizing the fiber optic cable 1082 with the fiber optic connector 1100 includes preparing the fiber optic cable 1082 (e.g., cutting the jacket 1109, stripping the buffer layer 1108 and/or the coating 1090, trimming the strength members 1107, etc.); pre-applying the sleeve 1650 over the fiber optic cable 1082; connecting the cable attachment member 1600 to the connector body 1110; inserting the end 1098 of the optical fiber 1088 through the passage 1608 of the cable attachment member 1600, the interior passage 216 of the sleeve 210, the interior passage 186 of the plug 180, a helical coil 1176 of the spring 1170, a passage 1136 of the sheath 1130, and/or the interior 1118 of the connector body 1110; axially locating the end 1098 of the optical fiber 1088 with respect to the connector body 1110; crimping the crimp portion 200 of the plug 180 to secure the axial location of the optical fiber 1088; positioning the strength members 1107 over the gripping portion 1620, positioning the sleeve 1650 over the gripping portion 1620 and over the strength members 1107; crimping the sleeve 1650 to the gripping portion 1620 and to the strength members 1107; installing the release sleeve 1240 over the connector body 1110; connecting the connector body 1110 to a polishing tool (e.g., a polishing tool similar to the holder 820); polishing the end 1098 of the optical fiber 1088 with a polishing tool (e.g., a polishing tool similar to the base 802); angling the end 1098 of the optical fiber 1088 with the polishing tool; and releasing the connector body 1110 from the polishing tool.
As mentioned above, the fiber optic adapter 1300 has similarities to an SC adapter of the SC fiber optic connection system. In particular, the latches 1322 of the latching system 1318, the slots 1402, a form and fit of the exterior 1316, a pair of flanges 1308, and connector guides 1330 of the fiber optic adapter 1300 are similar to and function similar to corresponding features of the SC adapter. Other SC adapter components, such as external clips, plugs, mounting features, mounting brackets, etc. can be included on the fiber optic adapter 1300.
As mentioned above, the fiber optic adapter 1300 has similarities to the fiber optic adapter 300. In particular, the fiber alignment portion 1450 is similar to the alignment sleeve assembly 450, 450′ of the fiber optic adapter 300. The fiber alignment portion 1450 includes a fiber alignment assembly 1510 similar to the fiber alignment assembly 510, 510′ (see
Referring now to
In the depicted embodiment, the fiber optic adapter 1300 includes the housing 1310 that is constructed of a first housing half-piece 1340 and a second housing half-piece 1342. In the depicted embodiment, the first housing half-piece 1340 and the second housing half-piece 1342 are identical housing half-pieces 1340. In the depicted embodiment, the housing half-piece 1340 is a one-piece half-piece (e.g. a unitary half-piece, a monolithic half-piece, etc.). The first housing half-piece 1340 extends between a first end 1344 and a second end 1346. The housing half-piece 1340 includes a joining interface 1348. The joining interface 1348 allows the joining of the first housing half-piece 1340 to the second housing half-piece 1342. In certain embodiments, an adhesive (e.g., a glue, a bonding agent, etc.) is applied at the joining interface 1348 to join the first housing half-piece 1340 to the second housing half-piece 1342. In other embodiments, one or more fasteners or latches may join the first housing half-piece 1340 to the second housing half-piece 1342. The first housing half-piece 1340 is positioned adjacent the first end 1302 and defines the first port 1312, and the second housing half piece 1342 is positioned adjacent the second end 1304 and defines the second port 1314. When the half-pieces 1340, 1342 are connected together, the first end 1344 of the first housing half-piece 1340 corresponds to the first end 1302. Likewise, the first end 1344 of the second housing half-piece 1342 corresponds with the second end 1304. When the half-pieces 1340, 1342 are connected together, they are oriented 180 degrees with respect to each other about the axis A4 (see
In the depicted embodiment, the housing half-piece 1340 includes a sleeve portion 1480 positioned adjacent the second end 1346. The sleeve portion 1480 is similar to the sleeve 480 of the alignment sleeve assembly 450 and the sleeve 480′ of the alignment sleeve assembly 450′, described in detail above. However, as depicted, the sleeve portion 1480 is integrated with the housing half-piece 1340. In other embodiments, the sleeve portion 1480 may be included on a separate part. As shown at
Turning now to
The fiber alignment assembly 1510′ includes an undulating fiber path (e.g., an undulating fiber passage). The undulating fiber path/passage does not necessarily need to be enclosed. As illustrated, the undulating fiber path may be defined by a pair of blocks 1520′, 1522′. The blocks 1520′, 1522′ may be identical to each other. The undulating fiber path may be defined by grooves (e.g., V-grooves) 1528′. The fiber passage includes an undulating portion with a first contact 1529 (see
Turning now to
The fiber optic connection system 1080′ includes proportions that are the same as or similar to the SC fiber optic connection system, known in the art of fiber optic connection systems. In particular, a fiber optic adapter 1300′ includes proportions, components, and features that are the same as or similar to an SC fiber optic adapter (see
Turning now to
The fiber optic connector 1100′ may further include a spring 1424 that biases the sheath toward the extended configuration. The spring 1424 urges the distal end of the sheath and the second end of the ferrule adaptation 1404 together. The spring 1424 also urges the shoulder 1422 of the ferrule adaptation 1404 and the shoulder 1420 of the bore 1418 together when the ferrule adaptation 1404 converts the fiber optic connector 1100′ into the SC compatible connector 1400. The ferrule adaptation 1404 may be assembled into the bore 1418 through the distal end of the housing 1416 with a snap-fit connection 1426. The snap-fit connection may include at least one resilient member 1428 at the first end 1412 of the ferrule adaptation 1404.
Various modifications and alterations of this disclosure will become apparent to those skilled in the art without departing from the scope and spirit of this disclosure, and it should be understood that the scope of this disclosure is not to be unduly limited to the illustrative embodiments set forth herein.
This application is a continuation of U.S. patent application Ser. No. 15/582,944, filed May 1, 2017, now U.S. Pat. No. 10,146,010; which is a continuation of U.S. patent application Ser. No. 14/666,026, filed Mar. 23, 2015, now U.S. Pat. No. 9,638,868; which is a divisional of U.S. patent application Ser. No. 13/607,283, filed Sep. 7, 2012, now U.S. Pat. No. 8,985,867; which claims the benefit of U.S. Provisional Patent Application Ser. No. 61/531,855, filed Sep. 7, 2011, which applications are hereby incorporated by reference in their entirety. This application is also related to U.S. Provisional Patent Application Ser. No. 61/531,836, also filed Sep. 7, 2011, and entitled OPTICAL FIBER ALIGNMENT DEVICE AND METHOD, which application is hereby incorporated by reference in its entirety. This application is also related to U.S. Provisional Patent Application Ser. No. 61/531,830, also filed Sep. 7, 2011, and entitled TOOLS AND METHODS FOR PREPARING A FERRULE-LESS OPTICAL FIBER CONNECTOR, which application is hereby incorporated by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
4045121 | Clark | Aug 1977 | A |
4102561 | Hawk et al. | Jul 1978 | A |
4218113 | Uberbacher | Aug 1980 | A |
4257674 | Griffin et al. | Mar 1981 | A |
4320938 | Gunnersen et al. | Mar 1982 | A |
4384431 | Jackson | May 1983 | A |
4411491 | Larkin et al. | Oct 1983 | A |
4657338 | Khoe et al. | Apr 1987 | A |
4708432 | Berg | Nov 1987 | A |
4929046 | Barlow | May 1990 | A |
5024363 | Suda et al. | Jun 1991 | A |
5125056 | Hughes et al. | Jun 1992 | A |
5321917 | Franklin et al. | Jun 1994 | A |
5386486 | Fan et al. | Jan 1995 | A |
5631985 | Yamada et al. | May 1997 | A |
5674114 | Miller et al. | Oct 1997 | A |
5694506 | Kobayashi et al. | Dec 1997 | A |
5732174 | Carpenter et al. | Mar 1998 | A |
5813902 | Wiegand | Sep 1998 | A |
5993071 | Hultermans | Nov 1999 | A |
6048102 | Fukushima | Apr 2000 | A |
6099392 | Wiegand et al. | Aug 2000 | A |
6275642 | Pouyez et al. | Aug 2001 | B1 |
6367986 | Inagaki et al. | Apr 2002 | B1 |
6466723 | Miyake et al. | Oct 2002 | B2 |
6491444 | Greub et al. | Dec 2002 | B1 |
6604403 | Eslambolchi et al. | Aug 2003 | B1 |
6619857 | Miyake | Sep 2003 | B2 |
6648521 | Roehrs et al. | Nov 2003 | B2 |
6678442 | Gall et al. | Jan 2004 | B2 |
6779931 | Murata et al. | Aug 2004 | B2 |
6789952 | Lancelle | Sep 2004 | B2 |
6808444 | Kuprin et al. | Oct 2004 | B1 |
6810552 | Miyake et al. | Nov 2004 | B2 |
6816662 | Doss et al. | Nov 2004 | B2 |
6918816 | Bianchi | Jul 2005 | B2 |
6951425 | Vergeest | Oct 2005 | B2 |
6986607 | Roth et al. | Jan 2006 | B2 |
7014372 | Watte et al. | Mar 2006 | B2 |
7114855 | Wittrisch | Oct 2006 | B2 |
7192194 | Giotto et al. | Mar 2007 | B2 |
7194179 | Bryant et al. | Mar 2007 | B1 |
7316513 | Dacey | Jan 2008 | B1 |
7503701 | Hiereth et al. | Mar 2009 | B2 |
7822309 | Bianchi | Oct 2010 | B2 |
7833090 | Lu | Nov 2010 | B2 |
8118494 | Larson et al. | Feb 2012 | B2 |
8402587 | Sugita et al. | Mar 2013 | B2 |
8442375 | Bylander et al. | May 2013 | B2 |
8480314 | Saito et al. | Jul 2013 | B2 |
8579518 | Isenhour et al. | Nov 2013 | B2 |
8979395 | Ott | Mar 2015 | B2 |
8985864 | Ott | Mar 2015 | B2 |
8985867 | Michael | Mar 2015 | B2 |
9028154 | Hui et al. | May 2015 | B2 |
9268102 | Daems et al. | Feb 2016 | B2 |
9638868 | Ott | May 2017 | B2 |
10146010 | Ott | Dec 2018 | B2 |
20030128964 | Sommer et al. | Jul 2003 | A1 |
20030202752 | Gall et al. | Oct 2003 | A1 |
20030205562 | Vergeest et al. | Nov 2003 | A1 |
20040057676 | Doss et al. | Mar 2004 | A1 |
20050117851 | Takeda et al. | Jun 2005 | A1 |
20050207708 | Wittrisch | Sep 2005 | A1 |
20070196053 | Kewitsch | Aug 2007 | A1 |
20100098381 | Larson et al. | Apr 2010 | A1 |
20100183265 | Barnes et al. | Jul 2010 | A1 |
20100302530 | Liu et al. | Dec 2010 | A1 |
20100303434 | Liu et al. | Dec 2010 | A1 |
20100316344 | Bylander | Dec 2010 | A1 |
20110229088 | Isenhour et al. | Sep 2011 | A1 |
20110229094 | Isenhour et al. | Sep 2011 | A1 |
20110252633 | Dierks et al. | Oct 2011 | A1 |
20130156379 | Ott | Jun 2013 | A1 |
20130183001 | Ott | Jul 2013 | A1 |
20130216186 | Ott | Aug 2013 | A1 |
20140072265 | Ott | Mar 2014 | A1 |
20140124140 | Verheyden et al. | May 2014 | A1 |
20150009320 | Klein et al. | Jan 2015 | A1 |
20150177460 | Krechting et al. | Jun 2015 | A1 |
20150253519 | Ott | Sep 2015 | A1 |
20150260925 | Ott | Sep 2015 | A1 |
20150362678 | Van Baelen et al. | Dec 2015 | A1 |
20150362681 | Watte et al. | Dec 2015 | A1 |
20150378109 | Samal et al. | Dec 2015 | A1 |
20160018604 | Gurreri et al. | Jan 2016 | A1 |
Number | Date | Country |
---|---|---|
32 08 797 | Sep 1983 | DE |
0 008 329 | Mar 1980 | EP |
0 262 770 | Apr 1988 | EP |
0 277 878 | Aug 1988 | EP |
0 928 978 | Jul 1999 | EP |
1 143 277 | Oct 2001 | EP |
2 490 053 | Aug 2012 | EP |
2 490 054 | Aug 2012 | EP |
2 490 055 | Aug 2012 | EP |
2 549 313 | Jan 2013 | EP |
2 549 314 | Jan 2013 | EP |
2 549 315 | Jan 2013 | EP |
2 070 799 | Sep 1981 | GB |
10-0493336 | Jun 2005 | KR |
WO 8300935 | Mar 1983 | WO |
WO 03029866 | Apr 2003 | WO |
WO 2012112343 | Aug 2012 | WO |
WO 2012112344 | Aug 2012 | WO |
Entry |
---|
European Search Report for Application No. 12830715.4 dated Jul. 17, 2015. |
Fiber Stripper, Tools and Consumables, http://www.go4fiber.com/spec/Fiber%20Stripper.pdf, 2 pages (Downloaded Jun. 8, 2011). |
Industrial Oil Gels, http://www.kraton.com/Applications/Coatings_and_Gels/Industrial_Oil_Gels[Jul. 26, 2011 9:35:23 AM), 1 page (Copyright 2011). |
International Search Report and Written Opinion for PCT/US2012/054274 dated Feb. 27, 2013. |
Kraton Polymers—Giving Innovators Their Edge, http://www.kratom.com [Jul. 26, 2011 9:40:47 AM], 2 pages (Copyright 2011). |
Stripping Tools, http://www.techoptics.com/pages/p102htool.html, 1 page (Downloaded Jun. 8, 2011). |
Machine Translation of EP 0 277 878 A2, 12 pages. |
3M™ Crimplok™ + Connector Singlemode SC/UPC & SC/APC 900 μm, 2 pages (Copyright 2011). |
Number | Date | Country | |
---|---|---|---|
20190179084 A1 | Jun 2019 | US |
Number | Date | Country | |
---|---|---|---|
61531855 | Sep 2011 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13607283 | Sep 2012 | US |
Child | 14666026 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15582944 | May 2017 | US |
Child | 16206085 | US | |
Parent | 14666026 | Mar 2015 | US |
Child | 15582944 | US |