Optical-fiber connector modules including shape-sensing systems and methods thereof

Information

  • Patent Grant
  • 12029498
  • Patent Number
    12,029,498
  • Date Filed
    Friday, August 7, 2020
    4 years ago
  • Date Issued
    Tuesday, July 9, 2024
    5 months ago
Abstract
Optical-fiber connector modules are disclosed. In one example, an optical-fiber connector module can include a receptacle disposed in a housing, a cable extending from the housing, and an optical fiber within at least the cable. The receptacle can be configured to accept insertion of a first plug for establishing a first optical connection between the optical-fiber connector module and an optical-fiber stylet of a medical device. The cable can include a second plug for establishing a second optical connection between the optical-fiber connector module and an optical interrogator. The optical fiber extends from the receptacle through the cable to the second plug. The optical fiber can be configured to convey input optical signals from the optical interrogator to the optical-fiber stylet and reflected optical signals from the optical-fiber stylet to the optical interrogator. Shape-sensing systems including the optical-fiber connector modules and methods of the foregoing are also disclosed.
Description
BACKGROUND

At times, a tip of a peripherally inserted central catheter (“PICC”) or central venous catheter (“CVC”) can move becoming displaced from an ideal position in a patient's superior vena cava (“SVC”). A clinician believing such a PICC or CVC has displaced typically checks for displacement by chest X-ray and replaces the PICC or CVC if necessary. Because X-rays expose patients to ionizing radiation, medical devices such as PICCs and CVCs are being developed with integrated optical-fiber stylets for clinicians to easily and safely check for displacement thereof. However, in order for the clinicians to check for displacement, the PICCs or CVCs, which are sterile as provided, need to be at least optically connected to non-sterile capital equipment without compromising sterile conditions. Therefore, there is a need for an optical-fiber connector module that allows for single-use medical devices such as the foregoing PICCs and CVCs to be at least optically connected to non-sterile capital equipment without compromising sterile conditions.


Disclosed herein are optical-fiber connector modules, shape-sensing systems including the optical-fiber connector modules, and methods thereof.


SUMMARY

Disclosed herein is an optical-fiber connector module including, in some embodiments, a housing, a receptacle disposed in the housing, a cable extending from the housing, and an optical fiber within at least the cable. The receptacle is configured to accept insertion of a first plug for establishing a first optical connection between the optical-fiber connector module and an optical-fiber stylet of a medical device. The cable includes a second plug for establishing a second optical connection between the optical-fiber connector module and an optical interrogator. The optical fiber extends from the receptacle through the cable to the second plug. The optical fiber is configured to convey input optical signals from the optical interrogator to the optical-fiber stylet and reflected optical signals from the optical-fiber stylet to the optical interrogator.


In some embodiments, the optical-fiber connector module further includes one or more sensors selected from a gyroscope, an accelerometer, and a magnetometer disposed within the housing. The one or more sensors are configured to provide sensor data for determining a reference plane for shape sensing with the optical-fiber stylet.


In some embodiments, the optical-fiber connector module further includes power and data wires extending from the one or more sensors through the cable to the second plug or a third plug. The power and data wires are configured to respectively convey power to the one or more sensors and data from the one or more sensors.


In some embodiments, the optical-fiber connection module is configured to sit within a fenestration of a surgical drape adjacent a percutaneous insertion site for a catheter.


In some embodiments, the optical-fiber connection module is amenable to high-level disinfection or sterilization.


In some embodiments, the optical-fiber connection module is configured to sit beneath a surgical drape on a patient's chest.


In some embodiments, the housing includes a loop extending from the housing, a tether point integrated into the housing, or a ball-lock-pin receiver integrated into the housing configured for attaching a neck strap to the optical-fiber connector module. The loop, the tether point, or the ball-lock-pin receiver enables the optical-fiber connector module to be secured to the patient's neck while sitting on the patient's chest.


In some embodiments, the housing includes a patient-facing surface configured to be adhered to the patient's chest. The patient-facing surface enables the optical-fiber connector module to be secured to the patient's chest while sitting on the patient's chest.


In some embodiments, the receptacle includes an optical receiver configured to accept insertion of an optical terminal of the first plug and form an optical connection when the first plug is inserted into the receptacle with the surgical drape therebetween. The receptacle and the first plug enable at least the optical connection from a sterile field to a non-sterile field.


Also disclosed herein is a shape-sensing system for medical devices including, in some embodiments, a medical device, a console, and optical-fiber connector module configured for connecting the medical device to the console. The medical device includes an integrated optical-fiber stylet having a number of fiber Bragg grating (“FBG”) sensors along a length of the optical-fiber stylet. The console includes memory and one or more processors for converting reflected optical signals from the optical-fiber stylet into shapes for the medical device for display. The optical-fiber connector module includes a receptacle disposed in a housing, a cable extending from the housing, and an optical fiber within at least the cable. The receptacle is configured to accept insertion of a first plug of the medical device for establishing a first optical connection between the optical-fiber connector module and the optical-fiber stylet. The cable includes a second plug for establishing a second optical connection between the optical-fiber connector module and an optical interrogator. The optical fiber extends from the receptacle through the cable to the second plug. The optical fiber is configured to convey input optical signals from the optical interrogator to the optical-fiber stylet and the reflected optical signals from the optical-fiber stylet to the optical interrogator.


In some embodiments, the console includes the optical interrogator.


In some embodiments, the optical interrogator is a stand-alone unit communicatively coupled to the console.


In some embodiments, the optical-fiber connector module further includes one or more sensors selected from a gyroscope, an accelerometer, and a magnetometer disposed within the housing. The one or more sensors are configured to provide sensor data to the console by way of one or more data wires for determining a reference plane for shape sensing with the optical-fiber stylet.


In some embodiments, the optical-fiber connection module is configured to sit within a fenestration of a surgical drape adjacent a percutaneous insertion site for a catheter.


In some embodiments, the optical-fiber connection module is configured to sit beneath a surgical drape on a patient's chest. The first plug of the medical device is configured for establishing the first optical connection from a sterile field including the medical device to a non-sterile field including the optical-fiber connection module.


Also disclosed herein is a method of an optical-fiber connector module including, in some embodiments, positioning the optical-fiber connector module at a patient's side or on the patient's chest; inserting a first plug of a medical device into a receptacle of the optical-fiber connector module, thereby establishing a first optical connection between the medical device and the optical-fiber connector module; and inserting a second plug of the optical-fiber connector module into a port of a console including an optical interrogator or a standalone optical interrogator, thereby establishing a second optical connection between the optical-fiber connector module and the optical interrogator.


In some embodiments, positioning the optical-fiber connector module at a patient's side includes positioning the optical-fiber connection module within a fenestration of a surgical drape.


In some embodiments, the method further includes disinfecting or sterilizing the optical-fiber connector module before positioning the optical-fiber connection module within the fenestration of the surgical drape.


In some embodiments, positioning the optical-fiber connector module on the patient's chest includes positioning the optical-fiber connection module under a surgical drape or to be under the surgical drape when the surgical drape is placed over the patient.


In some embodiments, inserting the first plug of the medical device into the receptacle of the optical-fiber connector module includes establishing the first optical connection from a sterile field including the medical device to a non-sterile field including the optical-fiber connection module.


In some embodiments, the method further includes conveying input optical signals from the optical interrogator to an optical-fiber stylet of the medical device and reflected optical signals from the optical-fiber stylet to the optical interrogator by way of an optical fiber extending from the receptacle along a cable of the optical-fiber connector module to the second plug.


These and other features of the concepts provided herein will become more apparent to those of skill in the art in view of the accompanying drawings and following description, which describe particular embodiments of such concepts in greater detail.





DRAWINGS


FIG. 1 is a block diagram of a first shape-sensing system in accordance with some embodiments.



FIG. 2 is a block diagram of a second shape-sensing system in accordance with some embodiments.



FIG. 3 illustrates the second shape-sensing system in accordance with some embodiments.



FIG. 4 illustrates a cross-section of a catheter tube of a medical device in accordance with some embodiments.



FIG. 5 illustrates a detailed section of an optical-fiber connector module in accordance with some embodiments.



FIG. 6 illustrates the second shape-sensing system with a first optical-fiber connector module in accordance with some embodiments.



FIG. 7 illustrates the second shape-sensing system with the first optical-fiber connector module within a fenestration of a surgical drape in accordance with some embodiments.



FIG. 8 illustrates the second shape-sensing system with a second optical-fiber connector module in accordance with some embodiments.



FIG. 9 illustrates the second shape-sensing system with the second optical-fiber connector module beneath a surgical drape in accordance with some embodiments.





DESCRIPTION

Before some particular embodiments are disclosed in greater detail, it should be understood that the particular embodiments disclosed herein do not limit the scope of the concepts provided herein. It should also be understood that a particular embodiment disclosed herein can have features that can be readily separated from the particular embodiment and optionally combined with or substituted for features of any of a number of other embodiments disclosed herein.


Regarding terms used herein, it should also be understood the terms are for the purpose of describing some particular embodiments, and the terms do not limit the scope of the concepts provided herein. Ordinal numbers (e.g., first, second, third, etc.) are generally used to distinguish or identify different features or steps in a group of features or steps, and do not supply a serial or numerical limitation. For example, “first,” “second,” and “third” features or steps need not necessarily appear in that order, and the particular embodiments including such features or steps need not necessarily be limited to the three features or steps. Labels such as “left,” “right,” “top,” “bottom,” “front,” “back,” and the like are used for convenience and are not intended to imply, for example, any particular fixed location, orientation, or direction. Instead, such labels are used to reflect, for example, relative location, orientation, or directions. Singular forms of “a,” “an,” and “the” include plural references unless the context clearly dictates otherwise.


With respect to “proximal,” a “proximal portion” or a “proximal end portion” of, for example, a catheter disclosed herein includes a portion of the catheter intended to be near a clinician when the catheter is used on a patient. Likewise, a “proximal length” of, for example, the catheter includes a length of the catheter intended to be near the clinician when the catheter is used on the patient. A “proximal end” of, for example, the catheter includes an end of the catheter intended to be near the clinician when the catheter is used on the patient. The proximal portion, the proximal end portion, or the proximal length of the catheter can include the proximal end of the catheter; however, the proximal portion, the proximal end portion, or the proximal length of the catheter need not include the proximal end of the catheter. That is, unless context suggests otherwise, the proximal portion, the proximal end portion, or the proximal length of the catheter is not a terminal portion or terminal length of the catheter.


With respect to “distal,” a “distal portion” or a “distal end portion” of, for example, a catheter disclosed herein includes a portion of the catheter intended to be near or in a patient when the catheter is used on the patient. Likewise, a “distal length” of, for example, the catheter includes a length of the catheter intended to be near or in the patient when the catheter is used on the patient. A “distal end” of, for example, the catheter includes an end of the catheter intended to be near or in the patient when the catheter is used on the patient. The distal portion, the distal end portion, or the distal length of the catheter can include the distal end of the catheter; however, the distal portion, the distal end portion, or the distal length of the catheter need not include the distal end of the catheter. That is, unless context suggests otherwise, the distal portion, the distal end portion, or the distal length of the catheter is not a terminal portion or terminal length of the catheter.


Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by those of ordinary skill in the art.


As set forth above, there is a need for an optical-fiber connector module that allows for single-use medical devices such as the foregoing PICCs and CVCs to be at least optically connected to non-sterile capital equipment without compromising sterile conditions. Disclosed herein are optical-fiber connector modules, shape-sensing systems including the optical-fiber connector modules, and methods thereof.


For example, an optical-fiber connector module is disclosed including, in some embodiments, a housing, a receptacle disposed in the housing, a cable extending from the housing, and an optical fiber within at least the cable. The receptacle is configured to accept insertion of a first plug for establishing a first optical connection between the optical-fiber connector module and an optical-fiber stylet of a medical device. The cable includes a second plug for establishing a second optical connection between the optical-fiber connector module and an optical interrogator. The optical fiber extends from the receptacle through the cable to the second plug. The optical fiber is configured to convey input optical signals from the optical interrogator to the optical-fiber stylet and reflected optical signals from the optical-fiber stylet to the optical interrogator.


These and other features of the optical-fiber connector modules provided herein will become more apparent with reference to the accompanying drawings and the following description, which provide particular embodiments of the optical-fiber connector modules in greater detail. For context, shape-sensing systems are described first followed by medical devices and optical-fiber connector modules of the shape-sensing systems, as well as methods of the foregoing.


Shape-Sensing Systems



FIG. 1 is a block diagram of a first shape-sensing system 100 in accordance with some embodiments. FIG. 2 is a block diagram of a second shape-sensing system 200 in accordance with some embodiments. FIG. 3 illustrates the second shape-sensing system 200 in accordance with some embodiments.


As shown, the shape-sensing system 100 or 200 includes, in some embodiments, a medical device 110, a console 130 or 230, and optical-fiber connector module 120 configured for connecting the medical device 110 to a remainder of the shape-sensing system 100 or 200 such as the console 230.


The medical device 110 includes an integrated optical-fiber stylet having a number of fiber Bragg grating (“FBG”) sensors along a length of the optical-fiber stylet for shape sensing with the shape-sensing system 100 or 200. (See integrated optical-fiber stylet 424 in FIG. 4 for an example of the integrated optical-fiber stylet of the medical device 110.)


Certain features of the medical device 110 are set forth in more detail below with respect to particular embodiments of the medical device 110 such as the PICC 310. That said, some features set forth below with respect to one or more embodiments of the medical device 110 are shared among two or more embodiments of the medical device 110. As such, “the medical device 110” is used herein to generically refer to more than one embodiment of the medical device 110 when needed for expository expediency. This is despite certain features having been described with respect to particular embodiments of the medical device 110 such as the PICC 310.


While only shown for the console 230, each console of the consoles 130 and 230 includes memory 236 and one or more processors 234 for algorithmically converting reflected optical signals from the optical-fiber stylet of the medical device 110 into displayable shapes for the medical device 110. The displayable shapes for the medical device 110 can be displayed on an integrated display screen integrated into the console 130 or 230 or a stand-alone monitor coupled to the console 130 or 230.


The shape-sensing system 100 further includes a stand-alone optical interrogator 140 communicatively coupled to the console 130, whereas the shape-sensing system 200 further includes an integrated optical interrogator 232 integrated into the console 230. The optical interrogator 140 or 233 is configured to send input optical signals into the optical-fiber stylet of the medical device 110 by way of the optical-fiber connector module 120 and receive the reflected optical signals from the optical-fiber stylet by way of the optical-fiber connector module 120.


The optical-fiber connector module 120 includes a housing 324, a cable 326 extending from the housing 324, and an optical fiber 528 within at least the cable 326. (For the optical fiber 528, see FIG. 5.) The optical-fiber connector module 120 is configured to establish a first optical connection between the optical-fiber stylet of the medical device 110 and the optical fiber 528 of the optical-fiber connector module 120. The optical-fiber connector module 120 is also configured with a plug 330 at a terminus of the cable 326 to establish a second optical connection between the optical fiber 528 of the optical-fiber connector module 120 and the optical interrogator 140 or 232. The optical fiber 528 of the optical-fiber connector module 120 is configured to convey the input optical signals from the optical interrogator 140 or 232 to the optical-fiber stylet of the medical device 110 and the reflected optical signals from the optical-fiber stylet to the optical interrogator 140 or 232.


The optical-fiber connector module 120 can further include one or more sensors 222 selected from at least a gyroscope, an accelerometer, and a magnetometer disposed within the housing 324. The one or more sensors 222 are configured to provide sensor data to the console 130 or 230 by way of one or more data wires within at least the cable 326 for determining a reference plane for shape sensing with the optical-fiber stylet of the medical device 110.


Certain features of the optical-fiber connector module 120 are set forth in more detail below with respect to particular embodiments of the optical-fiber connector module 120 such as the optical-fiber connector module 620 and 820. That said, some features set forth below with respect to one or more embodiments of the optical-fiber connector module 120 are shared among two or more embodiments of the optical-fiber connector module 120. As such, “the optical-fiber connector module 120” is used herein to generically refer to more than one embodiment of the optical-fiber connector module 120 when needed for expository expediency. This is despite certain features having been described with respect to particular embodiments of the optical-fiber connector module 120 such as the optical-fiber connector modules 620 and 820.


Medical Devices



FIG. 3 also illustrates a PICC 310 as the medical device 110 in accordance with some embodiments. FIG. 4 illustrates a cross-section of a catheter tube 312 of the PICC 310 including an integrated optical-fiber stylet 424 in accordance with some embodiments.


As shown, the PICC 310 includes the catheter tube 312, a bifurcated hub 314, two extension legs 316, and two Luer connectors 318 operably connected in the foregoing order. The catheter tube 312 includes two catheter-tube lumens 413 and the optical-fiber stylet 424 disposed in a longitudinal bead of the catheter tube 312 such as between the two catheter-tube lumens 413, as extruded. Optionally, in a same or different longitudinal bead of the catheter tube 312, the PICC 310 can further include an electrocardiogram (“ECG”) stylet. The bifurcated hub 314 has two hub lumens correspondingly fluidly connected to the two catheter-tube lumens 413. Each extension leg of the two extension legs 316 has an extension-leg lumen fluidly connected to a hub lumen of the two hub lumens. The PICC 310 further includes a stylet extension tube 320 extending from the bifurcated hub 314. The stylet extension tube 320 can be a skived portion of the catheter tube 312 including the optical-fiber stylet 424 or the skived portion of the catheter tube 312 disposed in another tube, either of which can terminate in a plug 322 for establishing an optical connection between the optical fiber 528 of the optical-fiber connector module 120 and the optical-fiber stylet 424 of the PICC 310.


While the PICC 310 is provided as a particular embodiment of the medical device 110 of the shape-sensing system 100 or 200, it should be understood that any of a number of medical devices including catheters such as a CVC can include at least an optical-fiber stylet and a stylet extension tube terminating in a plug for establishing an optical connection between the optical-fiber stylet of the medical device and the optical fiber 528 of the optical-fiber connector module 120.


Optical-Fiber Connector Modules



FIG. 6 illustrates the second shape-sensing system 200 with a first optical-fiber connector module 620 in accordance with some embodiments. FIG. 7 illustrates the second shape-sensing system 200 with the first optical-fiber connector module 620 within a fenestration 601 of a surgical drape 603 in accordance with some embodiments. FIG. 8 illustrates the second shape-sensing system 200 with a second optical-fiber connector module 820 in accordance with some embodiments. FIG. 9 illustrates the second shape-sensing system 200 with the second optical-fiber connector module 820 beneath the surgical drape 603 in accordance with some embodiments. FIG. 5 illustrates a detailed section of the optical-fiber connector module 120 in accordance with some embodiments thereof such as the first optical-fiber connector module 620 or the second optical-fiber connector module 820.


As shown, the optical-fiber connector module 620 or 820 includes the housing 324, a receptacle 532 disposed in the housing 324, the cable 326 extending from the housing 324, and an optical fiber 528 within at least the cable 326.


The receptacle 532 includes an optical receiver configured to accept insertion of an optical terminal of a plug of the medical device 110 (e.g., the plug 322 of the PICC 310) for establishing an optical connection between the optical-fiber connector module 620 or 820 and the optical-fiber stylet of the medical device 110 (e.g., the optical-fiber stylet 424 of the PICC 310) when the plug is inserted into the receptacle 532.


The cable 326 includes the plug 330 for establishing an optical connection between the optical-fiber connector module 620 or 820 and the optical interrogator 232 of the console 230.


The optical fiber 528 extends from the receptacle 532 through the cable 326 to the plug 330. The optical fiber 528 is configured to convey the input optical signals from the optical interrogator 232 to the optical-fiber stylet of the medical device 110 (e.g., the optical-fiber stylet 424 of the PICC 310) and the reflected optical signals from the optical-fiber stylet to the optical interrogator 232.


As set forth above, the optical-fiber connector module 620 or 820 can further include the one or more sensors 222 selected from the gyroscope, the accelerometer, and the magnetometer disposed within the housing 324. The one or more sensors 222 are configured to provide sensor data for determining a reference plane for shape sensing with the optical-fiber stylet of the medical device 110 (e.g., the optical-fiber stylet 424 of the PICC 310).


While not shown, the optical-fiber connector module 620 or 820 can further include power and data wires extending from the one or more sensors 222 through the cable 326 to the plug 330 or another plug. The power and data wires are configured to respectively convey power to the one or more sensors 122 and data from the one or more sensors 122 to the console 230 when the one or more sensors 122 are present in either the optical-fiber connector module 620 or 820.


The optical-fiber connection module 620 is configured to sit within the fenestration 601 of the surgical drape 603 adjacent a percutaneous insertion site for the medical device 110 (e.g., a catheter such as the PICC 310). As the optical-fiber connection module 620 is configured to sit within the fenestration 601 of the surgical drape 603, the optical-fiber connection module 620 is amenable to disinfection or sterilization. For example, the housing 324 of the optical-fiber connection module 620 can be a non-porous or chemically resistant to oxidants. The optical-fiber connection module 620 can be configured for manual disinfection with a ChloraPrep® product by Becton, Dickinson and Company (Franklin Lakes, N.J.), or the optical-fiber connection module 620 can be configured for automatic high-level disinfection or sterilization with vaporized H2O2 by way of Trophon® by Nanosonics Inc. (Indianapolis, IN).


In contrast to the optical-fiber connection module 620, the optical-fiber connection module 820 is configured to sit beneath the surgical drape 603 on a chest of a patient P. As such, the optical-fiber connection module 820 need not require a same level of disinfection or sterilization as the optical-fiber connection module 620.


While not shown, the housing 324 the optical-fiber connection module 820 includes a loop extending from the housing 324, a tether point integrated into the housing 324, or a ball-lock-pin receiver integrated into the housing 324 configured for attaching a neck strap to the optical-fiber connector module 820. The loop, the tether point, or the ball-lock-pin receiver enables the optical-fiber connector module 820 to be secured to a neck of the patient P while sitting on the patient's chest. Additionally or alternatively, the housing 324 includes a patient-facing surface (e.g., a back of the optical-fiber connection module 820) configured to be adhered to the patient's chest. The patient-facing surface enables the optical-fiber connector module 820 to be secured to the patient's chest while sitting on the patient's chest whether or not the optical-fiber connection module 820 is also secured to the patient's neck.


Again, the receptacle 532 includes an optical receiver configured to accept insertion of an optical terminal of a plug of the medical device 110 (e.g., the plug 322 of the PICC 310) and form an optical connection when the plug is inserted into the receptacle 532; however, with the optical-fiber connector module 820, the optical connection is formed with the surgical drape 603 between the optical-fiber connector module 820 and the medical device 110. The receptacle 532 and the plug of the medical device 110 enable at least the optical connection from a sterile field (e.g., above the surgical drape 603) including the medical device 110 such as the PICC 310 to a non-sterile field (e.g., beneath the surgical drape 603) including the optical-fiber connection module 820.


Methods


A method of the optical-fiber connector module 620 or 820 includes positioning the optical-fiber connector module 620 at the patient's side or the optical-fiber connector module 820 on the patient's chest; inserting the plug of the medical device 110 (e.g., the plug 322 of the PICC 310) into the receptacle 532 of the optical-fiber connector module 620 or 820, thereby establishing a first optical connection between the medical device 110 and the optical-fiber connector module 620 or 820; and inserting the plug 330 of the optical-fiber connector module 620 or 820 into a port of the console 230 including the integrated optical interrogator 232 or the standalone optical interrogator 140, thereby establishing a second optical connection between the optical-fiber connector module 620 or 820 and the optical interrogator 140 or 232.


Positioning the optical-fiber connector module 620 at the patient's side includes positioning the optical-fiber connection module 620 within the fenestration 601 of the surgical drape 603.


With respect to at least the optical-fiber connector module 620, the method can further include disinfecting or sterilizing the optical-fiber connector module 620 before positioning the optical-fiber connection module 620 within the fenestration 601 of the surgical drape 603.


Positioning the optical-fiber connector module 820 on the patient's chest includes positioning the optical-fiber connection module 820 under the surgical drape 603. Alternatively, positioning the optical-fiber connector module 820 on the patient's chest includes positioning the optical-fiber connection module 820 to be under the surgical drape 603 when the surgical drape 603 is placed over the patient P.


Inserting the plug of the medical device 110 (e.g., the plug 322 of the PICC 310) into the receptacle 532 of the optical-fiber connector module 820 includes establishing the first optical connection from a sterile field including the medical device 110 to a non-sterile field including the optical-fiber connection module 820, thereby breaching the surgical drape 603 without compromising the sterile field.


The method can further include conveying the input optical signals from the optical interrogator 232 to the optical-fiber stylet of the medical device 110 (e.g., the optical-fiber stylet 424 of the PICC 310) and the reflected optical signals from the optical-fiber stylet to the optical interrogator 232 by way of the optical fiber 528 extending from the receptacle 532 along the cable 326 of the optical-fiber connector module 620 or 820 to the plug 330 thereof.


While the foregoing methods are described in reference to the second shape-sensing system 200 including the integrated optical interrogator 232 of the console 230, any of the foregoing methods can alternatively include the first shape-sensing system 100 including the console 130 and the stand-along optical interrogator 140.


While some particular embodiments have been disclosed herein, and while the particular embodiments have been disclosed in some detail, it is not the intention for the particular embodiments to limit the scope of the concepts provided herein. Additional adaptations and/or modifications can appear to those of ordinary skill in the art, and, in broader aspects, these adaptations and/or modifications are encompassed as well. Accordingly, departures may be made from the particular embodiments disclosed herein without departing from the scope of the concepts provided herein.

Claims
  • 1. An optical-fiber connector module, comprising: a housing;a receptacle disposed in the housing, the receptacle configured to accept insertion of a first plug for establishing a first optical connection between the optical-fiber connector module and an optical-fiber stylet of a medical device;one or more sensors selected from the group consisting of a gyroscope, an accelerometer, and a magnetometer, the one or more sensors disposed within the housing and configured to provide sensor data for determining a reference plane for shape sensing with the optical-fiber stylet;a cable extending from the housing, the cable including a second plug for establishing a second optical connection between the optical-fiber connector module and an optical interrogator; andan optical fiber extending from the receptacle through the cable to the second plug, the optical fiber configured to convey input optical signals from the optical interrogator to the optical-fiber stylet and reflected optical signals from the optical-fiber stylet to the optical interrogator,wherein the optical-fiber connector module is configured to sit on a patient's chest beneath a surgical drape, andwherein the housing includes a patient-facing surface configured to be adhered to the patient's chest, thereby enabling the optical-fiber connector module to be secured to the patient's chest while sitting on the patient's chest.
  • 2. The optical-fiber connector module of claim 1, further comprising power and data wires extending from the one or more sensors through the cable to the second plug or a third plug, the power and data wires configured to respectively convey power to the one or more sensors and data from the one or more sensors.
  • 3. The optical-fiber connector module of claim 1, wherein the optical-fiber connector module is configured to sit within a fenestration of the surgical drape adjacent a percutaneous insertion site for a catheter.
  • 4. The optical-fiber connector module of claim 3, wherein the optical-fiber connector module is amenable to high-level disinfection or sterilization.
  • 5. The optical-fiber connector module of claim 1, wherein the housing includes at least one of a loop extending from the housing, or a ball-lock-pin receiver integrated into the housing, the at least one of a loop extending from the housing, or a ball-lock-pin receiver integrated into the housing configured for attaching a neck strap to the optical-fiber connector module, thereby enabling the optical-fiber connector module to be secured to a patient's neck while sitting on the patient's chest.
  • 6. The optical-fiber connector module of claim 1, wherein the receptacle includes an optical receiver configured to accept insertion of an optical terminal of the first plug and form the first optical connection when the first plug is inserted into the receptacle with the surgical drape therebetween, thereby enabling the first optical connection to extend from a sterile field to a non-sterile field.
  • 7. A shape-sensing system for medical devices, comprising: a medical device including an integrated optical-fiber stylet having a number of fiber Bragg grating (“FBG”) sensors along a length of the integrated optical-fiber stylet;a console including memory and one or more processors for converting reflected optical signals from the integrated optical-fiber stylet into shapes for the medical device for display;an optical-fiber connector module including: a receptacle disposed in a housing, the receptacle configured to accept insertion of a first plug of the medical device for establishing a first optical connection between the optical-fiber connector module and the integrated optical-fiber stylet;one or more sensors selected from the group consisting of a gyroscope, an accelerometer, and a magnetometer, the one or more sensors disposed within the housing and configured to provide sensor data to the console by way of one or more data wires for determining a reference plane for shape sensing with the integrated optical-fiber stylet; anda cable extending from the housing, the cable including a second plug for establishing a second optical connection between the optical-fiber connector module and an optical interrogator; andan optical fiber extending from the receptacle through the cable to the second plug, the optical fiber configured to convey input optical signals from the optical interrogator to the integrated optical-fiber stylet and the reflected optical signals from the integrated optical-fiber stylet to the optical interrogator,wherein the optical-fiber connector module is configured to sit beneath a surgical drape, andwherein the housing includes a patient-facing surface configured to be adhered to a patient's chest, thereby enabling the optical-fiber connector module to be secured to the patient's chest while sitting on the patient's chest.
  • 8. The shape-sensing system of claim 7, wherein the console includes the optical interrogator.
  • 9. The shape-sensing system of claim 7, wherein the optical interrogator is a stand-alone unit communicatively coupled to the console.
  • 10. The shape-sensing system of claim 7, wherein the optical-fiber connector module is configured to sit within a fenestration of the surgical drape adjacent a percutaneous insertion site for a catheter.
  • 11. A method of using an optical-fiber connector module, comprising: positioning the optical-fiber connector module at a patient's side or on a patient's chest;inserting a first plug of a medical device into a receptacle of the optical-fiber connector module, thereby establishing a first optical connection between the medical device and the optical-fiber connector module; andinserting a second plug of the optical-fiber connector module into a port of a console including an optical interrogator or a standalone optical interrogator, thereby establishing a second optical connection between the optical-fiber connector module and the optical interrogator,wherein the optical-fiber connector module includes one or more sensors selected from the group consisting of a gyroscope, an accelerometer, and a magnetometer disposed within a housing of the optical-fiber connector module, the one or more sensors configured to provide sensor data for determining a reference plane for shape sensing with an optical-fiber stylet.
  • 12. The method of claim 11, wherein positioning the optical-fiber connector module at the patient's side includes positioning the optical-fiber connector module within a fenestration of a surgical drape.
  • 13. The method of claim 12, further comprising disinfecting or sterilizing the optical-fiber connector module before positioning the optical-fiber connector module within the fenestration of the surgical drape.
  • 14. The method of claim 11, wherein positioning the optical-fiber connector module on the patient's chest includes positioning the optical-fiber connector module under a surgical drape or to be under the surgical drape when the surgical drape is placed over a patient.
  • 15. The method of claim 14, wherein inserting the first plug of the medical device into the receptacle of the optical-fiber connector module includes establishing the first optical connection from a sterile field including the medical device to a non-sterile field including the optical-fiber connector module.
  • 16. The method of claim 11, further comprising conveying input optical signals from the optical interrogator to the optical-fiber stylet of the medical device and reflected optical signals from the optical-fiber stylet to the optical interrogator by way of an optical fiber extending from the receptacle along a cable of the optical-fiber connector module to the second plug.
PRIORITY

This application claims the benefit of priority to U.S. Provisional Application No. 62/884,602, filed Aug. 8, 2019, which is incorporated by reference in its entirety into this application.

US Referenced Citations (249)
Number Name Date Kind
2831174 Hilmo Apr 1958 A
2959766 Edwin Nov 1960 A
3329928 Broske Jul 1967 A
3532095 Miller et al. Oct 1970 A
3597582 Goode et al. Aug 1971 A
3605743 Arce Sep 1971 A
3649952 Harmon Mar 1972 A
3665372 Goode et al. May 1972 A
3673548 Mattingly, Jr. et al. Jun 1972 A
3746814 Ackey et al. Jul 1973 A
3824556 Berkovits et al. Jul 1974 A
3842394 Bolduc Oct 1974 A
4200348 Stupay Apr 1980 A
4220387 Biche et al. Sep 1980 A
4254764 Neward Mar 1981 A
4303293 Grunwald Dec 1981 A
4369794 Furler Jan 1983 A
4490003 Robinson Dec 1984 A
4614395 Peers-Trevarton Sep 1986 A
4632121 Johnson et al. Dec 1986 A
4700997 Strand Oct 1987 A
4702256 Robinson et al. Oct 1987 A
4761143 Owens et al. Aug 1988 A
4858810 Intlekofer et al. Aug 1989 A
4860742 Park et al. Aug 1989 A
4973329 Park et al. Nov 1990 A
5159861 Anderson Nov 1992 A
5178159 Christian Jan 1993 A
5217435 Kring Jun 1993 A
5325746 Anderson Jul 1994 A
5325868 Kimmelstiel Jul 1994 A
5334045 Cappa et al. Aug 1994 A
5354326 Comben et al. Oct 1994 A
5407368 Strand et al. Apr 1995 A
5423877 Mackey Jun 1995 A
5437277 Dumoulin et al. Aug 1995 A
5454739 Strand Oct 1995 A
5482038 Ruff Jan 1996 A
5489225 Julian Feb 1996 A
5501675 Erskine Mar 1996 A
5538444 Strand et al. Jul 1996 A
5560358 Arnold et al. Oct 1996 A
5591119 Adair Jan 1997 A
5624281 Christensson Apr 1997 A
5685855 Erskine Nov 1997 A
5752915 Neubauer et al. May 1998 A
5766042 Ries et al. Jun 1998 A
5769786 Wiegel Jun 1998 A
5797880 Erskine Aug 1998 A
5840024 Taniguchi et al. Nov 1998 A
5968082 Heil Oct 1999 A
5984918 Garito et al. Nov 1999 A
6050976 Thorne et al. Apr 2000 A
6090052 Akerfeldt et al. Jul 2000 A
6102044 Naidyhorski Aug 2000 A
6132368 Cooper Oct 2000 A
6140722 Ballard et al. Oct 2000 A
6162101 Fischer et al. Dec 2000 A
6319015 Faunce Nov 2001 B1
6324416 Seibert Nov 2001 B1
6330480 Van der Linden et al. Dec 2001 B1
6350160 Feuersanger et al. Feb 2002 B1
6415168 Putz Jul 2002 B1
6428336 Akerfeldt Aug 2002 B1
6546270 Goldin et al. Apr 2003 B1
6620136 Pressly, Sr. et al. Sep 2003 B1
6663570 Mott et al. Dec 2003 B2
6673078 Muncie Jan 2004 B1
6714809 Lee et al. Mar 2004 B2
6780065 Schwarz Aug 2004 B2
6799991 Williams et al. Oct 2004 B2
6913478 Lamirey Jul 2005 B2
7130699 Huff et al. Oct 2006 B2
7144378 Arnott Dec 2006 B2
7255609 Epstein Aug 2007 B1
7274956 Mott et al. Sep 2007 B2
7402083 Kast et al. Jul 2008 B2
7452360 Trudeau et al. Nov 2008 B2
7553193 Kast et al. Jun 2009 B2
7585118 Lumpkin Sep 2009 B1
7633023 Cappa et al. Dec 2009 B1
7666191 Orban, III et al. Feb 2010 B2
7753696 Hoecke et al. Jul 2010 B2
7771394 Shue et al. Aug 2010 B2
7819844 Spenser et al. Oct 2010 B2
7972282 Clark et al. Jul 2011 B2
8105338 Anderson et al. Jan 2012 B2
8147275 Drake et al. Apr 2012 B1
8206175 Boyd et al. Jun 2012 B2
8267873 Yanuma Sep 2012 B2
8388541 Messerly et al. Mar 2013 B2
8480427 Marshalok Jul 2013 B2
8548601 Chinn et al. Oct 2013 B2
8597042 King Dec 2013 B2
8603011 Landowski Dec 2013 B2
8620412 Griffiths et al. Dec 2013 B2
8639340 Sommer et al. Jan 2014 B2
8666510 Chinn et al. Mar 2014 B2
8781555 Burnside et al. Jul 2014 B2
8849382 Cox et al. Sep 2014 B2
8869887 Deere et al. Oct 2014 B2
8932258 Blanchard et al. Jan 2015 B2
8958878 Cejnar Feb 2015 B2
9059548 Stump et al. Jun 2015 B2
9095680 Steegers et al. Aug 2015 B2
9101775 Barker Aug 2015 B2
9107594 Selvitelli et al. Aug 2015 B2
9108027 Eubanks et al. Aug 2015 B2
9131956 Shaughnessy et al. Sep 2015 B2
9144395 Sela et al. Sep 2015 B2
9425537 Barker Aug 2016 B2
9456766 Cox et al. Oct 2016 B2
9492097 Wilkes et al. Nov 2016 B2
9521961 Silverstein et al. Dec 2016 B2
9526440 Burnside et al. Dec 2016 B2
9549685 Cox et al. Jan 2017 B2
9554716 Burnside et al. Jan 2017 B2
9636031 Cox May 2017 B2
9649048 Cox et al. May 2017 B2
9656093 Villarta et al. May 2017 B2
9662506 Govea May 2017 B2
9675784 Belson Jun 2017 B2
9681823 Messerly et al. Jun 2017 B2
9808647 Rhodes et al. Nov 2017 B2
9872971 Blanchard Jan 2018 B2
9919145 Bondhus et al. Mar 2018 B2
9950139 Blanchard et al. Apr 2018 B2
9999371 Messerly et al. Jun 2018 B2
10105121 Burnside et al. Oct 2018 B2
10130806 Leven et al. Nov 2018 B2
10165962 Messerly et al. Jan 2019 B2
10201713 Leven Feb 2019 B2
10231753 Burnside et al. Mar 2019 B2
10238418 Cox et al. Mar 2019 B2
10238880 Thom et al. Mar 2019 B2
10307602 Leven Jun 2019 B2
10322253 Einav et al. Jun 2019 B2
10342575 Cox et al. Jul 2019 B2
10449330 Newman et al. Oct 2019 B2
10524691 Newman et al. Jan 2020 B2
10602958 Silverstein et al. Mar 2020 B2
10751509 Misener Aug 2020 B2
10772696 Thompson et al. Sep 2020 B2
10992078 Thompson et al. Apr 2021 B2
D921884 Tran et al. Jun 2021 S
20020197905 Kaufmann et al. Dec 2002 A1
20030199827 Thorne Oct 2003 A1
20030216723 Shinmura et al. Nov 2003 A1
20040039372 Carmody Feb 2004 A1
20040146252 Healy et al. Jul 2004 A1
20050177199 Hansen et al. Aug 2005 A1
20050283216 Pyles Dec 2005 A1
20060025677 Verard et al. Feb 2006 A1
20060030864 Kennedy et al. Feb 2006 A1
20060161138 Orban et al. Jul 2006 A1
20060173407 Shaughnessy et al. Aug 2006 A1
20070062544 Rauk Bergstrom et al. Mar 2007 A1
20070118079 Moberg et al. May 2007 A1
20070160327 Lewallen et al. Jul 2007 A1
20070161969 Andersen Jul 2007 A1
20070293719 Scopton et al. Dec 2007 A1
20080009720 Schefelker et al. Jan 2008 A1
20080046062 Camps et al. Feb 2008 A1
20080236598 Gobel Oct 2008 A1
20080287876 Shue et al. Nov 2008 A1
20080304793 Benaron et al. Dec 2008 A1
20090156926 Messerly et al. Jun 2009 A1
20090234328 Cox et al. Sep 2009 A1
20100036227 Cox et al. Feb 2010 A1
20100049126 Bronfeld et al. Feb 2010 A1
20100139669 Piferi et al. Jun 2010 A1
20100204569 Burnside et al. Aug 2010 A1
20110000155 Cox et al. Jan 2011 A1
20110160824 Ware et al. Jun 2011 A1
20110166528 Millerd et al. Jul 2011 A1
20110250775 Bies et al. Oct 2011 A1
20110257503 Mehdizadeh et al. Oct 2011 A1
20110002821 Burnside et al. Nov 2011 A1
20110002951 Cox et al. Dec 2011 A1
20120071752 Sewell et al. Mar 2012 A1
20120001430 Silverstein et al. Jun 2012 A1
20120002208 Messerly et al. Aug 2012 A1
20120253320 Steegers et al. Oct 2012 A1
20130000061 Wilkes et al. Jan 2013 A1
20130023729 Vazales et al. Jan 2013 A1
20130000601 Messerly et al. Mar 2013 A1
20130095689 Hayman et al. Apr 2013 A1
20130104884 Vazales et al. May 2013 A1
20130109980 Teo May 2013 A1
20130211225 Zhang Aug 2013 A1
20130002454 Messerly et al. Sep 2013 A1
20130247921 Dye et al. Sep 2013 A1
20130289417 Grunwald et al. Oct 2013 A1
20130308137 Manzke et al. Nov 2013 A1
20130331688 Heigl et al. Dec 2013 A1
20130337674 Stump et al. Dec 2013 A1
20140000316 Newman et al. Jan 2014 A1
20140000462 Newman et al. Feb 2014 A1
20140001074 Cox et al. Apr 2014 A1
20140150782 Vazales et al. Jun 2014 A1
20140001881 Misener Jul 2014 A1
20140003034 Burnside et al. Oct 2014 A1
20150000187 Cox et al. Jan 2015 A1
20150012072 Johnson et al. Jan 2015 A1
20150031987 Pameijer et al. Jan 2015 A1
20150105654 Meyer Apr 2015 A1
20150148615 Brennan et al. May 2015 A1
20150164583 Zarins et al. Jun 2015 A1
20150177467 Gniadek et al. Jun 2015 A1
20150190615 Shaltis Jul 2015 A1
20150223897 Kostrzewski et al. Aug 2015 A1
20150002971 Cox et al. Oct 2015 A1
20150305816 Hadzic Oct 2015 A1
20160018602 Govari et al. Jan 2016 A1
20160213432 Flexman Jul 2016 A1
20170000205 Cox et al. Jan 2017 A1
20170014194 Duindam Jan 2017 A1
20170000795 Silverstein et al. Mar 2017 A1
20170000796 Burnside et al. Mar 2017 A1
20170181646 Hayes Jun 2017 A1
20170231700 Cox et al. Aug 2017 A1
20170261699 Compton et al. Sep 2017 A1
20170002810 Messerly et al. Oct 2017 A1
20170333136 Hladio et al. Nov 2017 A1
20180071509 Tran et al. Mar 2018 A1
20180110951 Beard Apr 2018 A2
20180001165 Newman et al. May 2018 A1
20180140170 Van Putten et al. May 2018 A1
20180002961 Messerly et al. Oct 2018 A1
20180289927 Messerly Oct 2018 A1
20190000698 Burnside et al. Mar 2019 A1
20190069877 Burnside et al. Mar 2019 A1
20190000991 Messerly et al. Apr 2019 A1
20190180647 Fujiki Jun 2019 A1
20190231172 Barron et al. Aug 2019 A1
20190237902 Thompson et al. Aug 2019 A1
20190350621 Zitnick et al. Nov 2019 A1
20190350663 Thompson et al. Nov 2019 A1
20200000548 Newman et al. Feb 2020 A1
20200001383 Newman et al. May 2020 A1
20200002372 Silverstein et al. Jul 2020 A1
20200221934 Van Der Mark Jul 2020 A1
20200345441 Thompson et al. Nov 2020 A1
20210030504 Thompson et al. Feb 2021 A1
20220110707 Sowards et al. Apr 2022 A1
20220110708 Misener et al. Apr 2022 A1
20220128770 Sowards et al. Apr 2022 A1
20220241044 Thompson et al. Aug 2022 A1
20230248459 Thompson et al. Aug 2023 A1
Foreign Referenced Citations (29)
Number Date Country
1318576 Jun 2003 EP
3270817 Jan 2018 EP
3673801 Jul 2020 EP
9413201 Jun 1994 WO
9619017 Jun 1996 WO
9822180 May 1998 WO
2004101068 Nov 2004 WO
2005016451 Feb 2005 WO
2005044332 May 2005 WO
2005072807 Aug 2005 WO
2005077453 Aug 2005 WO
2007058816 May 2007 WO
2007109285 Sep 2007 WO
2007149618 Dec 2007 WO
2009050599 Apr 2009 WO
2010123701 Oct 2010 WO
2011033107 Mar 2011 WO
2011082160 Jul 2011 WO
2012102745 Aug 2012 WO
2015075002 May 2015 WO
2016146993 Sep 2016 WO
2019148201 Aug 2019 WO
2019165011 Aug 2019 WO
2019221926 Nov 2019 WO
2021021408 Feb 2021 WO
2021026502 Feb 2021 WO
2022081583 Apr 2022 WO
2022081591 Apr 2022 WO
2022093991 May 2022 WO
Non-Patent Literature Citations (44)
Entry
PCT/US2019/018851 filed Feb. 20, 2019 International Preliminary Report on Patentability dated May 7, 2019.
PCT/US2020/41267 filed Jul. 8, 2020 Internation Search Report and Written Opinion dated Oct. 1, 2020.
PCT/US2020/45498 filed Aug. 7, 2020 International Search Report and Written Opinion dated Oct. 4, 2020.
U.S. Appl. No. 16/261,368, filed Jan. 29, 2019 Notice of Allowance dated Jan. 15, 2021.
U.S. Appl. No. 17/512,501, filed Oct. 27, 2021 Restriction Requirement dated Sep. 30, 2022.
U.S. Appl. No. 17/723,246, filed Apr. 18, 2022, Non-Final Office Action dated Sep. 27, 2022.
PCT/US2019/015710 filed Jan. 29, 2019 International Preliminary Report on Patentability dated Aug. 13, 2020.
PCT/US2019/015710 filed Jan. 29, 2019 International Search Report and Written Opinion dated Apr. 29, 2019.
PCT/US2019/018851 filed Feb. 20, 2019 Internation Search Report and Written Opinion dated May 7, 2019.
U.S. Appl. No. 12/426,175, filed Apr. 17, 2009 Advisory Action dated Nov. 26, 2013.
U.S. Appl. No. 12/426,175, filed Apr. 17, 2009 Decision on Appeal dated Nov. 7, 2016.
U.S. Appl. No. 12/426,175, filed Apr. 17, 2009 Examiner's Answer dated Oct. 7, 2014.
U.S. Appl. No. 12/426,175, filed Apr. 17, 2009 Final Office Action dated Aug. 2, 2013.
U.S. Appl. No. 12/426,175, filed Apr. 17, 2009 Final Office Action dated Jan. 31, 2014.
U.S. Appl. No. 12/426,175, filed Apr. 17, 2009 Non-Final Office Action dated Dec. 3, 2012.
U.S. Appl. No. 12/426,175, filed Apr. 17, 2009 Notice of Allowance dated Dec. 13, 2016.
U.S. Appl. No. 12/715,556, filed Mar. 2, 2010 Final Office Action dated Oct. 2, 2013.
U.S. Appl. No. 12/715,556, filed Mar. 2, 2010 Non-Final Office Action dated Sep. 13, 2012.
U.S. Appl. No. 15/585,051, filed May 2, 2017 Examiner's Answer dated May 2, 2019.
U.S. Appl. No. 15/585,051, filed May 2, 2017 Final Office Action dated Feb. 28, 2018.
U.S. Appl. No. 15/585,051, filed May 2, 2017 Final Office Action dated Mar. 15, 2018.
U.S. Appl. No. 15/585,051, filed May 2, 2017 Non-Final Office Action dated Jul. 14, 2017.
U.S. Appl. No. 16/261,368, filed Jan. 29, 2019 Advisory Action dated Jul. 21, 2020.
U.S. Appl. No. 16/261,368, filed Jan. 29, 2019 Non-Final Office Action dated Jan. 23, 2020.
U.S. Appl. No. 16/281,079, filed Feb. 20, 2019 Final Office Action dated Aug. 25, 2020.
U.S. Appl. No. 16/281,079, filed Feb. 20, 2019 Non-Final Office Action dated Apr. 1, 2020.
U.S. Appl. No. 16/402,074, filed May 2, 2019 Non-Final Office Action dated Apr. 16, 2020.
Design U.S. Appl. No. 29/658,136 Specification and Drawings filed Jul. 27, 2018.
“Sampling Accessories” Spectrometers Accessories Catalogue, pp. 71-102, XP055014465, retrieved from the Internet URL: http//www.mikropack.de/d/specto/pdfy-downoads/sampling accessories. pdf, Jan. 1, 2004 (Jan. 1, 2004).
PCT/US2021/054593 filed Oct. 12, 2021 International Search Report and Written Opinion dated Jan. 24, 2022.
PCT/US2021/056896 filed Oct. 27, 2021 International Search Report and Written Opinion dated Mar. 22, 2022.
U.S. Appl. No. 16/281,079, filed Feb. 20, 2019 Examiner's Answer dated Feb. 25, 2022.
PCT/US2021/054607 filed Oct. 12, 2021 Internation Search Report and Written Opinion dated Jan. 21, 2022.
U.S. Appl. No. 16/281,079, filed Feb. 20, 2019 Non-Final Office Action dated Apr. 20, 2021.
U.S. Appl. No. 16/932,425, filed Jul. 17, 2020 Non-Final Office Action dated Jun. 18, 2021.
U.S. Appl. No. 16/932,425, filed Jul. 17, 2020 Notice of Allowance dated Jan. 10, 2022.
PCT/US19/30470 filed May 2, 2019 International Search Report and Written Opinion dated Jul. 19, 2019.
U.S. Appl. No. 16/923,912, filed Jul. 8, 2020 Notice of Allowance dated Mar. 27, 2023.
U.S. Appl. No. 17/512,501, filed Oct. 27, 2021 Non-Final Office Action dated Feb. 17, 2023.
U.S. Appl. No. 17/723,246, filed Apr. 18, 2022, Notice of Allowance dated Jan. 27, 2023.
EP 20849119.1 filed Mar. 4, 2022 Extended European Search Report dated Jun. 26, 2023.
U.S. Appl. No. 16/281,079, filed Feb. 20, 2019 Board Decision dated Jun. 6, 2023.
U.S. Appl. No. 17/240,826, filed Apr. 26, 2021, Non-Final Office Action dated Jul. 19, 2023.
U.S. Appl. No. 18/235,334, filed Aug. 17, 2023, Notice of Allowance dated Apr. 4, 2024.
Related Publications (1)
Number Date Country
20210038322 A1 Feb 2021 US
Provisional Applications (1)
Number Date Country
62884602 Aug 2019 US