Optical fiber connector

Information

  • Patent Grant
  • 6312163
  • Patent Number
    6,312,163
  • Date Filed
    Tuesday, January 18, 2000
    24 years ago
  • Date Issued
    Tuesday, November 6, 2001
    22 years ago
Abstract
The optical fiber connector of the invention includes two optical fibers facing to each other, in which one optical fiber of the two has a spherical end face, when the core diameter of the optical fiber having the spherical face is given by E1, the numerical aperture thereof by NA1, the refractive index by n1, the radius of curvature of the spherical face by r, the core diameter of the other optical fiber by E2, the distance between the two optical fibers by L, the focal length f of the optical fiber is expressed by f=r/(n1−1). Further, when the beam diameter on the end face of the optical fiber is given by Es, the beam diameter Es=2·L·tan(sin−1·NA1) is deduced, and the connection efficiency η of the two optical fibers satisfies the following inequality:E2/(E1+Es)<η<(E2/(Es+(L/f−1)·E1))2≦1.0,in the focal length f≦L; orE2/(E1+Es)<η<(E2/(Es+(1−L/f)·E1))2≦1.0,in the focal length f>L.
Description




BACKGROUND OF THE INVENTION




1. Field of the Invention




The present invention relates to a connection structure for optical fibers, specifically to an optical fiber connector that makes an optical connection between two optical fibers without using a lens member.




2. Description of the Related Art




In connecting optical fibers, the most important technical task is to achieve a low transmission loss.





FIG. 14

illustrates a first conventional optical fiber connector


50


that has implemented a structure with a low transmission loss. As illustrated, the first conventional optical fiber connector


50


includes a cylindrical enclosure


53


, and a biconvex lens


54


contained in this enclosure


53


, in which one end of a first optical fiber


51


is installed in one end of the enclosure


53


, and one end of a second optical fiber


52


is installed in the other end of the enclosure


53


. Incident light from the one end face (not illustrated) of the first optical fiber


51


transmits through the first optical fiber to exit the other end face


51




a


, and, after passing through the lens


54


, the light converges on the end face


52




a


of the optical fiber


52


.





FIG. 15

illustrates a second conventional optical fiber connector


60


, which includes a first cylindrical connecting part


65


with a flange


65




a


and a second cylindrical connecting part


66


with a flange


66




a


, and a first lens


63


contained in the first connecting part


65


and a second lens


64


contained in the second connecting part


66


.




First and second disk-shaped fixing parts


67


,


68


provided with protrusions


67




a


,


68




a


having small holes in the centers thereof are mounted onto the ends of the opposite sides to the flanges


65




a


,


66




a


of the first and second connecting parts


65


,


66


. One end of each of the first optical fiber


61


and the second optical fiber


62


are guided in the center holes of the fixing parts


67


,


68


.




First and second lenses


63


,


64


are fixed inside the first and second connecting parts


65


,


66


, respectively, so that the optical axes coincide with each other; and thereafter, the first and second connecting parts


65


,


66


are attached so that the flanges


65




a


,


66




a


are engaged with each other. The first and second fixing parts


67


,


68


are fastened to the first and second connecting parts


65


,


66


with screws, etc. The first and second optical fibers


61


,


62


are stripped of the sheathing parts from the front ends thereof, and these ends


61




a


,


62




a


each are engaged in the center holes of the fixing parts


67


,


68


.




In the optical fiber connector


60


thus configured, in order to form the focuses on the end faces of the ends


61




a


,


62




a


of the first and second optical fibers


61


,


62


, for example, a light beam emitted from the end face of the end


61




a


of the first optical fiber


61


falls on the first lens


63


, and goes out as a parallel beam from the first lens


63


, and the parallel beam falls on the second lens


64


. Then, the outgoing light from the second lens


64


falls on the end face of the end


62




a


of the second optical fiber


62


.




However, in such optical fiber connectors


50


,


60


, a high positioning accuracy in the connection of the two optical fibers is required in order to transmit a stable light beam through the optical fibers. Further, in order to enhance the efficiency of optical connection through the optical elements such as the lenses and achieve a lower transmission loss than that obtained by directly connecting the optical fibers, it is necessary to fix the lenses


54


,


63


,


64


inside the enclosures


53


,


65


,


66


, align the focal positions of the lenses


54


,


63


,


64


, and adjust the positioning. Accordingly, it takes a large amount of time for the positioning adjustment.




SUMMARY OF THE INVENTION




The present invention has been made in view of these problems, and it is an object of the invention to provide an optical fiber connector that achieves a low transmission loss and a high efficiency of optical connection without requiring a lens member.




As a first means to solve at least one of the foregoing problems, the optical fiber connector of the invention includes two optical fibers facing to each other, in which one optical fiber of the two on the light emitting side has a spherical front part. In the optical fiber connector thus configured, provided that the core diameter of the optical fiber having the spherical front part is given by E1, the numerical aperture thereof by NA1, the refractive index by n1, the radius of curvature of the spherical front part by r, the core diameter of the optical fiber on the other light receiving side by E2, the distance between the two optical fibers by L, the focal length f of the optical fiber on the light emitting side is expressed by f=r/(n1−1), and provided that the beam diameter on the end face of the optical fiber on the light receiving side is given by Es, the beam diameter Es=2·L·tan(sin


−1


·NA1) is deduced, and the connection efficiency η of the two optical fibers satisfies the following inequality :






E2/(E1+Es)<η<(E2/(Es+(L/f−1)·E1))


2


≦1.0,






in the focal length f≦L; or






E2/(E1+Es)<η<(E2/(Es+(1−L/f)·E1))


2


≦1.0,






in the focal length f>L.




As a second means, the optical fiber having the spherical face is formed with at least a second radius of curvaturers, which becomes smaller than the radius of curvature r, as the radius approaches the periphery of the core from the center thereof.











BRIEF DESCRIPTION OF THE DRAWING





FIG. 1

is a typical sectional view of an optical fiber connector of the invention;





FIG. 2

is a sectional view of a plastic fiber that is attached to the connector;





FIG. 3

is a drawing in which a fiber end face of the optical fiber connector of the invention is flat;





FIG. 4

is a drawing in which the fiber end face of the optical fiber connector of the invention is flat in the multi-mode;





FIG. 5

is a drawing in which the fiber end face of the optical fiber connector of the invention is spherical;





FIG. 6

illustrates the optical fiber connector of the invention in which the fiber end face is spherical, with the divergent light of

FIG. 4

;





FIG. 7

illustrates the optical fiber connector of the invention in which the radius of curvature is different on the circumference;





FIG. 8

is a graph to illustrate the connection efficiency of the optical fiber connector of the invention;





FIG. 9

is a drawing in which the fiber end face of the optical fiber connector of the invention is flat;





FIG. 10

is a drawing in which the fiber end face of the optical fiber connector of the invention is spherical;





FIG. 11

is a typical drawing to explain the divergent beam (beam size), shown in

FIG. 9

, of the optical fiber connector of the invention;





FIG. 12

is a typical drawing in which a two-stage divergent beam (beam size), shown in

FIG. 10

, is generated in the optical fiber connector of the invention;





FIG. 13

is a typical drawing explaining the numerical aperture shown in

FIG. 12

;





FIG. 14

is a sectional view of a first conventional optical fiber connector; and





FIG. 15

is a sectional view of a second conventional optical fiber connector.











DESCRIPTION OF THE PREFERRED EMBODIMENTS




An optical fiber connector


10


as the first embodiment of this invention is provided with, as shown in

FIG. 1

, a cylindrical enclosure


11


made of a synthetic resin or a metal that does not transmit a light, cylindrical optical guide path


11




a


provided inside the enclosure


11


, a first round hole


11




b


and a second round hole


11




c


provided on opposing ends of the enclosure


11


, each connected with the optical guide path


11




a.






Plastic fibers (POF)


16


,


18


are constructed, as shown in FIG.


1


and

FIG. 2

, cores


16




a


,


18




a


made of a high purity polymethyl methacrylate (PMMA) and clading


16




b


,


18




b


that sheathe these cores


16




a


,


18




a


, which are made of a thin layer of special fluororesin. The diameters E1, E2 of the POF


16


,


18


are about 1 mm, and the front ends thereof have spherical front parts


16




c


,


18




c


that are polished to form spherical lenses with high precision.




The plastic fibers


16


,


18


contain the cores


16




a


,


18




a


whose refractive indexes n1, n2 are uniform in the radial direction, and allow long distance propagation of light while absorptions and scatterings attenuate the light gradually, which is the so-called multi-mode type (MMF).




One end of the POF


16


,


18


each are made to be detachably fit in the first and second round holes


11




b


,


11




c


of the enclosure


11


.




In this optical fiber connector


10


, as shown in

FIG. 1

, a light beam fallen on one end face (not shown) of the core


16




a


of the POF


16


propagates through the core


16




a


, and reaches the spherical front part


16




c


, the other end face. An outgoing beam from the spherical front part


16




c


transmits through the space inside the guide optical path


11




a


, and falls on the other spherical front part


18




c


of the core


18




a


of the POF


18


.




In this manner, bidirectional communication of information is made through the optical fiber connector, between a transmitting end (not illustrated) and a receiving end remotely located (not illustrated). The receiving end converts light signal into an electrical signal, thus the information can be received.




Next, in the optical fiber connector


10


, the optimization condition for connecting two optical fibers will be discussed with the following models.




Here, the POF


16


is assumed as the emitting side optical fiber, and the POF


18


as the receiving side optical fiber; and the optimization condition on the emitting side will be explained mainly with regard to the POF


16


.




Assuming that the end face of the POF


16


is flat, as shown in

FIG. 3

, light beams that fall on the one end of the POF


16


, transmit through the core


16




a


, and go out from the other end face thereof are considered to be emitted as a plurality of virtually parallel light beams, as illustrated by the principal rays (thick lines), and form focuses at different positions.




However generally, as shown in

FIG. 4

, the principal rays become divergent on the circumference of the end face of the POF


16


due to the influence of the emission mode (multi-mode).




As shown in

FIG. 4

, light beams emitted from point light sources, passing through the POF


16


, become uniform divergent beams without any changes effected on the paths, and form focuses, for example, at five different positions. Therefore, the light beams are equivalently considered as those emitted from the five different point sources. Namely, it is equivalent to the five focuses being generated, and the light beams emitted from the one end of the POF


16


become transmuted into those deteriorating the connection efficiency in practice, when falling on the one end face of the POF


18


not illustrated. As illustrated in

FIG. 4

, the exiting of the five principal rays face outer divergent directions, and increasingly deteriorate the connection efficiency.




Next, as shown in

FIG. 5

, in an optical fiber connector having the spherical front part


16




c


on the front of the POF


16


, provided that the radius of curvature is given by r, and the refractive index of the POF


16


is given by n1, the light beams form a focus f


16


at a position given by the expression of the focal length f=r/(n1−1), and also converge at the same focal length f in an annular shape; namely, they are transmuted into two kinds of lights (convergent lights and divergent lights).




The state of the light beams shown in

FIG. 5

is such that the principal rays in the thick lines are drawn toward the center of the optical axis to converge at one point by forming the flat end face of the POF


16


shown in FIG.


3


and

FIG. 4

into the spherical front parts


16




c


,


18




c


, and the divergent beams are more convergent than the state in FIG.


4


.




Further, although POF


16


,


18


have the flat end faces as shown in

FIG. 4

, in case of the optical fibers being a model multi-mode type, the principal rays become divergent on the periphery; and even though the front ends of the POF


16


,


18


are formed into the spherical front parts


16




c


,


18




c


having a specific radius of curvature r, as shown in

FIG. 6

, the principal rays on the periphery do not completely converge at one point.




Thus, in the states shown in FIG.


3


through

FIG. 6

, the take-in efficiency of the convergent and divergent lights by the receiving side fiber, namely the POF


18


, will be explained as follows, by using the relation of the beam size at the position of the POF


18


, described later, with the core diameter E2 of the POF


18


.





FIG. 8

illustrates the relation between the focal length f and the connection efficiency η of the optical fiber connector


10


of the invention, in which the horizontal axis plots samples by the characteristic four factors (core diameters E1, E2, a length L between the POF


16


and the POF


18


, and a numerical aperture NA1), and the vertical axis plots the corresponding connection efficiency η between the POF


16


and the POF


18


.




In

FIG. 8

, provided that the refractive index of the POF


16


is given by n1 and the radius of curvature of the spherical front part


16




c


is given by r, the focal length f is expressed as follows.






f=r/(n1−1)  (1)






In

FIG. 8

, the curve A illustrates a case in which the focal length f of the POF


16


is smaller than the distance L between the two optical fibers, which shows that the light receiving loss at the POF


18


being the receiving side fiber resulting from the divergent lights lowers the connection efficiency η.




The curve B illustrates a case in which the focal length f is larger than the distance L between the two optical fibers, which shows that the loss of light resulting from two stepped divergent lights lowers the connection efficiency η.




Considering that the connection efficiency η does not exceed 100%, the connection efficiency η includes the following three ranges: namely,


1


) a range in which the distance L between the optical fibers is greater than the focal length f,


2


) a range in which the distance L between the optical fibers is smaller than the focal length f,


3


) a range in which the distance L between the optical fibers is equal to, or approximate to the focal length f.




Assuming that the end faces of the POF


16


,


18


are made flat, the beam size E of a light emitted from the POF


16


at the end-face position of the POF


18


having the core diameter E2, detached by the distance L, is deduced from the area ratio as follows.






η=(E2/E)


2


  (2)






Therefore, in this optical fiber connector (having flat end faces), when the core diameter E2 of the POF


18


is sufficiently large and the beam size E is included inside the core diameter E2, the connection efficiency η becomes equal to 1.0 (100%).




In the optical fiber connector shown in

FIG. 11

, which is a typical illustration of

FIG. 9

, the beam size E, since the light beams are divergent, is given by the following expression.






E=E1+2·L·tan(sin


−1


NA1)  (3)






Provided that the beam size of a light emitted from the POF


16


at the focal length f is given by E1s, since the light beams are uniformly divergent, E1s is given by the following expression.




 E1s=2·f·tan(sin


−1


NA1)  (4)




Next, part of the optical fiber connector


10


shown in

FIG. 10

has a two-stepped divergent light beam at the focal length f as the border, since the end face of the POF


16


is made into the spherical front part


16




c


, as shown in FIG.


12


.




Therefore, the expression that defines the beam size E is obtained by the relation of the distance L between the fibers against the focal length f, as follows.




1) a range within which the distance L between the fibers is larger than the focal length f (0≦f<L):




The beam size E is given by the following expression in this range.






E=E1+L/f·(E1s−E1)  (5)






Therefore, the optical connection efficiency η is expressed by substituting the expression (5) into the expression (2).












η
=


(

E






2
/
E


)

2







=


(

E






2
/

(


E





1

+


L
/
f

·

(


E





1

s

-

E





1


)



)



)

2







=


(

E






2
/

(




(

1
-

L
/
f


)

·
E






1

+

2
·
L
·

tan


(


sin

-
1




&AutoLeftMatch;

NA





1

)


)




&AutoRightMatch;



)

2








(
6
)













This corresponds to the curve A in FIG.


8


.




2) a range within which the distance L between the fibers is smaller than the focal length f (f>L):




The beam size E is given by the following expression in this range.






E=E1s+2·(L−f)·tan(sin


−1


NA1u)  (7)






Here, NAu represents the numerical aperture of the second stepped divergent beam, as illustrated in FIG.


2


.




NAu is the sum of the numerical apertures NA by the angle a and the angle β.




As shown in

FIG. 13

, the numerical aperture by the angle α is NA1. On the other hand, the numerical aperture NA1u by the angle β is given by the following expression, using the core diameter E1 and the focal length f of the POF


16


.






sin α=NA1  (8)








sin β=ΔNA  (9)








β=tan


−1


ΔE1/2f  (10)






The numerical aperture NA1u is expanded using the angle β by using the expression (9) and the expression (10), and expressed as follows.










NA





1

u

=


NA





1

+

Δ





NA






(
11
)






=


NA





1

+

sin


(


tan

-
1



E






1
/
2


f

)







(
12
)













Therefore, the connection efficiency η is expressed as follows, by expanding to substitute the expression (7) and the expression (4) for the expression (2)












η
=


(

E






2
/
E


)

2







=


(

E






2
/

(


E





1

s

+

2
·

(

L
-
f

)

·

tan


(


sin

-
1



NA





1

u

)




)



)

2







=


(

E






2
/

(

2


f
·

tan


(


sin

-
1



NA





1

)




&AutoRightMatch;



&AutoRightMatch;

+

2



(

L
-
f

)

·


tan


(


sin

-
1




(


NA





1

+

sin


(


tan

-
1




&AutoLeftMatch;

&AutoLeftMatch;

E






1
/
2


f

)

)


)



)


)


2










=


(

E






2
/

(


2


f
·

tan


(


sin

-
1



NA





1

)




+

2



(

L
-
f

)

·

tan


(


sin

-
1




(


NA





1

+

E






1
/
2


f


)


)





)



)

2








(
13
)













This corresponds to the curve B in FIG.


8


.




Next, as shown in FIG.


8


and FIG.


11


through

FIG. 13

, when the front ends of the POF


16


,


18


are flat, the connection efficiency of the optical fiber connector


10


is obtained from the expression (3):






η=(E2/E)


2


=(E2/(E1+2L·tan(sin


−1


NA1)))


2


  (14)






Therefore, it is necessary that the connection efficiency exceeds the connection efficiency η by this expression (14).




The focal length f when the connection efficiency η is 1.0 (100%) in the curve A, B in

FIG. 8

is deduced from the expression (6) and the expression (13) as follows.






f=L·E1/(E1+E2−2·L·tan(sin


−1


NA1))  (15)








f=L·E1/(E1−E2+2·L·tan(sin


−1


NA1))  (16)






In

FIG. 8

, the intersection by the curve A and B is positioned where the focal length f is equal to L, and the following is deduced from the expression (6) and the expression (16):






η=(E2/2L·tan(sin


−1


NA1))


2


  (17)






Here, the connection efficiency η≦1.0 (100%), and η will not exceed 1.0.




In such an optical fiber connector, when the transmission loss of the optical fiber itself is considered, preferably the connection efficiency η is more than 0.5˜0.6, and most preferably, a transmission loss of about 3 dB is achieved.




Next, in the optical fiber connector


10


, the center areas of the spherical front parts


16




c


,


18




c


of the POF


16


,


18


are formed into spherical shapes a radius of curvature r, and the peripheral areas of the spherical front parts


16




c


,


18




c


are formed into spherical shapes with a radius of curvaturers which is smaller than r. Thus, the front end faces of the POF


16


,


18


are formed into a spherical shapes, which will be explained hereafter.




As shown in

FIG. 7

, in order to converge the principal rays from the peripheral areas of the spherical front parts


16




c


,


18




c


of the POF


16


,


18


into a point, the optical fiber connector


10


as another embodiment of the invention is provided with a radius of curvaturers on the peripheral areas of the cores


16




a


,


18




c


, which is smaller than the radius of curvature r provided on the center areas thereof.




Comparing the case of the radius of curvaturers provided on the peripheral areas to the case provided with the radius of curvature r only, the peripheries of the front ends of the cores are formed to curve slightly toward the insides of the cores.




To give such a shape to the peripheries will converge the light beams emitted from the peripheries of the cores


16




a


,


18




a


so as to form a focus, thereby reducing the deterioration, of the connection efficiency even more significantly, in the connection of the POF


16


,


18


.




Thus, in case of the end faces of the optical fibers being made spherical, as shown in

FIG. 8

, the relevant factors within the range shown by the slant lines will effect a satisfactory connection efficiency. Therefore, to set the values so as to satisfy the above will achieve the optical fiber connector of the invention.




As described above, the optical fiber connector of the invention includes two optical fibers facing to each other, in which one optical fiber of the two on the light emitting side has a spherical front part. In this configuration, provided that the core diameter of the optical fiber having the spherical front part is given by E1, the numerical aperture thereof by NA1, the refractive index by n1, the radius of curvature of the spherical front part by r, the core diameter of the optical fiber on the other light receiving side by E2, the distance between the two optical fibers by L, the focal length f of the optical fiber on the light emitting side is expressed by f=r/(n1−1). Further, provided that the beam diameter on the end face of the optical fiber on the light receiving side is given by Es, the beam diameter Es=2·L·tan(sin


−1


NA1) is deduced, and the connection efficiency η of the two optical fibers satisfies the following inequality:






E2/(E1+Es)<η<(E2/(Es+(L/f−1)·E1))


2


≦1.0,






in the focal length f>L; or






E2/(E1+Es)<η<(E2/(Es+(1−L/f)·E1))


2


≦1.0,






in the focal length f>L.




Thereby, the optical fiber connector of the invention is able to achieve a higher connection efficiency than the one having the end faces of the optical fibers flattened.




Further, the optical fiber having the spherical front part is formed with at least a second radius of curvaturers, which becomes smaller than the radius of curvaturer, as the radius approaches the periphery of the core from the center thereof.




Thereby, the divergent beams from the peripheral areas converge at one point more intensively, which achieves a still higher improvement of the connection efficiency.



Claims
  • 1. An optical fiber connector comprising two optical fibers facing to each other, in which one optical fiber of the two on the light emitting side has a spherical front part, when a core diameter of the optical fiber having the spherical front part is given by E1, a numerical aperture thereof by NA1, a refractive index by n1, a radius of curvature of the spherical front part by r, a core diameter of the optical fiber on the other light receiving side by E2, a distance between the two optical fibers by L, a focal length f of the optical fiber on the light emitting side is expressed by f=r/(n1−1), and when a beam diameter on an end face of the optical fiber on the light receiving side is given by Es, the beam diameter Es=2·L·tan(sin−1NA1) is deduced, and a connection efficiency η of the two optical fibers satisfies the following inequality:E2/(E1+Es)<η<(E2/(Es+(L/f−1)·E1))2≦1.0, in the focal length f≦L; orE2/(E1+Es)<η<(E2/(Es+(1−L/f)·E1))2≦1.0, in the focal length f>L.
  • 2. An optical fiber connector according to claim 1, wherein the optical fiber having the spherical front part is formed with at least a second radius of curvaturers, which becomes smaller than the radius of curvaturer, as the radius approaches the periphery of the core from the center thereof.
Priority Claims (1)
Number Date Country Kind
11-009643 Jan 1999 JP
US Referenced Citations (4)
Number Name Date Kind
4119362 Holzman Oct 1978
4925267 Plummer May 1990
5185836 Baker Feb 1993
5661832 Yonemura Aug 1997