The present invention relates to a low loss optical fiber and methods for making the same. More specifically, the invention relates to an optical fiber doped with an alkali metal oxide dopant and methods for manufacturing the optical fiber and associated preforms. The following terms as used herein have the following meanings:
The mode field diameter is a measure of optical power across the endface of a single-mode optical fiber, and is expressed as:
2ω0=(λ/π)[2∫I(Φ)sin Φ cos ΦdΦ)/∫I(Φ)sin3Φ cos ΦdΦ]1/2 (1)
where 2ω0 is the mode field diameter (and therefore ω0 is the mode field radius), λ is the mean wavelength of the light, Φ is the angle with respect to the center of the radiation pattern, and the integrations are preferably carried out from 0° to 90°. Mode field diameter may be measured, for example, according to test procedure ANSI/TIA/EIA-455-191-A-2001.
Effective area is
A
eff=2π(∫E2r dr)2/(∫E4r dr) (2)
where the integration limits are 0 to ∞, and E is the electric field associated with the propagated light.
The cabled cutoff wavelength, or “cabled cutoff is even lower than the measured fiber cutoff due to higher levels of bending and mechanical pressure in the cable environment. The actual cabled condition can be approximated by the cabled cutoff test described in the EIA-445 Fiber Optic Test Procedures, which are part of the EJA-TIA Fiber Optics Standards, that is, the Electronics Industry Alliance—Telecommunications Industry Association Fiber Optics Standards, more commonly known as FOTP's. Cabled cutoff measurement is described in EIA-455-170 Cable Cutoff Wavelength of Single-mode Fiber by Transmitted Power, or “FOTP-1 70”. As used herein cable cutoff means the value obtained using the test described in the EIA-445 Fiber Optic Test Procedures.
The pin array bend test is used to compare relative resistance of waveguide fibers to bending. To perform this test, attenuation loss is measured for a waveguide fiber with essentially no induced bending loss. The waveguide fiber is then woven about the pin array and attenuation again measured. The loss induced by bending is the difference between the two measured attenuations. The pin array is a set of ten cylindrical pins arranged in a single row and held in a fixed vertical position on a flat surface. The pin spacing is 5 mm, center to center. The pin diameter is 0.67 mm. The waveguide fiber is caused to pass on opposite sides of adjacent pins. During testing, the waveguide fiber is placed under a tension just sufficient to make the waveguide conform to a portion of the periphery of the pins.
Another bend test referenced herein is the lateral load wire mesh bend test (LLWM). In this test a prescribed length of waveguide fiber is placed between two flat plates. A #70 wire mesh is attached to one of the plates. (The market code #70 mesh is descriptive of screen made of wire having a diameter of 0.178 mm. The screen openings are squares of side length 0.185 mm.) A known length of waveguide fiber is sandwiched between the plates and a reference attenuation is measured while the plates are pressed together with a force of 30 newtons. A 70 newton force is then applied to the plates and the increase in attenuation in dB/m is measured. This increase in attenuation is the lateral load attenuation of the waveguide.
The relative refractive index, Δ, is defined by the equation Δi=(ni2−nc2)/2ni2, where ni is the maximum refractive index of the index profile segment i, and nc is the refractive index of the outer cladding layer. The relative refractive index is generally expressed as a percent and is indicated herein by the term % Δ. Unless otherwise indicated, % Δ represents the maximum relative refractive index of a particular segment of the refractive index profile relative to the refractive index of the outer cladding.
The term refractive index profile or simply index profile is the relation between % Δ and radius over a selected portion of the optical fiber, typically the core.
The term alpha profile refers to a core refractive index profile which follows the equation,
n(r)=n0(1−[r/a]α) (3)
where r is core radius, a is the last point in the profile, r is chosen to be zero at the first point of the profile, n0 is the maximum refractive index of the core region of interest, and α is an exponent which defines the core profile shape. Other common core refractive index profile shapes include a step index, a trapezoidal index and a rounded step index, in which the rounding is due to dopant diffusion in regions of rapid refractive index change.
Core refers to that portion of the optical fiber which has a generally raised index of refraction relative to the cladding, so that the transmitted optical power propagates predominately through the core. The core may be comprised of one or more segments. An individual core segment may have a refractive index greater than pure silica, equal to pure silica, or less than pure silica.
“ppm”, unless otherwise specifically noted otherwise, refers to parts per million by weight, or “ppm by weight”, or “ppm by wt.”, and a measurement in weight percent (wt %) can be converted to ppm by multiplying by a factor of 10,000.
As illustrated in
In the embodiments illustrated in
The core region comprises an alkali metal oxide selected from the group consisting of K2O, Na2O, LiO2, Rb2O, Cs2O and mixtures thereof (in this case K2O) in an average concentration in said core between about 50 and 1000 ppm by weight. The core further comprises chlorine and fluorine. Preferably, the average concentration of fluorine in said core is greater than the average amount of alkali metal oxide in said core and the average amount of chlorine in said core is greater than the average amount of alkali metal oxide in said core. The fiber also includes a fluorine doped silica-based cladding which surrounds and in some preferred embodiments is directly adjacent the core.
In some preferred embodiments, the core region comprises a first central core region (extending to about 1 micron) located along the centerline of the core which preferably contains a lower average concentration of chlorine than is contained in the outer region (i.e., extending from about 1 to about 4 microns) of the core. In particular, the average concentration of chlorine present in the central core region may be less than 100 ppm, more preferably less than 50 ppm, and the average concentration of chlorine in the second or outer core region which surrounds the first region may be greater than 500 ppm, more preferably greater than 750 ppm, even more preferably greater than 1000 ppm, and most preferably greater than 1500 ppm. The peak concentration of chlorine in the core region is preferably greater than 500 ppm, more preferably greater than 1000 ppm, and most preferably greater than 1500 ppm.
The average concentration of fluorine present in the central core region is preferably greater than 500 ppm, more preferably greater than 750 ppm, and most preferably greater than 1000 ppm, and the average concentration of fluorine in the second or outer core region which surrounds the first region is likewise preferably greater than 500 ppm, more preferably greater than 750 ppm, and most preferably greater than 1000 ppm.
The average concentration of fluorine across the entire core region is preferably greater than 500 ppm, more preferably greater than 750 ppm, and most preferably greater than 1000 ppm, and preferably less that 5000 ppm, more preferably less than 4000 ppm. In the embodiment illustrated, the peak concentration of the chlorine in said second core region is higher than the peak concentration of fluorine in said second region, although this relationship is not critical. Preferably, the average concentrations of both chlorine and fluorine in the core region are greater than about 500 ppm, more preferably greater than about 750 ppm, and most preferably greater than about 1000 ppm.
In some preferred embodiments, the optical fiber disclosed herein comprises a single core segment, namely a central core segment, and a cladding surrounding and directly adjacent the central core segment, wherein the cladding has a negative refractive index relative to pure silica, and wherein the core comprises fluorine and an alkali metal oxide selected from the group consisting of K2O, Na2O, LiO2, Rb2O, Cs2O and mixtures thereof, with a peak alkali metal oxide concentration of between 20 and 700 ppm, preferably between 50 and 500 ppm, even more preferably between 100 and 400 ppm.
The core region 14A of the fiber comprises a peak relative refractive index delta (relative to the cladding), ΔMAX, between 0.2 and 0.5%, preferably between 0.3 and 0.4%. The optical fiber comprises greater than 90 wt % SiO2, preferably greater than or equal to 95 wt % SiO2.
Examples of such fibers in accordance with the invention are set forth in Table 1, which provides the refractive index Δ0 of inner core segment 14B, the average refractive index of core segment 14 (delta average) the average refractive index Δ1 of outer core segment 14B, the outer radius of core segment 14 (radius 1), and the refractive index Δ2 and radius (radius 2) of near clad segment 16B for a variety of examples in accordance with the invention. In all of the examples, no germanium is employed in the core, and the cladding comprises fluorine doped silica. Thus, the refractive index deltas of the individual segments are taken with respect to the outer fluorine doped cladding region. Also set forth in Table 1 for each example is dispersion at 1310 nm, dispersion slope at 1310 nm, zero dispersion wavelength, dispersion at 1550 nm, dispersion slope at 1550 nm, cable cutoff wavelength, mode field diameter at 1310 nm and 1550 nm, Effective Area at 1550 nm, pin array bend loss at 1550 nm, lateral load bend loss (LLWM) at 1550 nm. Example 1 in Table 1 corresponds to the embodiment illustrated in
Preferably, both the core and the cladding of the optical fiber contain an alkali metal oxide dopant. The alkali metal oxide is preferably an oxide of K, Na, Li, Cs, or Rb, or a mixture thereof; more preferably the alkali metal oxide is K2O, Rb2O, Cs2O or mixtures thereof; and most preferably the alkali metal oxide is K2O. Preferably, the alkali metal oxide has a peak concentration in the core of the optical fiber. The alkali metal oxide concentration may vary radially across the radius of the optical fiber, and in some cases may decrease as a function of increasing radius from the centerline of the optical fiber along at least a portion of the optical fiber radius.
In the embodiments illustrated in
The fibers of the present invention preferably consist essentially of no germanium in the core thereof. Instead, the cladding of the optical fibers contain enough index of refraction reducing dopant in the cladding to form a refractive index profile such as is illustrated in
In one embodiment according to the present invention, the refractive index profile of the optical fiber such as those disclosed in
The diffusion of an alkali metal oxide may be advantageously controlled during the draw process. It has been found that by varying draw conditions in a prescribed manner, alkali metal oxide dopants may be distributed throughout the preform in a desired concentration profile. Preferably, the alkali metal oxide dopant is diffused in a relatively linear relationship with respect to radius. Because the diffusion of an alkali metal oxide dopant is partially dependent upon the temperature of the glass being doped, and the time the glass remains at the temperature, these same factors play a significant role in controlling the alkali metal oxide diffusion during the draw process. The time and the temperature to which an optical fiber preform (and the optical fiber drawn from the preform) are exposed during the draw process are controlled by varying the draw speed, the draw (furnace) temperature and optical fiber tension. For example, increasing the draw speed decreases the dwell time for a particular section of the optical fiber preform in the draw furnace, thus decreasing the distance which an alkali metal oxide dopant will diffuse across the optical fiber preform, and hence the drawn optical fiber. This may result in less alkali metal oxide diffusing into the cladding and, therefore, a higher alkali metal oxide concentration in the core of the optical fiber. Conversely, decreasing the draw speed increases the dwell time, and, therefore, may result in an decrease in the concentration of alkali metal oxide in the core of the optical fiber as the alkali metal oxide diffuses further into the cladding of the optical fiber. In a like manner increasing the furnace temperature may increase the diffusion rate of the alkali metal oxide, decreasing the concentration of alkali metal oxide. Consequently, draw speed and furnace temperature may be effectively used to control the diffusion, and thus the distribution of alkali metal oxide within the resulting optical fiber.
Illustrated in
The consolidated glass tube is then alkali doped (step 404). For example, referring to
Referring again to
The diffusion process may be followed by the step of further heating tube 106 to promote a partial collapse of tube 106 by conventional methods as are known in the art (or by the dry methods described herein) to both reduce the inside surface area through which the alkali metal oxide might be lost and to thicken the layer of glass into which the alkali metal oxide has been diffused. Once the diffusion doping step, or any partial collapse of tube 106 has been completed, the diffusion surface of the tube 122 may optionally be etched with an etchant, suitable for removing silica glass, to a depth sufficient to remove unwanted impurities that may have diffused through the diffusion surface 122 of the tube. An aqueous HF solution may be used as an etchant, for example. More preferably, a fluoride gas such as, for example, CF4, SF6, NF3, C2F6 or a mixture thereof, is employed. The amount of material removed from inner surface 122 is dependent upon processing conditions during diffusion and any partial tube collapse, but the etching conditions are preferably sufficient to result in the removal of glass from surface 122 to a depth of at least about 5 percent of the total diffusion depth of the alkali metal oxide. Once etching is finalized, silica glass tube 106 is further heated with a heat source 1240 to collapse tube 106 downstream of alkali metal oxide source compound 110 and form an alkali metal oxide-doped solid glass rod 132. Collapse of tube 106 is accomplished according to conventional methods known in the art, such as heating with a suitable heat source (e.g., a torch). The solid alkali-doped glass rod 132 is then cut from that portion of glass containing alkali metal source compound reservoir 108. Preferably, the solid alkali metal oxide-doped glass rod 132 is etched with a suitable etchant to remove some or all hydrated glass which may have been formed by the torch during collapse of the tube 106. If a dry heat source is used for collapse, for example, an induction or resistance heater, a plasma torch, or a dry heat source which uses a non-hydrogen containing fuel, such as CO, then etching may not be needed. Utilizing a dry heat source for the doping and/or collapsing steps is believed to minimize re-wetting of the outside of the tube, i.e., diffusing OH (water) into the tube from the outside and may, therefore, further reduce fiber attenuation. A dry heat source is one which does not induce any appreciable OH (water) into the tube.
It should be recognized that the alkali-doped rod 132 when collapsed preferably comprises (similar to the tube 106) concentrations of alkali metal oxide that vary radially and which are such that the portion corresponding to the inner half portion 107 has the highest peak concentration (in wt. %) of alkali dopant and the portion corresponding to the outer half portion 109 has a lower peak concentration. Most preferably, the peak concentration of alkali dopant is at the center of the rod and the concentration at half the radius is less than 50% of the peak concentration; and more preferably less than 25%.
Doped glass rod 132 may be heated in a redraw furnace 136 and drawn into a smaller diameter glass rod 144. This redraw process is illustrated in
For example, as illustrated in
Other methods for making for making fibers are disclosed in U.S. Patent Publication Number 2005/0063663, the specification of which is hereby relied upon and incorporated by reference in its entirety.
In all of the embodiments disclosed herein, the optical fiber preferably comprises a primary coating surrounding and in direct contact with the outermost diameter of the cladding, and a secondary coating surrounding and in direct contact with the primary coating.
It will be apparent to those skilled in the art that various modifications and variations may be made to the present invention without departing from the spirit and scope of the invention. Thus it is intended that the present invention cover the modifications and variations of this invention provided they come within the scope of the appended claims and their equivalents.
This application claims the benefit of priority under 35 U.S.C. § 119(e) of U.S. Provisional Application Ser. No. 60/839,743 filed on Aug. 24, 2006, and U.S. Provisional Application Ser. No. 60/849,732 filed on Oct. 5, 2006, the contents of which are relied upon and incorporated herein by reference in their entirety.
Number | Date | Country | |
---|---|---|---|
60839743 | Aug 2006 | US | |
60849732 | Oct 2006 | US |