The present invention relates to an optical fiber distribution system, including a rack, and elements which populate the rack, including fiber terminations, patching, fiber splitters, and fiber splices.
Optical fiber distribution systems include fiber terminations and other equipment which is typically rack mounted. Various concerns exist for the optical fiber distribution systems, including density, ease of use, and cable management. There is a continuing need for improvements in the optical fiber distribution area.
One implementation of a system in accordance with the examples of the disclosure includes a building block element mountable to a rack or other structure. The element includes a chassis, and a moveable tray. The tray is moveably mounted to the chassis with a slide mechanism that allows the tray to slide relative to the chassis. The slide mechanism includes a synchronized movement feature for managing the cables extending to and from the tray, such that cable pull at the entry and exit locations is reduced or eliminated as the tray is moved.
One synchronized movement feature includes gears, including a rack and pinion system. Another synchronized movement feature includes wheels and wires.
The tray preferably includes mounting structures for holding cable terminations, splitters, and/or splices. One mounting structure includes an open shaped frame member for connector access. In one example, two frame members are provided, one positioned over the other. For improved access, the frame members are hingedly mounted to the tray. In a termination arrangement, the adapters are arranged so that the connector axes are horizontal and extend in a perpendicular direction to the direction of travel for the tray.
Each frame member can be populated with adapter blocks. Pathways guide cables to the adapter ports of the adapter blocks for fiber optic cables terminated with connectors to be received therein. The cables follow a general S-shaped pathway from a side of each element to the adapter blocks. The S-shaped pathway includes two levels inside of the tray to segregate cables between the two frame members. Various flanges and radius limiters can be provided to assist with cable management.
The elements can be stacked in a column with each tray mounted horizontally, or used in a group or block mounted vertically. In the case of a column of elements, a selected tray is pulled outward to access the desired tray, and then the frame members on the tray can be pivoted as needed.
One side of each element can be for patch cables, and the opposite side can be for cable termination of an incoming cable, such as a distribution cable or a feeder cable. Because of the synchronized movement feature, cables can be secured along the sides of the elements and still allow for sliding movement of the trays without a need for large amounts or any cable slack.
The tray and the frame members allow for easy top and bottom access to connectors on either side of the adapters. Openings are provided in the tray bottom for hand access if desired.
The cable mounts for the distribution cables or feeder cables can be snap mounted to the elements and/or mounted in a longitudinal slide mount, and include strength member clamps and cable clamps.
Groupings of loose cables can be managed with cable wraps or other cable guides such as flexible troughs.
The elements can be configured as desired and form building blocks for an optical fiber distribution system (ODF).
When the elements are mounted in a column in a rack, the cables can be placed in vertical cable guides to enter and exit the selected element.
The example rack is front accessible, however, the elements can be used in other racks, frames, cabinets or box including in arrangements where rear access is desirable or useful.
According to another aspect, the disclosure is directed to a cable mount configured for fixing a strength member of a fiber optic cable to a fixture. The cable mount comprises a front end, a rear end, and a longitudinal channel extending between the front end and the rear end, the longitudinal channel defined by upper and lower transverse walls and a vertical divider wall, the longitudinal channel for receiving a portion of the fiber optic cable. A strength member pocket is for receiving the strength member of the fiber optic cable, the strength member pocket located on an opposite side of the divider wall from the longitudinal channel, the strength member pocket communicating with the longitudinal channel through an opening provided on the divider wall. A strength member clamp is configured to fix the strength member of the fiber optic cable against axial pull relative to the cable mount.
According to another aspect, the disclosure is directed to a method of fixing a strength member of a fiber optic cable to a fixture. The method comprises inserting a front end of the fiber optic cable through a longitudinal channel of a cable mount that is on the fixture, wherein longitudinal channel is defined by upper and lower transverse walls and a vertical divider wall, inserting the strength member of the fiber optic cable through an opening on the vertical divider wall into a pocket located on an opposite side of the divider wall from the longitudinal channel, and clamping the strength member of the fiber optic cable against axial pull relative to the cable mount.
According to another aspect, the disclosure is directed to a cable mount for fixing a strength member of a fiber optic cable to a fixture. The cable mount includes a front end, a rear end, and a longitudinal channel therebetween, the channel defined by upper and lower transverse walls and a vertical divider wall. The channel receives a portion of the cable. A strength member pocket receives the strength member of the cable, the pocket located on an opposite side of the divider wall from the longitudinal channel, the pocket communicating with the longitudinal channel through an opening on the divider wall. A strength member clamp fixes the strength member of the cable against axial pull. Cable management structures in the form of spools define at least one notch that communicates with the longitudinal channel for guiding optical fibers extending from a jacket either upwardly or downwardly therethrough. The cable mount also allows routing of the optical fibers through the longitudinal channel all the way from the rear end to the front end.
According to another aspect, the disclosure is directed to a method of fixing a strength member of a fiber optic cable to a fixture. The method comprises inserting a front end of the fiber optic cable through a longitudinal channel of a cable mount that is on the fixture, wherein longitudinal channel is defined by upper and lower transverse walls and a vertical divider wall, inserting the strength member of the fiber optic cable through an opening on the vertical divider wall into a pocket located on an opposite side of the divider wall from the longitudinal channel, clamping the strength member of the fiber optic cable against axial pull relative to the cable mount, and guiding optical fibers extending from a jacket of the fiber optic cable either upwardly or downwardly through at least one notch defined between cable management structures in the form of spools or through the longitudinal channel all the way from the rear end to the front end.
Referring now to
Each element 10 holds fiber terminations, or other fiber components including fiber splitters and/or fiber splices. In the case of fiber terminations, incoming cables are connected to outgoing cables through connectorized cable ends which are connected by adapters, as will be described below.
Each element includes a chassis 20 and a movable tray 24. Tray 24 is movable with a slide mechanism 30 including one or more gears 32 and a set of two toothed racks or linear members 34.
Slide mechanism 30 provides for synchronized movement for managing the cables extending to and from tray 24. Entry points 36 on either side of chassis 20 allow for fixation of the input and output cables associated with each element 10. The radius limiters 38 associated with each slide mechanism 30 move in synchronized movement relative to chassis 20 and tray 24 to maintain fiber slack, without causing fibers to be bent, pinched, or pulled.
Each tray 24 includes mounting structure 50 defining one or more of fiber terminations, fiber splitters, fiber splices, or other fiber components. As shown, mounting structure 50 holds adapters 52 which allow for interconnection of two connectorized ends of cables. Each tray 24 includes one or more frame members 56. In the example shown, two frame members 56 are provided. As illustrated, each frame member 56 is T-shaped. Also, each tray 24 includes two frame members 56 which are hingedly mounted at hinges 58. A top frame member 62 is positioned above a bottom frame member 64. The mounting structure 50 associated with each frame member 62, 64 includes one or more integrally formed adapter blocks 70. Adapter blocks 70 include a plurality of adapter ports for interconnecting to fiber optic connectors. A pathway 76 defines a generally S-shape from radius limiters 38 to adapter blocks 70. As shown, pathway 76 includes an upper level 78 and a lower level 80 in the interior. A portion 84 of pathway 76 is positioned adjacent to hinges 58 to avoid potentially damaging cable pull during pivoting movement of frame members 56. Flanges 86 and radius limiters 90 help maintain cables in pathways 76.
Tray 24 includes openings 96 to allow for technician access to the cable terminations at adapter blocks 70. In addition, the T-shapes of frame members 56 further facilitate technician access to the connectors.
Cables extending to and from element 10 can be affixed with a cable mount 100 as desired. Additional protection of the fiber breakouts can be handled with cable wraps 102. Radius limiters 106 can be additionally used to support and protect the cables.
Referring now to
If desired, more than one feeder cable can supply cabling to more than one element 10.
Referring now to
A pathway 276 extends from either side from tray 224 to supply cables to each of trays 224. An upper level 278 and a lower level 280 supply the respective frame members 256 with cabling. A general S-shaped pathway 276 is defined wherein the pathway 276 passes close to hinges 258.
A dovetail 288 is used to hold cable mounts 286 and radius limiters 284.
An opening 290 in tray 224 allows for connector access by the technician. Similarly, openings 262 on each frame member 256 allow for technician access to the individual connectors.
To form a block 292 of plural elements 210, bars 294 and fasteners 296 are used. Bars 294 give a small spacing between each element 210.
Referring now to
Referring now to
Referring now to
Referring now back to
According to the depicted embodiment, the cable mount 286 is configured to be mounted in a sliding fashion to the dovetail structures 288 of the elements such as elements 210, 410, and 510. As shown in
As noted above, the cable mount 286 is configured for securing or clamping the strength member 526 of an incoming cable 514 to limit axial pull on the cable 514 to preserve the optical fibers. A strength member clamp 536 of the cable mount 286 is defined by a base 538 and a fixation plate 540 that is clamped thereto via clamp fasteners 542. The base 538 may also be referred to as a first clamp member and the fixation plate 540 may be referred to as a second clamp member of the strength member clamp 536.
Once the strength member 526 of an incoming cable 514 is inserted into the strength member pocket 524 through the opening 537, the strength member 526 may be clamped between the first and second clamp members 538, 540. The strength member pocket 524 and the strength member clamp 536 of the cable mount are defined by an inset portion 533 of the cable mount 286 such that the clamp 536 does not interfere with the slidable mounting of the cable mount 286 via the dovetail interlock features 532.
The cable mount 286 is designed such that the individual tubes 530 carrying the optical fibers are isolated from the strength member 526 of the cable 514. The fiber carrying tubes 530 are lead through the fiber channel 528 which is located on an opposite side of the divider wall 535 from the strength member pocket 524.
Still referring to
Referring now to
As shown in
Referring now to
The cable mount 686 defines a jacket channel 622 for housing the jacket of an incoming cable, a strength member pocket for receiving a strength member of the incoming cable, and a fiber channel 628 for receiving individual fiber-carrying loose tubes protruding from an end of a jacket of the cable. The jacket channel 622 is defined by upper and lower transverse walls 611, 613. The fiber channel 628 includes a pair of cable management structures 631 therein for guiding cables to different desired directions as the cables lead toward the entry point of the tray 624 of the element 610.
The strength member pocket is defined on an opposite side of a divider wall 635. The strength member is inserted into the strength member pocket through an opening 637 located in the divider wall 635 and is, thus, isolated from the fiber carrying tubes. The cable mount 686 is designed such that the individual tubes carrying the optical fibers are isolated from the strength member of a cable. The fiber carrying tubes are lead through the fiber channel 628 which is located on an opposite side of the divider wall 635 from the strength member pocket.
After being routed around the cable management structures 631, the cables enter and may be secured to an upper cable guide 683 and a lower cable guide 685. As shown, either or both of the cables guides 683, 685 are pivotally mounted to the chassis 620. The cable guides 683, 685 may be pivotable toward and away from the chassis 620 along a plane that is generally parallel to a plane defined by the sliding direction of the tray 624. The pivotability of the cable guides 683, 685 allows routing of the cables to outer and inner troughs 627, 629 of a radius limiter structure 638 that is mounted to the slide mechanism of the element 610. The cables may be secured to the guides 683, 685 by a variety of methods such as with cable ties, snap-fit elements, etc. Thus, when the cables are routed to the outer and inner troughs 627, 629 of the radius limiter 638, the guides 683, 685 may pivot with the movement of the cables secured thereto.
In the depicted example, the lower cable guide 685 has been shown as pivoted out to guide cables to the outer trough 627 of the radius limiter 638. The upper cable guide 683 is configured to lead cables toward the inner trough 629 of the radius limiter 638. The pivotability of the guides 683, 685 allows separation of the cables as they lead into the desired troughs of the radius limiter 638.
The radius limiter 638 includes a divider wall 625 extending from adjacent an outer end 623 to adjacent an inner end 621. According to one embodiment, the divider 625 does not extend all the way to the inner and outer ends 621, 623 of the U-shaped radius limiter 638. The divider wall 625 of the radius limiter 638 forms the two separate troughs 627, 629. The two troughs 627, 629 isolate and separate the cables (e.g., coming in and going out) of the element 610 into two distinct paths. According to one example cable routing configuration, the two troughs 627, 629 may guide the cables to the upper and lower levels 678, 680 defined toward the rear of the tray 624 while maintaining the S-shaped pathway 676 created within the element 610. The pivotable cable guides 683, 685 allow proper separation and routing of the cables when used with a radius limiter such as the limiter 638. Further details of a radius limiter such as the radius limiter 638 of the present application are discussed in U.S. Provisional Application Ser. No. 61/892,558 concurrently filed herewith, which application is incorporated herein by reference in its entirety.
Referring now to
Still referring to
The cable mount 786 is defined by a base portion 701 and a fiber routing portion 703 that is configured to be mounted to the base portion 701 with a snap-fit interlock. The base portion 701 of the cable mount 786 is shown in isolation in
As shown in
Similar to the cable mounts 286 and 686 described above, the cable mount 786 includes features for securing or clamping the strength member 526 of an incoming cable 514 to limit axial pull on the cable 514 to preserve the optical fibers. A strength member clamp 736 of the cable mount 786 is defined by the interaction of a portion (i.e., a clamping surface 738) of the base portion 701 and a fixation plate 740 that is configured to be clamped against the base portion 701 via a fastener 742. The strength member clamp 736 will be described in further detail below. The portion of the base 701 that forms the clamping surface 738 for clamping the strength member may also be referred to as a first clamp member and the fixation plate 740 may also be referred to as a second clamp member of the strength member clamp 736.
Still referring to
The jacket channel 720 is defined by upper and lower transverse walls 731, 733. A divider wall 735 of the cable mount 286 separates the jacket channel 720 from the strength member pocket 724. The strength member pocket 724 is defined on an opposite side of the divider wall 735 from the jacket channel 720. The divider wall 735 defines an opening 737 through which the jacket channel 720 communicates with the strength member pocket 724. When a cable is received from the rear end 718 of the cable mount 786, the strength member 526 of the cable protruding from the jacket 799 of the cable is inserted into the strength member pocket 724 through the opening 737 before being clamped using the strength member clamp 736.
According to the depicted embodiment, the base portion 701 of the cable mount 786 is configured to be mounted to equipment such as elements 510 or 610 with a snap-fit interlock. As shown, the base portion defines a cantilever arm 711 with a ramped tab 713 adjacent the front end 716 of the cable mount 786 for interlocking with a notch that may be provided on a piece of telecommunications equipment. The base portion 701 of the cable mount 786 also defines catches 715 having dovetail profiles along the base portion 701 that are configured to slidably mate with intermating structures provided on the telecommunications equipment. In this manner, the cable mount 786 may be slidably attached to a piece of telecommunications equipment before being locked into a notch defined by the equipment with the cantilever arm 711. Similar dovetail intermating structures are shown, for example, in
It should be noted that a snap-fit interlock utilizing dovetail profiles and a flexible cantilever lock is only one example of an attachment mechanism that may be used to mount the cable mount 786 to an element such as elements 210, 410, 510, and 610 and that other types of attachment mechanisms or methods (that limit axial pull on a secured cable) may be used.
As noted above, the cable mount 786 is configured for securing or clamping the strength member 526 of an incoming cable 514 to limit axial pull on the cable 514 to preserve the optical fibers. Once the strength member 526 of an incoming cable 514 is inserted into the strength member pocket 724 through the opening 737, the strength member 526 may be clamped between the clamping surface 738 defined by the base portion 701 and the fixation plate 740. A portion of the clamping surface 738 may define a groove 739 along the bottom side of the base portion 701 for proper positioning or alignment of the strength member 526.
The fixation plate 740 defines a fastener mount 741 that has a threaded opening 743 for receiving the fastener 742 when clamping the fixation plate 740 with respect to the base portion 701. The fastener mount 741 defines a throughhole 763 that extends along a longitudinal axis of the fixation plate (generally perpendicular to the threaded opening 743) that is for receiving the strength member 526 of the cable. When the fastener 742 is used to clamp the fixation plate 740 with respect to the base portion 701, at least a portion of the fastener may extend through the threaded opening 743 and into the throughhole. The throughhole 763 is preferably sized such that a strength member 526 can extend therethrough without interference from the fastener 742 that extends at least partially into the throughhole 763.
The fastener mount 741 of the fixation plate 740 extends from a top of the fixation plate 740 to a portion of the fixation plate 740 that defines a clamping surface 745. The clamping surface 745 of the fixation plate 740 is configured to abut against the clamping surface 738 defined by the base portion 701 in clamping the strength member 526 of the cable. As noted above, clamping the fixation plate 740 against the base portion 701 is accomplished by using the fastener 742, which is threadedly engaged with the fastener mount 741 and which draws the fixation plate 740 towards the base portion 701. The base portion 701 defines an opening 717 that is configured to accommodate and receive the fastener mount 741 as the fixation plate 740 is pulled up with respect to the base portion 701.
The fiber routing portion 703 of the cable mount 786 is configured to receive and guide the fiber carrying tubes 530 of a cable being mounted using the cable mount 786. Fiber carrying tubes 530 are lead up a ramp 787 defined by the fiber routing portion 703 after the strength member 536 of the cable has been separated therefrom and has been inserted into the strength member pocket 724. The divider wall 735 keeps the fiber carrying tubes 530 and the cable jacket separate from the strength member pocket 724 similar to the embodiments of the cable mount discussed previously. In this manner, when the cables are subjected to pulling forces, the fiber carrying components are isolated from the part of the cable mount that clamps the strength member.
Still referring to
Still referring to
As shown, the spools 727 may include flanges 729 for retaining the fibers within the fiber routing portion 703. The fiber routing portion 703 also defines bulkheads 751 adjacent the front end 716 of the cable mount 786. The bulkheads 751 cooperate with the spools 727 in leading the fibers directly forwardly as the fibers approach the front end 716 of the cable mount. The bulkheads 751 also define flanges 729 for retaining the fibers between the bulkheads 751. The bulkheads 751 and the spools 727 may also be cooperatively referred to as cable guides.
A plurality of fiber channels 759 are formed between the spools 727 and the bulkheads 751. The flanges 729 of the spools and the bulkheads 751 facilitate in keeping the fibers within desired fiber channels 759.
As shown, the fiber routing portion 703 may define a notch or an opening 797 between the spools 727 that allows the fiber carrying tubes 530 to fit therethrough and extend to different locations around a distribution element.
Similar to the embodiments shown in
The fiber routing portion 703, specifically, the spools 727, the notch 797 defined between the spools 727, and the bulkheads 751, are designed to allow the fibers to be routed to different locations around an element or to different elements. The fiber routing portion 703 is configured to allow the fiber carrying tubes 530 to extend straight upwardly, straight downwardly, diagonally upwardly, diagonally downwardly, or straight through after passing through the bulkheads 751.
In the embodiment of the cable mount 786 illustrated in
At the exterior of the wall portions 795, there are also defined notches 791 for receiving cantilever fingers 789 of a cover structure 779. According to certain embodiments, for cables that may include soft strength members in the form of aramid fibers such as Kevlar, the soft strength members may be wrapped around the wall portions 795 and may be captured thereagainst with the cover structure 779.
Although in the foregoing description, terms such as “top,” “bottom,” “front,” “back,” “right,” “left,” “upper,” and “lower” were used for ease of description and illustration, no restriction is intended by such use of the terms. The telecommunications devices such as the cable mounts described herein can be used in any orientation, depending upon the desired application.
Having described the preferred aspects and embodiments of the present disclosure, modifications and equivalents of the disclosed concepts may readily occur to one skilled in the art. However, it is intended that such modifications and equivalents be included within the scope of the claims which are appended hereto.
This application is a Continuation of U.S. patent application Ser. No. 16/164,121, filed on 18 Oct. 2018, now U.S. Pat. No. 10,746,950, which is a Continuation of U.S. patent application Ser. No. 15/375,863, filed 12 Dec. 2016, now U.S. Pat. No. 10,107,984, which is a Continuation of U.S. patent application Ser. No. 14/787,111, filed 26 Oct. 2015, now U.S. Pat. No. 9,541,726, which is a National Stage of PCT/EP2014/058196, filed 23 Apr. 2014, which claims priority to U.S. Patent Application Ser. No. 61/815,525 filed on 24 Apr. 2013 and to U.S. Patent Application Ser. No. 61/892,579 filed on 18 Oct. 2013, the disclosures of which are incorporated herein by reference in their entireties. To the extent appropriate a claim of priority is made to each of the above disclosed applications.
Number | Name | Date | Kind |
---|---|---|---|
2805106 | Penkala | Sep 1957 | A |
2864656 | Yorinks | Dec 1958 | A |
3901564 | Armstrong | Aug 1975 | A |
4070076 | Zwillinger | Jan 1978 | A |
4172625 | Swain | Oct 1979 | A |
4320934 | Rock et al. | Mar 1982 | A |
4359262 | Dolan | Nov 1982 | A |
4373776 | Purdy | Feb 1983 | A |
4494806 | Williams et al. | Jan 1985 | A |
4502754 | Kawa | Mar 1985 | A |
4585303 | Pinsard et al. | Apr 1986 | A |
4595255 | Bhatt et al. | Jun 1986 | A |
4630886 | Lauriello et al. | Dec 1986 | A |
4697874 | Nozick | Oct 1987 | A |
4699455 | Erbe et al. | Oct 1987 | A |
4708430 | Donaldson et al. | Nov 1987 | A |
4717231 | Dewez et al. | Jan 1988 | A |
4737039 | Sekerich | Apr 1988 | A |
4765710 | Burmeister et al. | Aug 1988 | A |
4792203 | Nelson et al. | Dec 1988 | A |
4820007 | Ross et al. | Apr 1989 | A |
4840449 | Ghandeharizadeh | Jun 1989 | A |
4898448 | Cooper | Feb 1990 | A |
4971421 | Ori | Nov 1990 | A |
4986762 | Keith | Jan 1991 | A |
4991928 | Zimmer | Feb 1991 | A |
4995688 | Anton et al. | Feb 1991 | A |
5024498 | Becker et al. | Jun 1991 | A |
5066149 | Wheeler et al. | Nov 1991 | A |
5067678 | Henneberger et al. | Nov 1991 | A |
5071211 | Debortoli et al. | Dec 1991 | A |
5100221 | Carney et al. | Mar 1992 | A |
5127082 | Below et al. | Jun 1992 | A |
5129030 | Petrunia | Jul 1992 | A |
5138688 | Debortoli | Aug 1992 | A |
5142606 | Carney et al. | Aug 1992 | A |
5142607 | Petrotta et al. | Aug 1992 | A |
5167001 | Debortoli et al. | Nov 1992 | A |
5174675 | Martin | Dec 1992 | A |
5240209 | Kutsch | Aug 1993 | A |
5247603 | Vidacovich et al. | Sep 1993 | A |
5275064 | Hobbs | Jan 1994 | A |
5285515 | Milanowski et al. | Feb 1994 | A |
5289558 | Teichler et al. | Feb 1994 | A |
5316243 | Henneberger | May 1994 | A |
5323480 | Mullaney et al. | Jun 1994 | A |
5335349 | Kutsch et al. | Aug 1994 | A |
5339379 | Kutsch et al. | Aug 1994 | A |
5353367 | Czosnowski et al. | Oct 1994 | A |
5363466 | Milanowskki et al. | Nov 1994 | A |
5363467 | Keith | Nov 1994 | A |
5402515 | Vidacovich et al. | Mar 1995 | A |
5412751 | Siemon et al. | May 1995 | A |
5430823 | Dupont et al. | Jul 1995 | A |
5438641 | Malacarne | Aug 1995 | A |
5490229 | Ghanderharizadeh et al. | Feb 1996 | A |
5497444 | Wheeler | Mar 1996 | A |
5509096 | Easley | Apr 1996 | A |
5511144 | Hawkins et al. | Apr 1996 | A |
5530783 | Belopolsky et al. | Jun 1996 | A |
5570450 | Fernandez et al. | Oct 1996 | A |
5613030 | Hoffer et al. | Mar 1997 | A |
5640481 | Llewellyn et al. | Jun 1997 | A |
5655044 | Finzel et al. | Aug 1997 | A |
5717810 | Wheeler | Feb 1998 | A |
5724469 | Orlando | Mar 1998 | A |
5802237 | Pulido | Sep 1998 | A |
5811055 | Geiger | Sep 1998 | A |
5836148 | Fukao | Nov 1998 | A |
5882100 | Rock | Mar 1999 | A |
5887106 | Cheeseman et al. | Mar 1999 | A |
5917984 | Röseler et al. | Jun 1999 | A |
5923753 | Haataja et al. | Jul 1999 | A |
5946440 | Puetz | Aug 1999 | A |
5966492 | Bechamps et al. | Oct 1999 | A |
5971626 | Knodell et al. | Oct 1999 | A |
5975769 | Larson et al. | Nov 1999 | A |
5978540 | Bechamps et al. | Nov 1999 | A |
6009224 | Allen | Dec 1999 | A |
6022150 | Erdman et al. | Feb 2000 | A |
6027252 | Erdman et al. | Feb 2000 | A |
6044194 | Meyerhoefer | Mar 2000 | A |
6076908 | Maffeo | Jun 2000 | A |
6099224 | Uchida et al. | Aug 2000 | A |
6215938 | Reitmeier et al. | Apr 2001 | B1 |
6226436 | Daoud et al. | May 2001 | B1 |
6236795 | Rodgers | May 2001 | B1 |
6263141 | Smith | Jul 2001 | B1 |
6269214 | Naudin et al. | Jul 2001 | B1 |
6301424 | Hwang | Oct 2001 | B1 |
6360050 | Moua et al. | Mar 2002 | B1 |
6438310 | Lance et al. | Aug 2002 | B1 |
6439523 | Chandler et al. | Aug 2002 | B1 |
6496638 | Andersen | Dec 2002 | B1 |
6504988 | Trebesch et al. | Jan 2003 | B1 |
6591051 | Solheid et al. | Jul 2003 | B2 |
6594434 | Davidson et al. | Jul 2003 | B1 |
6600866 | Gatica et al. | Jul 2003 | B2 |
6612515 | Tinucci et al. | Sep 2003 | B1 |
6625374 | Holman et al. | Sep 2003 | B2 |
RE38311 | Burmeister et al. | Nov 2003 | E |
6677520 | Kim et al. | Jan 2004 | B1 |
6695491 | Leeman et al. | Feb 2004 | B1 |
6711339 | Puetz et al. | Mar 2004 | B2 |
6715619 | Kim et al. | Apr 2004 | B2 |
6748155 | Kim et al. | Jun 2004 | B2 |
6768860 | Liberty | Jul 2004 | B2 |
6796437 | Krampotich et al. | Sep 2004 | B2 |
6804447 | Smith et al. | Oct 2004 | B2 |
6809258 | Dang et al. | Oct 2004 | B1 |
6810193 | Müller | Oct 2004 | B1 |
6819857 | Douglas et al. | Nov 2004 | B2 |
6845208 | Thibault et al. | Jan 2005 | B2 |
6850685 | Tinucci et al. | Feb 2005 | B2 |
6865331 | Mertesdorf | Mar 2005 | B2 |
6925241 | Bohle et al. | Aug 2005 | B2 |
6934457 | Vincent et al. | Aug 2005 | B2 |
6937807 | Franklin et al. | Aug 2005 | B2 |
6944383 | Herzog et al. | Sep 2005 | B1 |
6945620 | Lam et al. | Sep 2005 | B2 |
6968111 | Trebesch et al. | Nov 2005 | B2 |
6981750 | Krampotich | Jan 2006 | B2 |
7006748 | Dagley et al. | Feb 2006 | B2 |
7068907 | Schray | Jun 2006 | B2 |
7079744 | Douglas et al. | Jul 2006 | B2 |
7116777 | Knudsen et al. | Oct 2006 | B2 |
7120348 | Trebesch et al. | Oct 2006 | B2 |
7171099 | Barnes et al. | Jan 2007 | B2 |
7231125 | Douglas et al. | Jun 2007 | B2 |
7274852 | Smrha et al. | Sep 2007 | B1 |
7302153 | Thom | Nov 2007 | B2 |
7302154 | Trebesch et al. | Nov 2007 | B2 |
7308184 | Barnes et al. | Dec 2007 | B2 |
7362942 | Beck | Apr 2008 | B2 |
7367823 | Rapp et al. | May 2008 | B2 |
7373071 | Douglas et al. | May 2008 | B2 |
7397996 | Herzog et al. | Jul 2008 | B2 |
7406240 | Murano | Jul 2008 | B2 |
7409137 | Barnes | Aug 2008 | B2 |
7418182 | Krampotich | Aug 2008 | B2 |
7437049 | Krampotich | Oct 2008 | B2 |
7454113 | Barnes | Nov 2008 | B2 |
7457504 | Smrha et al. | Nov 2008 | B2 |
7460757 | Hoehne et al. | Dec 2008 | B2 |
7463811 | Trebesch et al. | Dec 2008 | B2 |
7480438 | Douglas et al. | Jan 2009 | B2 |
7496268 | Escoto et al. | Feb 2009 | B2 |
7499623 | Barnes et al. | Mar 2009 | B2 |
7567744 | Krampotich et al. | Jul 2009 | B2 |
7570860 | Smrha et al. | Aug 2009 | B2 |
7570861 | Smrha et al. | Aug 2009 | B2 |
7599599 | Herzog et al. | Oct 2009 | B2 |
7664361 | Trebesch et al. | Feb 2010 | B2 |
7689089 | Wagner et al. | Mar 2010 | B2 |
7706656 | Zimmel | Apr 2010 | B2 |
7715681 | Krampotich et al. | May 2010 | B2 |
7747125 | Lee et al. | Jun 2010 | B1 |
RE41460 | Wheeler | Jul 2010 | E |
7751674 | Hill | Jul 2010 | B2 |
7764859 | Krampotich et al. | Jul 2010 | B2 |
7856166 | Biribuze et al. | Dec 2010 | B2 |
7869683 | Barnes et al. | Jan 2011 | B2 |
7876993 | Krampotich et al. | Jan 2011 | B2 |
7889961 | Cote et al. | Feb 2011 | B2 |
7978957 | Sano et al. | Jul 2011 | B2 |
8027558 | Barnes et al. | Sep 2011 | B2 |
8041175 | Krampotich et al. | Oct 2011 | B2 |
8059932 | Hill et al. | Nov 2011 | B2 |
8078030 | Trebesch et al. | Dec 2011 | B2 |
8179684 | Smrha et al. | May 2012 | B2 |
8195022 | Coburn et al. | Jun 2012 | B2 |
8285104 | Davis et al. | Oct 2012 | B2 |
8452149 | Krampotich et al. | May 2013 | B2 |
8526774 | Krampotich et al. | Sep 2013 | B2 |
8559785 | Barlowe et al. | Oct 2013 | B2 |
8600208 | Badar et al. | Dec 2013 | B2 |
8639081 | Barnes et al. | Jan 2014 | B2 |
8655136 | Trebesch et al. | Feb 2014 | B2 |
8690593 | Anderson et al. | Apr 2014 | B2 |
8816222 | Pimentel | Aug 2014 | B2 |
8885998 | Marcouiller et al. | Nov 2014 | B2 |
8903216 | Thompson et al. | Dec 2014 | B2 |
9541726 | Geens | Jan 2017 | B2 |
10107984 | Geens et al. | Oct 2018 | B2 |
20010001270 | Williams Vigliaturo | May 2001 | A1 |
20020181922 | Xin et al. | Dec 2002 | A1 |
20030007767 | Douglas et al. | Jan 2003 | A1 |
20030128951 | Lecomte et al. | Jul 2003 | A1 |
20030165315 | Trebesch et al. | Sep 2003 | A1 |
20030174996 | Henschel et al. | Sep 2003 | A1 |
20030190035 | Knudsen et al. | Oct 2003 | A1 |
20040011750 | Kim et al. | Jan 2004 | A1 |
20040136676 | Mertesdorf | Jul 2004 | A1 |
20040175090 | Vastmans et al. | Sep 2004 | A1 |
20040258384 | Trebesch et al. | Dec 2004 | A1 |
20050025444 | Barnes et al. | Feb 2005 | A1 |
20050058421 | Dagley et al. | Mar 2005 | A1 |
20050078929 | Iwanek | Apr 2005 | A1 |
20050100301 | Solheid et al. | May 2005 | A1 |
20050123261 | Bellekens et al. | Jun 2005 | A1 |
20060275008 | Xin | Dec 2006 | A1 |
20070003204 | Makrides-Saravanos et al. | Jan 2007 | A1 |
20070031099 | Herzog et al. | Feb 2007 | A1 |
20070058918 | Trebesch et al. | Mar 2007 | A1 |
20070201806 | Douglas et al. | Aug 2007 | A1 |
20080048935 | Yoshioka et al. | Feb 2008 | A1 |
20080063350 | Trebesch et al. | Mar 2008 | A1 |
20080169116 | Mullaney et al. | Jul 2008 | A1 |
20080175550 | Coburn et al. | Jul 2008 | A1 |
20080205843 | Castonguay et al. | Aug 2008 | A1 |
20090067800 | Vazquez et al. | Mar 2009 | A1 |
20090067802 | Hoehne et al. | Mar 2009 | A1 |
20090097813 | Hill | Apr 2009 | A1 |
20090129033 | Smrha et al. | May 2009 | A1 |
20090136196 | Trebesch et al. | May 2009 | A1 |
20090274430 | Krampotich et al. | Nov 2009 | A1 |
20090274431 | Krampotich et al. | Nov 2009 | A1 |
20100142910 | Hill et al. | Jun 2010 | A1 |
20100150518 | Leon et al. | Jun 2010 | A1 |
20100158465 | Smrha | Jun 2010 | A1 |
20100195968 | Trebesch et al. | Aug 2010 | A1 |
20100266253 | Krampotich et al. | Oct 2010 | A1 |
20100316346 | Krampotich et al. | Dec 2010 | A1 |
20100322578 | Cooke et al. | Dec 2010 | A1 |
20110188809 | LeBlanc et al. | Aug 2011 | A1 |
20110206336 | Krampotich et al. | Aug 2011 | A1 |
20110211799 | Conner et al. | Sep 2011 | A1 |
20110217016 | Mullsteff | Sep 2011 | A1 |
20110267794 | Anderson et al. | Nov 2011 | A1 |
20110268404 | Cote et al. | Nov 2011 | A1 |
20110268408 | Giraud et al. | Nov 2011 | A1 |
20110268410 | Giraud et al. | Nov 2011 | A1 |
20110268412 | Giraud et al. | Nov 2011 | A1 |
20110286712 | Puetz et al. | Nov 2011 | A1 |
20110317974 | Krampotich et al. | Dec 2011 | A1 |
20120057838 | Hill et al. | Mar 2012 | A1 |
20120093475 | Trebesch et al. | Apr 2012 | A1 |
20120230646 | Thompson et al. | Sep 2012 | A1 |
20130084050 | Vastmans et al. | Apr 2013 | A1 |
20130089292 | Ott et al. | Apr 2013 | A1 |
20130089298 | Holmberg et al. | Apr 2013 | A1 |
20130183018 | Holmberg | Jul 2013 | A1 |
20130287356 | Solheid et al. | Oct 2013 | A1 |
20130287357 | Solheid et al. | Oct 2013 | A1 |
20140086545 | Solheid et al. | Mar 2014 | A1 |
20140133819 | Trebesch et al. | May 2014 | A1 |
20140241691 | Solheid et al. | Aug 2014 | A1 |
20150378106 | Allen et al. | Dec 2015 | A1 |
Number | Date | Country |
---|---|---|
4099585 | Apr 1985 | AU |
5531486 | Mar 1986 | AU |
2735106 | Feb 1979 | DE |
2918309 | Nov 1980 | DE |
3308682 | Sep 1984 | DE |
3836273 | Apr 1990 | DE |
4413136 | May 1995 | DE |
29504191 | Mar 1996 | DE |
0146478 | Jun 1985 | EP |
0149250 | Jul 1985 | EP |
0356942 | Mar 1990 | EP |
0406151 | Jan 1991 | EP |
0464570 | Jan 1992 | EP |
0479226 | Apr 1992 | EP |
0196102 | Mar 1993 | EP |
0538164 | Apr 1993 | EP |
0563995 | Oct 1993 | EP |
2531576 | Feb 1984 | FR |
2587127 | Mar 1987 | FR |
2678076 | Dec 1992 | FR |
59-74523 | Apr 1984 | JP |
60-169811 | Sep 1985 | JP |
61-55607 | Mar 1986 | JP |
61-90104 | May 1986 | JP |
200337929 | Jan 2004 | KR |
20080033420 | Apr 2008 | KR |
45207 | Apr 2005 | RU |
9110927 | Jul 1991 | WO |
9507480 | Mar 1995 | WO |
9610203 | Apr 1996 | WO |
9900619 | Jan 1999 | WO |
03005095 | Jan 2003 | WO |
2008048935 | Apr 2008 | WO |
2014118227 | Aug 2014 | WO |
Entry |
---|
International Search Report for International Application No. PCT/EP2014/051714 dated Apr. 29, 2014 (2 pages). |
International Search Report and Written Opinion for International Application No. PCT/EP2014/058136 dated Jul. 11, 2014 (9 pages). |
Northern Telecom Bulletin #91-004, Issue #2, May 1991. |
AT&T Product Bulletin 2987D-DLH-7/89, “High Density Interconnect System (HDIC),” Issue 2 (Copyright 1989). |
Preface to the book “Structure, Installation, Connection and Protection of Communication Optical Fiber Cable,” in Chinese with English Translation, 14 pages (Mar. 1992). |
Complaint relating to Civil Action No. 5:11-cv-02509-JS, ADC Telecommunications, Inc v. Opterna Am, Inc. filed Apr. 11, 2011 (14 pages). |
Complaint relating to Civil Action No. 1:11cv-735 (GBL-IDD), ADC Telecommunications, Inc v. Opterna Am, Inc. filed Jul. 12, 2011 (5 pages). |
Plaintiff's Notice of Dismissal relating to Civil Action No. 5:11-cv-02509-JS, ADC Telecommunications, Inc v. Opterna Am, Inc. filed Jul. 12, 2011 (1 page). |
Stipulation and Order of Dismissal relating to Civil Action No. 1:11-cv-735-GBL-IDD, ADC Telecommunications, Inc v. Opterna Am, Inc. filed Feb. 21, 2012 (2 pages). |
International Search Report and Written Opinion for International Application No. PCT/EP2014/058196 dated Jul. 31, 2014 (10 pages). |
“ITU Fiber Handbook” with English translation, 14 pages, Mar. 1992. |
Number | Date | Country | |
---|---|---|---|
20210026093 A1 | Jan 2021 | US |
Number | Date | Country | |
---|---|---|---|
61815525 | Apr 2013 | US | |
61892579 | Oct 2013 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16164121 | Oct 2018 | US |
Child | 16994090 | US | |
Parent | 15375863 | Dec 2016 | US |
Child | 16164121 | US | |
Parent | 14787111 | US | |
Child | 15375863 | US |