The present invention is directed, in general, to optical fiber gratings, to their fabrication, and to their use as devices in optical systems.
Optical gratings are useful in controlling the paths of propagating light, particularly light composed of multiple wavelengths. Optical gratings are useful in manipulating the transmittance and/or the propagation direction of particular wavelengths within an optical signal. Since optical signals propagate inside optical waveguides, an optical grating consists of a periodic perturbation (variation) of an optical-waveguide parameter such as the real and/or imaginary part of its refractive index or its thickness. One of the most important types of optical waveguides is the optical fiber. Basically, optical fibers are thin strands of glass capable of transmitting information-containing optical signals over long distances with very low loss. In essence, an optical fiber is a small diameter waveguide comprising a core having a first index of refraction surrounded by a cladding having a second (lower) index of refraction. Provided the refractive index of the core exceeds that of the cladding, a light beam propagated within the core may exhibit total internal reflection, and is guided along the length of the core. Typical optical fibers are made of high purity silica with various concentrations of dopants added to control the index of refraction. Optical fibers that have gratings, perturbations in the refractive index, are of particular interest as components in modern multi-wavelength communication systems, such as wavelength-division-multiplexed optical communication systems.
In-fiber optical gratings are important elements for selectively controlling specific wavelengths of light transmitted within optical systems such as wavelength-division-multiplexed optical communication systems. Such gratings may include short-period fiber Bragg gratings and long-period fiber gratings. These gratings typically comprise a body of material with a plurality of spaced-apart optical grating elements disposed in the material. Often, the grating elements comprise substantially equally-spaced refractive index or optical absorption perturbations. For all types of gratings, it would be highly useful to be able to reconfigure the grating to adjust selectively the controlled wavelengths.
A cladding mode is a mode of light that is not confined to the core, but rather, is confined by the entire waveguide structure. Long-period fiber grating devices selectively forward-diffract light at specific wavelengths by providing coupling between core modes and cladding modes. In general, short-period fiber Bragg gratings can also diffract light into cladding modes. In this case, the cladding modes are back-diffracted. The period, Λ, of the perturbations is chosen to shift transmitted light in the region of a selected peak wavelength, λp, from a core guided mode into a cladding mode, thereby reducing in intensity a band of light having wavelengths centered about the peak wavelength λp. In other words, the fiber grating acts as a band-stop optical spectral filter. In addition, since fiber cladding-modes are weakly-guided modes, their power can be easily dissipated by scattering, bending, stretching, and/or rotating the optical fiber. Such devices are particularly useful for equalizing amplifier gains across a band of wavelengths used in optical communications systems.
Typically, the spacing between the periodic perturbations in a long-period grating is large compared to the freespace wavelength λ of the transmitted light. In contrast with conventional short-period fiber Bragg gratings, long-period gratings use a periodic spacing Λ that is typically about a hundred times larger than the transmitted freespace wavelength. In some applications, such as chirped gratings, the spacing Λ can vary along the length of the grating.
A difficulty with conventional short-period fiber gratings and long-period fiber gratings, however, is their inability to change (tune) dynamically their spectral characteristics. Each short-period fiber grating and each long-period grating with a given periodicity (Λ) selectively filters light with an unchanging attenuation and in an unchanging narrow bandwidth centered around the peak wavelength of coupling, λp. This wavelength is determined by λp=(Ncore±Ncladding) Λ, where Ncore and Ncladding are the guided-mode effective indices of the core and the cladding modes, respectively. The “+” sign is valid for the case of backward-diffracted light by short-period gratings and the “−” sign is valid for forward-diffracted light by long-period gratings. The value of Ncore and Ncladding depend on the wavelength, on the core, cladding, and surrounding medium refractive indices, and on the core and cladding radii.
Various techniques have been developed to extract light from the core of an optical fiber so that the light may be modulated or filtered. In one approach, part of the cladding surrounding the core of the optical fiber is polished away on one side of the fiber so that a portion of the light in the core can be coupled into the cladding. In another approach, disclosed in U.S. Pat. No. 6,058,226, which is hereby incorporated by reference, a voltage is applied to an electrically sensitive material coupled to the exterior an optical fiber. The applied voltage is used for modulating the light being transmitted through the optical fiber. In yet still another approach, disclosed in U.S. Pat. No. 6,055,348, which is hereby incorporated by reference, a longitudinal strain is applied to a fiber grating so that the spacing between the grating elements are changed to shift the wavelength response of the device to provide a tunable optical grating device.
Multi-wavelength communication systems require continuous adjustment of the signal levels. If the signal adjustment is wavelength independent then these devices are called variable optical attenuators (VOA), while for the case of wavelength dependent attenuation they are called variable gain flattening filters. As a first example, in pre-emphasis filtering, some wavelength channels need to be equalized in intensity before they are combined in the fiber. As a second example, the reconfiguration and reallocation of wavelengths among the various nodes of a network by add/drop filtering requires these wavelength channels to be balanced in intensity with the optical network. As a third example, the gain of optical amplifiers, such as erbium-doped optical amplifiers, needs to be the same for all wavelengths, thus requiring wavelength-by-wavelength control of the optical gain. Optical amplifiers have deleterious peaks in their gain spectra that need to be flattened. As a fourth example, an adjustable wavelength and attenuation filter is needed for suppressing amplifier spontaneous emission (ASE) in optical amplifiers. As a fifth example, in a related application, there is a need to control the output power of tunable lasers to be constant over multiple wavelength ranges in order to provide a constant output power over any selected wavelength range.
Multi-wavelength communication systems also require network control functions to be available. As a first example, each wavelength channel should be tagged or labeled. This can be accomplished by modulating each channel wavelength with a slightly different kilohertz frequency. As a second example, network supervisory information needs to be distributed within the existing optical network (without resorting to external wire-based communications) and without affecting any of the data channels within the optical network. This can be done by modulating the existing data channels at kilohertz frequencies with the supervisory information to be distributed.
All of the above needs require a device whose transmission can be controlled in wavelength and amplitude. Adjusting the fiber grating as described in this invention allows tuning of the center wavelength or the adjustment of the attenuation at a fixed wavelength or a combination of these. As such, an adjustable fiber grating is capable of fulfilling all of the above listed application needs. Generally, prior art optical fiber gratings have grating elements that are typically disposed in the optical fiber core and perpendicular to the longitudinal centerline of the optical fiber. However, there are also optical fiber gratings that have grating elements that are slanted, instead of perpendicular, with respect to the centerline of the optical fiber. Several patents also exemplify fiber gratings with slanted refractive-index variation, which are U.S. Pat. No. 5,430,817 to A. M. Vengsarkar, U.S. Pat. No. 5,764,829 to J. Boyd et al. It is accordingly an object of the present invention to provide a new class of fiber gratings.
The present invention provides an apparatus and method for tuning, attenuating, switching, and modulating optical signals in a waveguide.
Briefly described, in architecture, one embodiment of the apparatus, among others, can be implemented as follows. A length of optical comprising a core region with a refractive index distribution and a cladding region with a refractive index distribution, the cladding region disposed on the core region. The optical fiber includes an azimuthally varying grating element. The optical properties of the optical fiber are changed by physical manipulation of the optical fiber.
The present invention can also be viewed as providing methods for selecting the coupling between modes in an optical fiber. In this regard, one embodiment of such a method, among others, can be broadly summarized by the following steps: an optical fiber having a grating region, which includes at least one azimuthally varying grating element, is disposed in an optical network; and the optical fiber is oriented in a predetermined position. The coupling between optical modes in the optical fiber are related to the positioning of the optical fiber.
The present invention can also be viewed as providing methods for making grating elements that have azimuthal variation in an optical fiber. In this regard, one embodiment of such a method, among others, can be broadly summarized by the following steps: disposing a length of optical fiber in a predetermined position; and heating a portion of the optical fiber. The heating of the optical fiber produces a perturbation in the refractive index of the heated portion of the optical. An alternative embodiment for making a grating element having an azimuthal variation can be broadly summarized by the following steps: disposing a dopant in a non-uniform pattern in an optical fiber; and irradiating the dopant with a laser beam. The irradiation by the laser beam of the dopant in the optical fiber produces a perturbation in the refractive index in the portion of the optical fiber having the dopant disposed therein.
Other systems, methods, features, and advantages of the present invention will be or become apparent to one with skill in the art upon examination of the following drawings and detailed description. It is intended that all such additional systems, methods, features, and advantages be included within this description, be within the scope of the present invention, and be protected by the accompanying claims.
The invention can be better understood with reference to the following drawings. The components in the drawings are not necessarily to scale, emphasis instead being placed upon clearly illustrating the principles of the present invention. Moreover, in the drawings, like reference numerals designate corresponding parts throughout the several views.
FIG. 1B and
The present invention is directed to an improved type of fiber grating possessing a general azimuthal refractive index variation, as well as a fabrication method, and optical devices for adjusting the optical characteristics of the grating. The optical adjustment device provides a means for tuning, attenuating, switching, and modulating optical signals in the waveguide. For the purposes of this disclosure, a preferred embodiment is discussed with the optical adjustment device disposed in an optical fiber containing a long-period fiber grating (LPFG). It is to be understood that the invention includes, but is not limited to, in-fiber gratings, such as LPFGs and short-period fiber Bragg gratings.
In
Referring to
In one embodiment, the optical fiber 100 is a glass optical fiber. Those skilled in the art recognize that there are many glass optical fibers such as fluoride glass, doped glasses, and co-doped glasses. Examples of dopants used in glass optical fibers include, but are not limited to, germanium, boron, and hydrogen. Furthermore, optical fibers are also made from plastic materials and/or polymer materials, and are also included within the scope of the invention. Most, if not all, optical fibers having cores and/or claddings in which the magnitude of the refractive index of the core/claddings can be irreversibly or reversibly changed are intended to be included within the scope of the present invention.
Referring to
It should also be noted that although the grating elements 112 are illustrated as being generally parallel to each other and generally perpendicular to centerline 110 that this configuration is for illustrative purposes. In an alternative embodiment, the grating elements 112 are obliquely aligned with respect to the centerline 110. In yet another embodiment, the grating elements are obliquely aligned with respect to each other.
In a short-period fiber Bragg grating, the spacing between the grating elements 112 which is typically in the range 0.1 to 15 microns is chosen to shift the transmitted light in the region of the selected wavelength, λp, from the forward core-guided mode 114 into a backward core-guided or backward cladding mode. Thereby, reducing the intensity of the light, centered about λp, transmitted through the core 106.
In an LPFG, the spacing between the grating elements 112 which is typically in the range 15 to 1,500 microns is chosen to shift the transmitted light in the region of the selected wavelength, λp, from the forward core-guided mode 114 into a forward cladding mode. Thereby, reducing the intensity of the light, centered about λp, transmitted through the core 106.
In the preferred embodiment, the fiber grating 104 is a LPFG having grating elements 112 that are separated with a periodicity of Λ and a width, W, that is typically in the range of ( 1/10)Λ<W<( 9/10)Λ. The width of the perturbation in the refractive index defines the width, W, of the grating element 112. Generally, the perturbation in the refractive index varies smoothly across the width of the grating element and the variation can be represented as a Gaussian shape or other shape. It should be noted that the periodicity and the width are design parameters, and those skilled in the art will recognize the periodicity, Λ, and/or width, W, can be adjusted to fit design considerations.
Refer now to
where the perturbation in the core and the cladding is given by Φ1 and Φ2, respectively. The quantities Φ1 and Φ2 can be restricted to refractive index perturbations (phase change) or can be restricted to optical absorption perturbations. In the latter case, Φ1 and Φ2 represent perturbations in the imaginary part of the refractive index. In the general case, Φ1 and Φ2 can represent perturbations in both the real and imaginary parts of the refractive index. It should be noted that the perturbation in the core 106 may be different from, or the same as, the perturbation in the cladding 108.
In the simplest case, the index of refraction of the grating element 112 is given by the following equation:
where the core 106 and the cladding each have uniform index of refraction, and the perturbations in the core 106, Φ1, and the cladding 108, Φ2, are also uniform. However, even in the simplest case, the index of refraction varies as the azimuthal angle crosses the boundary between the perturbation region 118 and the unperturbed region 124.
It should be noted that
The grating element 312(B), shown in
The grating element 312(C), shown in
The grating element 312(D), shown in
The grating element 312(E), shown in
The grating element 312(F), shown in
The grating element 312(G), shown in
The grating element 312(H), shown in
The grating element 312(I), shown in
The grating element 312(J), shown in
The grating elements 312(K), shown in
The grating element 312(L), shown in
The grating element 312(M), shown in
The grating element 312(N), shown in
The grating element 312(O), shown in
It should be noted that the grating elements 312 are non-limiting examples of embodiments of the grating elements having azimuthal a symmetry. All grating elements having azimuthal asymmetry are intended to be within the scope of the invention.
Referring now to
Although
Referring to
For the purposes of this disclosure, we shall define a top surface region 504 as being the portion of the grating element 112 in which the normalized intensity is approximately between 0.2 and 1, and we shall define a bottom surface region 506 as being the portion of the grating element 112 that is radially distal from the top surface region 504. Clearly, almost all of the incident light is absorbed by the optical fiber 100 within approximately 20 microns from the incident surface. The incident light 502 is used for creating a temperature gradient between the upper surface 504 and the bottom surface 506.
A perturbation in the refractive index of the optical fiber 100 is produced in the portion of the optical fiber 100 that is heated by the incident light 502. Generally, the magnitude of the perturbation in the refractive index is related to the temperature of the heated portion. Thus, the incident light 502 produces a grating element 112 having a given perturbation in the refractive index in the upper surface region 504 and a smaller perturbation in the bottom surface region 506. Likewise, the perturbation in the refractive index of the core 106 is generally greatest in the region of the core proximal to the top surface region 504 and least in the region distal from the top surface region 504. It is also understood that the magnitude of the refractive-index perturbation can be controlled by the laser beam intensity.
While the top surface region 504 absorbs more energy than does the bottom surface region, the absorption is generally symmetric about a vertical line (not shown) at x=0. Thus, when the optical fiber 100 is initially symmetric about a vertical line at x=0, the perturbation in the refractive index caused by heating from incident laser light 502 is also symmetric about a vertical line at x=0, and consequently, the optical characteristics of the grating element 112 are symmetric about a vertical line at x=0.
In the preferred embodiment, a first grating element 112 of the fiber grating 104 is produced by applying the incident light 502 to a portion of the optical fiber for a predetermined duration and at a predetermined intensity. A subsequent grating element, which is a predetermined distance from the first grating element, is produced by applying the incident light 502 for a predetermined duration and intensity to a subsequent portion of the optical fiber 100. In the preferred embodiment, the optical fiber 100 is positioned in a given orientation relative to the incident laser beam and the relative orientation of the top surface region 504 for each subsequent grating element 112 is predetermined.
Although, the preferred embodiment uses a CO2 laser as a heat source to produce the azimuthally varying grating elements 112 in the optical fiber 100, other embodiments include but are not limited to heat sources such as plasma arcs, ultraviolet lasers, visible lasers, narrow flames, etc.
In another embodiment, azimuthally varying grating elements are produced by including dopants, such as, but not limited to, germanium, boron, and hydrogen in optical fiber 100 and exposing the dopants to light sources, such as an UV laser. In this embodiment, during the fabrication of the optical fiber 100, the dopants are disposed in the optical fiber according to a predetermined or a random azimuthally varying pattern, non-limiting examples of which are shown in
Typically, the grating elements 112 are configured such that each top surface region 504 is approximately linearly aligned. In alternative embodiments, the top surface regions 504 of the grating elements 112 are aligned according to a predetermined scheme. Non-limiting examples of two alignment schemes are shown in
In
Referring now to
Referring now to
The strong axial rotation orientation dependence observed in CO2 laser induced LPFG's provides an important additional degree of freedom for tailoring the transmission characteristics of wavelength tuners, attenuators, switches, and modulators. This degree of freedom is not present in symmetric gratings, such as conventional UV induced grating. By proper choice of axial rotation angle φ, desired characteristics such as wavelength tuning at constant attenuation and variable attenuation at constant wavelength can be achieved.
Referring now to
The six transmission spectra shown in
Referring now to
As wavelength tuners (
Referring now to
Δ=[n(r,z)−n0]/n0,
where n0 is the index of refraction of an index matching oil chosen to match the index of refraction of the unperturbed cladding region and where n(r,z) is the index of refraction of the radial region measured from the centerline at positions along the centerline. Using transverse interferometry, the relative index difference was measured on the side of the optical fiber upon which the laser beam was incident. The peaks in the relative index difference, which are about 0.05%, correspond to the grating elements and have the appropriate periodicity. The value of n0 was 1.458, so the increase in the refractive index of the cladding region upon which the laser beam was incident upon was about 1.5×10−3.
Although the experimental results given hereinabove were for LPFGs, it is to be understood that they were exemplary fiber grating, which were not intended to limit the scope of the invention. Other fiber gratings included in the scope of the invention include, but are not limited to, short-period fiber Bragg gratings. Other exemplary fiber gratings are shown in
Optical fiber grating 1300(A), shown in
Optical fiber grating 1300(B), shown in
Optical fiber grating 1300(C), shown in
Optical fiber grating 1300(D), shown in
Optical fiber grating 1300(E), shown in
Optical fiber grating 1300(F), shown in
The embodiments shown in
Referring now to
Tuning device 1400 further includes, disposed within the generally hollow interior of the housing 1402, a tuning actuator 1412, a plurality of posts 1414, an optical fiber platform 1416 and an optical fiber 100 having opposed ends 102. The opposed ends 1404 of housing 1402 include aligned openings 1418 for receiving the opposed optical fiber ends 102. In the preferred embodiment, the openings are vertically aligned approximately half way between the bottom wall 1408 and the top wall 1410, and extending between the openings 1418 is optical fiber 100, which includes a plurality of azimuthally varying grating elements in the grating element 104. The openings 1418 are typically contained within standard commercial fiber optic connectors.
Referring now to
Rigidly affixed to sidewalls 1406 and extending therein, are the plurality of posts 1414 made from a rigid material such as metal or hard plastic. The posts are vertically aligned such that the posts engage the top surface 1426 of the optical fiber platform 141.6 proximal to the opposed platform ends 1420.
Referring now to
The tuning actuator 1412, the posts 1414, the optical fiber platform 1416 and the housing 1402 cooperate to deform optical fiber 100. The tuning actuator 1412, which is rigidly coupled to bottom wall 1408 and in contact with optical fiber platform 1416, is adapted to vertically extend and contract. Referring now to
In the preferred embodiment, the optical fiber 100 is disposed in groove 1428 and fixedly attached thereto by means such as adhesive. The optical fiber 100 is positioned such that at least a portion of the grating region 104 of the optical fiber is disposed between posts 1414(A) and 1414(B). Thus, when the tuning actuator 1412 is extended or contracted, thereby changing the curvature of the optical fiber platform 1416, the curvature of the grating region of the optical fiber changes correspondingly. The optical fiber platform 1416, with the optical fiber disposed thereon, can be bent or flexed by a variety of devices such as, but are not limited to, a piezoelectric apparatus, a micro-electro-mechanical apparatus, an electromechanical solenoid, a linear motor, a stepping motor and mechanical cam, a hydraulic apparatus, a pneumatic apparatus, a thermomechanical apparatus, a photoelastic apparatus, an acoustic apparatus, a magnetostrictive apparatus, and a electrostrictive apparatus.
In an alternative, non-limiting, embodiment, optical fiber 100 is fixedly clamped to optical fiber platform 1416 such that changes in the curvature of the optical fiber 100 correspond to changes in the contraction/expansion of the tuning actuator. In yet another non-limiting embodiment, optical fiber 100 is coupled to opposed ends 1404 such that the optical fiber extending therebetween engages the optical fiber platform, and such that changes in the curvature of the optical fiber correspond to changes in the expansion/contraction of tuning actuator 1412.
In another non-limiting embodiment, the opposed optical fiber ends 102 of the 5 optical fiber 100 are rotatably mounted to opposed ends 1404 of tuning device 1400. Each opposed optical fiber end 102 of optical fiber 100 is independently axially rotatable. In this embodiment, the optical fiber, extending between the opposed ends 1404 of the tuning device, is not adhered to the optical fiber platform 1416. Rather, the optical fiber 100 is disposed in the platform groove 1428 and is rotatable therein. Thus, the grating region 104 of the optical fiber 100 is rotated by rotating the optical fiber ends 102. The grating region 104 can also be axially twisted about the centerline by counter rotating the opposed optical fiber ends 102, or by rotating just one of the opposed optical fiber ends, or by rotating one of the optical fiber ends. It should be noted that the optical fiber 100 is axially rotatable/twistable even when the optical fiber is not linearly aligned between the opposed ends 1404, e.g., even when the optical fiber region is curved in response to curvature of optical fiber platform 1416.
As previously demonstrated hereinabove, small changes in the curvature of the grating region may produce dramatic changes in the optical transmission characteristics of the optical fiber. Those skilled in the art will recognize that other embodiments, different than those disclosed hereinabove, exist for changing the relative orientation of the grating region, and all such embodiments are intended to be within the scope of the invention. The above-cited embodiments are intended to be non-limiting examples for positioning and flexing the optical fiber having azimuthally varying grating elements disposed therein.
From the above discussion of the current invention it should be understood by those skilled in the art that many implementations of the current invention are possible. It should be emphasized that the above-described embodiments of the present invention, particularly, any “preferred” embodiments, are merely possible examples of implementations, merely set forth for a clear understanding of the principles of the invention. Many variations and modifications may be made to the above-described embodiment(s) of the invention without departing substantially from the spirit and principles of the invention. All such modifications and variations are intended to be included herein within the scope of this disclosure and the present invention and protected by the following claims.
This application is a divisional patent application of U.S. utility application entitled, “Optical Fiber Gratings With Azimuthal Refractive Index Perturbation,” having Ser. No. 09/860,790, filed May 18, 2001 now U.S. Pat. No. 6,832,023, which claims priority to U.S. provisional application entitled, “Long Period Fiber Grating Wavelength Tuners/Modulators/Switches,” having Ser. No. 60/205,990, filed May 19, 2000, both of which are entirely incorporated herein by reference.
The U.S. government may have a paid-up license in this invention and the right in limited circumstances to require the patent owner to license others on reasonable terms as provided for by the terms of grant no. EEC-94-02723 awarded by the National Science Foundation.
Number | Name | Date | Kind |
---|---|---|---|
3909110 | Marcuse | Sep 1975 | A |
5694501 | Alavie et al. | Dec 1997 | A |
5852690 | Haggans et al. | Dec 1998 | A |
6084998 | Straayer | Jul 2000 | A |
6327405 | Leyva et al. | Dec 2001 | B1 |
6427041 | Strasser et al. | Jul 2002 | B1 |
Number | Date | Country | |
---|---|---|---|
20040252939 A1 | Dec 2004 | US |
Number | Date | Country | |
---|---|---|---|
60205990 | May 2000 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 09860790 | May 2001 | US |
Child | 10886800 | US |