The present invention generally relates to the field of optical shape sensing. In particular, the present invention relates to an optical fiber sensor for use in optical shape sensing comprising a number of fiber cores arranged in a radial distance from a center axis of the fiber. The present invention further relates to an optical shape sensing device comprising such an optical fiber sensor, and an optical shape sensing system, comprising such an optical fiber sensor. Furthermore, the invention relates to an optical shape sensing method using the optical fiber sensor.
Optical shape sensing (OSS) is a technology with which the three-dimensional shape of a special optical fiber can be reconstructed from the reflections of light within the fiber. This technology enables, for example, real-time 3D visualization of the full shape of devices like medical devices, for example catheters and guidewires. The shapes of the medical devices can be overlaid on X-ray images or a pre-operative CT scan. In this way, a physician can navigate the devices during a procedure without the need of X-ray tracking.
In optical shape sensing, an optical fiber sensor, also referred to as optical shape sensing fiber, is interrogated with light coupled into the fiber cores of the fiber, and distributed strain and temperature signals are obtained from back-scattered spectra obtained with an interrogator unit incorporating interferometers. A standard optical fiber sensor has three outer fiber cores (in the present description, fiber cores arranged spaced apart from the center axis of the fiber are also denoted as outer fiber cores) helically wound around a fourth core, which is arranged in the radial center of the fiber. The responses of the fiber cores to strain and temperature are measured as phase differences of the optical signals from the interferometers, as a function of delay position along the fiber sensor. The phase differences are obtained with respect to a reference measurement in which the fiber sensor is in a well-defined shape, for example a completely straight shape. From the phase differences of the fiber cores, the strain and temperature differences can be deduced for each fiber core. The strain signals will be the sum of bend strain in two orthogonal directions, as well as twist strain and axial strain, the latter being the strain in the longitudinal direction of the optical fiber sensor. From these four position dependent quantities, the shape of the fiber sensor can be reconstructed. For high-accuracy shape sensing, accurate fiber sensor properties are needed in the shape reconstruction model. These properties can be determined for each individual optical fiber in a calibration process.
A further extension of the shape sensing technology is to be able to distinguish the effect of temperature from the effect of axial strain. In order to do so at least one additional core with a different temperature sensitivity is needed, as, for example, described in WO 2016/099976 A1.
As described above, the shape of the optical sensing fiber is calculated from the position dependent strain signals measured for several, typically four cores inside the fiber. For example, bending the fiber in the plane defined by a fiber core and the fiber center will result in a strain on that fiber core if that core is not arranged in the center of the fiber. In this case, the strain ε is the quotient of the distance α of that core from the center axis of the fiber and the radius r of the bend of that core. The bend strain is measured here relative to the straight and unstrained state of the fiber. The magnitude of the strain can be deduced from the amount of spectral shift of the reflected light. In the case that the fiber cores contain Fiber Bragg Gratings (FBGs), due to the periodic nature of the Bragg gratings, the sensor will reflect the light of one particular wavelength, called the resonance wavelength. In case the fiber core is elongated (positively strained) relative to the reference measurement, the periodicity of the FBGs will increase, resulting in an increase in resonance wavelength. On the other hand, in case of compressive (negative) strain, the periodicity of the FBGs will decrease, resulting in a decrease in resonance wavelength. The lower the radius of curvature of the bend, the larger the shift δλ in resonance wavelength (in either positive or negative direction, depending on the location of the fiber core in the bend):
wherein λ0 is the resonance wavelength of the fiber cores, more precisely the FBGs, in the unstrained state, and ξ is a strain-optic number (≈0.8) that accounts for the strain-induced change of refractive index, which affects the relation between Bragg period and wavelength. The sine function describes the varying location of the outer core as it is helically twisted around the fiber center. ϑtwist is the cumulative twist angle of the core, which is the sum of the intrinsically present twist in the spun fiber and the externally applied twist. φ is an offset angle which is related to the orientation of the bend plane and the angle of the fiber core at a reference position. For reasons of clarity, in equation (1) only strain due to bend is assumed.
When an optical fiber sensor is inserted, for example, in a lumen of a medical device, it will experience a varying radius of curvature. The medical device may be pre-shaped and during handling of the device it will change its form. The smallest radius of curvature encountered by the optical fiber sensor depends on the design of the device, the optical fiber itself and the environment that it is being used in. For example, the vasculature of a human can, for example, be very tortuous. To be able to access these kind of vessels, more flexible devices will be used. An optical fiber sensor inside such medical devices should be able to withstand small radii of curvature. However, there is a limit, which is related to the minimum measurable bend radius of the optical fiber sensor.
In shape sensing, typically a spectrum is recorded for each fiber core by scanning a light source over a fixed wavelength range Δλ centered on the resonance wavelength of the FBGs in the unstrained situation. The minimum bend radius that has a resonance still inside the measured spectrum is:
For a scan range of Δλ=17 nm centered around λ0=1545 nm, ξ=0.8, and α=35 μm, the minimum measurable bend radius will be 5.1 mm. If the optical fiber sensor is bent to lower curvatures, no signal will be measured for a fiber core that is in the bend plane.
It appears from equation (2) that the minimum measurable bend radius can be reduced by reducing the fiber core distance α and/or by increasing the scan wavelength range Δλ. Reducing the outer fiber core distance α has the disadvantage that it reduces the sensitivity to bend strain and also the sensitivity to twist strain, as the sensitivity to twist strain scales with α2. The required accuracy on the twist is high, therefore reducing the outer fiber core distance from the center axis of the fiber is not favorable. Increasing the scan range Δλ is disadvantageous for other reasons. It decreases the signal to noise ratio, because the resonance peak fills the spectrum relative less. Further, the delay length between two consecutive nodes (data points as a function of position on the fiber) is decreased, giving an increase of data points for the same physical length of the fiber.
WO 2018/075911 A1 proposes to provide an optical fiber sensor with more than three outer fiber cores, wherein the fiber cores are arranged at multiple different radial distances from the center axis of the fiber. For small bend radii to be measured one has to switch to the fiber cores at lower distance which can lead to lower accuracy of the shape sensing measurement. Such a design of an optical fiber sensor thus suffers from a loss of accuracy.
US 2007/0297712 A1 discloses an optical fiber sensor for detecting curvature of a body, the sensor comprising a cladding having an outer periphery. The centralcore has Bragg gratings and is positioned in neutral planes of the cladding. Peripheral cores receive and transmit light.
US 2016/0047976 A1 discloses a fibre-optic sensor that comprises an optical waveguide having at least one first core and a cladding surround the first core, wherein the first core extends substantially over the entire length of the optical waveguide.
US 2006/0024008 A1 discloses a composite waveguide comprising a central core and at least one side core helically wound about the central core and in optical proximity to the central core.
US 2016/0238783 A1 discloses an optical fiber comprising a core group composed of a plurality of cores extending along a fiber axis, a common cladding including the core group and a coating covering an outer periphery of the common cladding.
US 2017/0123146 A1 discloses multicore optical fibers that have randomly arranged cores within a cladding matrix.
WO 2018/009342 A1 discloses a fiber that includes M primary cores and N redundant cores, where M an integer is greater than two and N is an integer greater than one. Interferometric circuitry detects interferometric pattern data associated with the M primary cores and the N redundant cores when the optical fiber is placed into a sensing position.
It is an object of the present invention to provide an optical fiber sensor enabling shape measurements with small bend radii without reducing fiber core distance from the center axis and/or without increasing the scan wavelength range.
It is a further object of the present invention to provide a device comprising an improved optical fiber sensor.
It is a further object of the present invention to provide an optical shape sensing system allowing for improved shapes sensing measurements.
It is a further object of the present invention to provide an optical shape sensing method allowing for improved shapes sensing measurements.
According to a first aspect of the invention, an optical fiber sensor for shape sensing is provided, comprising an optical fiber having embedded therein a number of at least four fiber cores arranged spaced apart from a longitudinal center axis of the optical fiber, the number of fiber cores including a first subset of at least two fiber cores and a second subset of at least two fiber cores, the fiber cores of the second subset being arranged to provide a redundancy in a shape sensing measurement of the fiber sensor, wherein the fiber cores of the first subset are distributed in azimuthal direction around the center axis with respect to one another, and each fiber core of the second subset is arranged in non-equidistantly fashion in azimuthal direction around the center axis with respect to two neighboring fiber cores of the first subset.
Optionally, a fiber core of the second subset which is arranged between two neighboring fiber cores of the first subset has an angular position which is closer to one of the two neighboring fiber cores of the first subset than to the other of the two neighboring fiber cores of the first subset, wherein the fiber cores of the first subset are arranged equidistantly in azimuthal direction around the center axis with respect to one another, and the fiber cores of the second subset are arranged equidistantly in azimuthal direction around the center axis with respect to one another.
The optical fiber sensor according to the present invention allows for measuring smaller bend radii by providing a redundancy in the number of fiber cores over the standard fiber sensor having three outer cores only. The invention is based on the insight that it is not necessary to provide outer fiber cores in different distances from the center axis in order to reduce the minimum measurable bend radius with the fiber sensor. In the optical fiber sensor according to the present invention, the outer fiber cores of the first subset and the at least one fiber core of the second subset may be arranged at a same radial distance from the center axis of the fiber, wherein this is preferred, but not imperative. In the fiber sensor according to the invention, at least one, preferably each fiber core of the second subset is arranged in non-equidistantly fashion in azimuthal direction around the center axis with respect to two neighboring fiber cores of the first subset. This means, an outer fiber core of the second subset which is arranged between two neighboring outer fiber cores of the first subset has an angular position which is closer to one of the neighboring outer fiber cores of the first subset than to the other of the two neighboring outer fiber cores of the first subset. This leads to a certain asymmetry between the outer fiber cores of the first subset and the fiber cores of the second subset in terms of angular position around the center axis. As will be described in more detail in the present description, such an arrangement of outer fiber cores is suitable to reduce the minimum measurable bend radius without increasing the scan wavelength range and/or reducing the fiber core distance from the center axis.
While an asymmetry may exist between the angular arrangement of the fiber cores of the second subset and the fiber cores of the first subset, the overall arrangement of all fiber cores may be symmetrical. For example, one can consider one outer fiber core of the first subset and one neighboring outer fiber core of the second subset as forming a pair of outer fiber cores, and the pairs present in the fiber may form a symmetrical arrangement of fiber core pairs, if the difference in angular position of the fiber cores in each pair is the same and the pairs have equal differences in angular position around the center axis with respect to one another. It is, however, also possible to vary the difference in angular position between the two fiber cores in the pairs and/or to vary the difference of angular position between the pairs so that there is no symmetry in the overall arrangement of the fiber cores of the first and second subsets.
An example of an overall symmetrical arrangement may be an arrangement in which the first and second subsets each include three outer fiber cores, and the outer fiber cores of the first subset may be placed at 0°, 120°, 240°, and the outer fiber cores of the second subset may be placed at 30°, 150°, 270° around the center axis.
An angle between the angular position of one fiber core of the second subset in azimuthal direction around the center axis and the angular position of one of two neighboring fiber cores of the first subset may be at least 10%, or at least 20%, or at least 40% less than a half angle between the angular positions of the two neighboring fiber cores of the first subset. In an embodiment of the fiber sensor with three outer cores in the first subset and three outer cores in the second subset, the angle may be in a range from 20° to 40°, e.g. about 30°.
The fiber cores of the first and second subsets of fiber cores may be helically wound around the center axis of the fiber sensor. A central fiber core may be arranged to the center axis and extending along same.
The fiber cores of the first subset and the fiber cores of the second subset may have one or more fiber Bragg gratings along the length of the respective fiber core.
The second subset of fiber cores may include three or more fiber cores.
In another embodiment, which may be combined with any one of the embodiments described before, an optical property of the fiber cores of the second subset differs from the optical properties of the fiber cores of the first subset.
An optical property in this regard may be the resonance wavelength of the fiber cores in an unstrained state thereof. In an embodiment, a first resonance wavelength of the fiber cores of the first subset in response to light introduced into the fiber cores in an unstrained state thereof and a second resonance wavelength of the at least one fiber core of the second subset in an unstrained state thereof may differ from one another. This measure is also suitable to reduce the minimum measurable bend radius of the optical fiber.
A further measure to reduce the minimum measurable bend radius of the optical fiber which may also be combined with any of the embodiments above is to decenter the first resonance wavelength of the fiber cores of the first subset and/or the second resonance wavelength of the at least one fiber core of the second subset with respect to a center wavelength of a scan wavelength range of the light used for interrogating the fiber cores. In this embodiment, the first and second resonance wavelengths may be equal with respect to one another or they may be different.
According to a second aspect of the present invention, an optical shape sensing device is provided comprising an optical fiber sensor according to the first aspect and its embodiments.
The optical shape sensing device may be a medical device, in particular a catheter or guidewire.
According to a third aspect of the invention, an optical shape sensing system is provided, comprising an optical fiber sensor according to the first aspect, and an optical interrogation unit configured to interrogate the fiber cores of the first subset of fiber cores and the at least one fiber core of the second subset of fiber cores of the optical fiber sensor with light in a scan wavelength range and to measure reflection spectra received from the fiber cores of the first subset of fiber cores and the at least one fiber core of the second subset of fiber cores of the optical fiber sensor, and
an evaluation unit configured to reconstruct the shape of the fiber sensor using the reflection spectra.
The optical shape sensing system according to the invention has the same or similar advantages as described with respect to the optical fiber sensor according to the invention. In particular, the scan wavelength range may be the same as for a standard fiber sensor having three outer cores only, and nevertheless smaller bend radii may be measured with this scan wavelength range than in case of a standard fiber sensor.
In an embodiment, the optical interrogation unit may be configured to set the scan wavelength range such that a center wavelength of the scan wavelength range is decentered with respect to a first resonance wavelength of the fiber cores of the first subset, the resonance wavelength being in response to light introduced into the fiber cores in an unstrained state of the fiber cores, and/or the optical interrogation unit is configured to set the scan wavelength range such that a center wavelength of the scan wavelength range is decentered with respect to a second resonance wavelength of the at least one fiber core of the second subset, the second resonance wavelength being in response to light introduced into the at least one fiber core in an unstrained state of the at least one fiber core. In these embodiments, the scan wavelength range is asymmetrical with respect to the resonance wavelengths of the outer fiber cores of the optical fiber, which is also suitable to measure smaller bend radii of the optical fiber sensor than it is possible with conventional systems.
According to a further aspect, an optical shape sensing method is provided, comprising
providing an optical fiber sensor according to the first aspect,
interrogating the fiber cores of the first subset of fiber cores and the at least one fiber core of the second subset of fiber cores with light,
measuring reflection spectra of light returning from the fiber cores of the first subset of fiber cores and the at least one fiber core of the second subset of fiber cores,
reconstructing the shape of the optical fiber sensor based on the reflection spectra.
The optical shape sensing method according to the invention has the same or similar advantages as described above.
It is to be understood, that all embodiments described above can be combined with one another in order to provide an optical fiber sensor, an optical shape sensing device, an optical shape sensing system, an optical shape sensing method, all allowing for measuring bend radii of the optical fiber sensor as small as possible.
These and other aspects of the invention will be apparent from and elucidated with reference to the embodiments described hereinafter. In the following drawings
With reference again to
When the tuneable light source 22 is swept through a range of optical frequencies, each channel 24a, 24b, 24c, 24d and thus each fiber core 14, 16, 18, 20 of the optical fiber sensor 12 is simultaneously and independently optically interrogated, and the interferometric signals based on the reflection spectrum returning from each of the fiber cores 14, 16, 18, 20 are routed to a processing unit or data acquisition unit 26 via respective photodetectors 25. The distributed strain measurements from the cores 14, 16, 18, 20 using the multiple channel OFDR system may then be exported for further processing to an evaluation unit 27, in particular for three-dimensional shape reconstruction of the optical fiber sensor 12 and for visual display of the reconstructed three-dimensional optical fiber sensor 12.
In embodiments of the optical fiber sensor 12, the fiber cores 14, 16, 18, 20 may have Fiber Bragg Gratings (FBGs) formed by periodic variations in the refractive index. For the sake of simplicity, FBGs having a single resonance wavelength are considered herein. An FBG reflects light of a certain wavelength (resonance wavelength) that depends on the grating period of the FBG, and transmits all other wavelengths. Due to a bend of the optical fiber sensor 12, the grating period is affected by a strain, and measurement of the reflected wavelength for any position along the fiber allows determining the local strain. The optical fiber sensors 12′ according to embodiments of the present invention described below, may also comprise such FBGs.
Optical interrogation of the optical fiber sensor 12 gives the information needed to, in principle, reconstruct the three-dimensional shape of the whole fiber sensor in real time. Given an appropriate reference frame, it is possible to know the exact orientation and position of the complete fiber sensor 12 in real time.
When an optical fiber sensor, like the optical fiber sensor 12, is used, for example in a medical device like a catheter or guidewire, the device will change its form during handling of the device. For example, if the device is a catheter for introducing into the vasculature of a human, which can be very tortuous, the device and, thus, the optical fiber sensor 12 will experience bends along its length which may have radii of curvature which can be very small. However, in optical shape sensing technology, there is a limit which is related to the minimum measurable bend radius of the optical fiber sensor.
Referring to equation (2) above, the minimum measurable bend radius of the standard optical fiber sensor 12 will be 5.1 mm for a scan range of Δλ=17 nm centered around the resonance wavelength λ0=1545 nm of the fiber cores in an unstrained state, ξ=0.8, and a=35 μm (as to the definition of these parameters, see above). If the standard optical fiber sensor 12 is bent to lower curvatures, i.e. to curvatures with a bend radius below 5.1 mm, no signal will be measured for a fiber core that is in the bend plane.
As shown in
The fiber cores of the second subset of fiber cores may be helically wound around the center axis of the sensor 12′.
To be able to distinguish the four position-dependent quantities needed for shape reconstruction with the optical fiber sensor 12′, which quantities are bend strain in two orthogonal directions, twist and axial strain, the signals of the central core 0 and at least three of the outer cores 1 to 6 should be known.
In order to have a measure for the beneficial effect of redundancy in outer fiber cores in comparison with a standard optical fiber sensor having three outer cores, like optical fiber sensor 12 in
where n is the total number of fiber cores (including the center core and n−1 outer fiber cores). For n=4 (standard optical fiber sensor), f is 1. For n=7 (six outer cores and one center core), f is about 0.87. This means that for a symmetrical arrangement of six outer cores (60° angle between two neighboring outer cores), the minimum measurable bend radius can be reduced by a factor of 0.87, i.e. from 5.1 mm to 4.5 mm, with the same scan wavelength range.
The gain factor f and, thus, the minimum measurable band radius, can be further reduced by one or more of the following measures which will be described in connection with further embodiments.
In general, optimization of the gain factor f can be done by changing the fiber core angles with respect to one another, and/or by changing the core optical properties, and/or by introducing an asymmetry between the scan wavelength range and the resonance wavelength of the fiber cores in the unstrained state thereof. These measures will be described hereinafter.
The lowest gain factor f is obtained for θ=30° (f=0.71) in the 7-core fiber sensor 12′.
Thus, with an angle θ=30°, a reduction in minimum measurable bend radius to 3.6 mm can be achieved, which is lower than in the more symmetric case of the embodiment in
A further measure to optimize the minimum measurable bend radius of an optical fiber sensor is to properly choose the optical properties of the fiber cores in the first and the second subset. Such an optical property which may be varied among the fiber cores may be the resonance wavelength λ0 of the fiber cores in an unstrained state thereof.
It is also conceivable to combine the embodiment in
A further option in combination with the redundancy of outer optical fiber cores in order to reduce the minimum measurable bend radius is to introduce an asymmetry between the resonance wavelengths, for example of the FBGs of the unstrained fiber cores, and the center wavelength of the scan wavelength range that is used to interrogate the fiber cores. This means λ0≠λc, even in case λ0 is the same for all fiber cores. To this end, the interrogation unit 21 of the optical shape sensing system 10 in
In the following table 1, the simulation results of the standard case in
Table 1 also includes an embodiment in line 5 of table 1, in which λ0−λc deviates from zero for the outer fiber cores of the first subset as well as for the outer fiber cores of the second subset as mentioned above, wherein λ0−λc=2.8 nm for the outer fiber cores of the first subset and λ0−λc=−2.8 nm for the outer fiber cores of the second subset.
The above described measures of optimizing the design of the optical fiber sensor 12′ and optimizing the interrogator unit 21 (
For example, the resonance wavelength λ0 in the unstrained state of the fiber cores may deviate from fiber core to fiber core due to some other design constraint. For example, in case it is desired to distinguish temperature from axial strain, at least one fiber core with a temperature sensitivity different from the other cores has to be used. This can result in a deviating λ0 for this fiber core. For the case of a 7-fiber core shape sensing fiber with a design similar to the one in
In
The two plots of 9A and 9B are combined in
From equation (5) and
The above-described aspects are all valid in case of redundancy, i.e. the number of fiber cores in the fiber sensor is larger than the number of quantities needed to accurately sense the shape of the optical fiber sensor 12′. However, it can be advantageous to use the same aspects also in cases when even though strictly speaking there is no overall redundancy. It might be acceptable to lose information on less important quantities in order to create temporarily or spatially “redundancy” for essential quantities required for shape sensing. For example, for some measurements or at some particular locations, e.g. with short bends having a smaller radius of curvature, only the signals of some of the fiber cores might be used so that that smaller bend radius still can be probed. This might compromise accuracy a little, or this could be compensated with (temporal or spatial) interpolation or extrapolation of signals. This will be explained in more detail below.
With again reference to
The above aspects which are suitable to reduce the minimum measurable bend radius using one or more of the embodiments of the optical fiber sensor 12′ described above can be used in an optical shape sensing method. In the method, the optical fiber sensor (12′) is provided. The fiber cores (1, 3, 5) of the first subset of fiber cores and the fiber cores (2, 4, 6) of the second subset of fiber cores are interrogated with light. Reflection spectra of light returning from the fiber cores (1, 3, 5) of the first subset of fiber cores and the at least one fiber core (2, 4, 6) of the second subset of fiber cores are measured, and the shape of the optical fiber sensor (12′) based on the reflection spectra is reconstructed. The method can be performed with the system 10 in
While the invention has been illustrated and described in detail in the drawings and foregoing description, such illustration and description are to be considered illustrative or exemplary and not restrictive; the invention is not limited to the disclosed embodiments. Other variations to the disclosed embodiments can be understood and effected by those skilled in the art in practicing the claimed invention, from a study of the drawings, the disclosure, and the appended claims.
In the claims, the word “comprising” does not exclude other elements or steps, and the indefinite article “a” or “an” does not exclude a plurality. A single element or other unit may fulfill the functions of several items recited in the claims. The mere fact that certain measures are recited in mutually different dependent claims does not indicate that a combination of these measures cannot be used to advantage.
Any reference signs in the claims should not be construed as limiting the scope.
Number | Date | Country | Kind |
---|---|---|---|
18195654.1 | Sep 2018 | EP | regional |
This application is a Continuation of U.S. patent application Ser. No. 17/274,849 filed Mar. 10, 2021, which is the U.S. National Phase application under 35 U.S.C. § 371 of International Application No. PCT/EP2019/075094 filed Sep. 19, 2019, which claims the benefit of European Patent Application Number 18195654.1 filed Sep. 20, 2018. These applications are hereby incorporated by reference herein.
Number | Date | Country | |
---|---|---|---|
Parent | 17274849 | Mar 2021 | US |
Child | 18731581 | US |