This disclosure relates to optical fibers, and in particular relates to optical fibers having a low-index core and a core grating.
Conventional optical fibers have a core with a refractive index that is higher than that of the cladding. However, new types of optical fibers have a core with a refractive index that is lower than that of the cladding (i.e., “a low-index core”) and so are referred to herein as low-index fibers. The use of low-index fibers in fiber-based applications is of increasing interest because they can be made to have ultra-low loss and ultra-low nonlinearity. They can be used, for example, in optical communications systems for long-haul transmission or in laser-based optical systems that require the delivery of high optical power from the laser to a device or other optical fiber.
One type of low-index optical fiber is a hollow-core optical fiber. Two types of hollow-core fibers have been demonstrated to date. The first has a photonic bandgap structure that uses a periodic array of longitudinally running air holes in a solid material. The second has a solid cladding formed from multiple layers that surround the hollow core, wherein the multiple layers are configured in a Bragg-grating structure so that light is confined to the core.
Photonic bandgap fibers require a very high air-fill fraction (˜95%) to confine the light to the hollow core. Because of the high air-fill fraction, the bridges supporting the periodic air-hole structure are very thin (e.g., about 40-50 nm). Consequently, such bridges are difficult to make and are delicate.
On the other hand, Bragg-grating-based fibers need a very high index contrast to confine the light to the core, which is difficult to achieve using glass material. Bragg fibers have been demonstrated with the high index layer being tellurium (refractive index 4.6) and the low index layer being polymer (refractive index 1.59). Because the tellurium and polymer layers are made by two different processes, the fiber fabrication requires many process steps and is not suitable for large-scale manufacturing.
An aspect of the disclosure is an optical fiber configured to guide light of an operating wavelength λ in at least one guided mode. The fiber has a solid and generally cylindrical annular cladding having a refractive index ncl, a central axis, an inner surface with a radius r. In various examples, r≧2 μm, or 2 μm≦r≦200 μm, or 6 μm≦r≦100 μm, or 10 μm≦r≦50 μm. The fiber also has an outer surface with a radius R and an annular thickness ΔR=R−r, wherein ΔR≧10 μm. The fiber also has a core disposed along the central axis and surrounded by the cladding. The core has the radius r and a refractive index nc, wherein ncl>nc. The fiber also has a grating defined by grating elements that extend from the cladding inner surface into the core and that run generally parallel to the central axis. The grating elements define a period , a width t, a spacing a and a height h. In various examples, the ratio λ satisfies 0.25≦λ≦1, or 0.5≦/λ≦1. Also in various examples the ratio t/a satisfies 0.2≦t/a≦10, more preferably 0.5≦t/a≦3, most preferably 1≦t/a≦2.
Another aspect of the disclosure is an optical fiber configured to guide light of an operating wavelength λ in at least one guided mode. The fiber has a solid and generally cylindrical annular cladding having a refractive index ncl, a central axis, an inner surface with a radius r. In various examples, r satisfies r≧2 μm, or 2 μm≦r≦200 μm, or 6 μm≦r≦100 μm, or 10 μm≦r≦50 μm. The fiber also has a hollow core defined by the cladding inner surface. The hollow core has the radius r and a nominal refractive index nc=1, wherein ncl>nc. The fiber further has a grating defined by grating elements that extend from the cladding inner surface into the core. The grating elements run longitudinally down the fiber and are generally parallel to the central axis. The grating elements have a width t, a spacing a and a height h and define a grating period =t+a. In various examples, the ratio Λ/λ satisfies 0.5≦Λ/λ≦1 or 0.5≦Λ/λ≦1.
Another aspect of the disclosure is a method of forming an optical fiber configured to guide light of an operating wavelength λ in at least one guided mode. The method includes forming a bait rod having an outer surface with a first periodic grating formed therein. The method also includes depositing a silica soot layer onto the outer surface of the bait rod to form a soot preform. The method further includes consolidating the soot preform to form a glass preform, wherein the soot layer is converted to a glass layer, wherein the bait rod is to form a hollow core in the glass preform and wherein the glass layer has an inner surface with a second periodic-grating surface structure that is complementary to the first periodic-grating surface structure. The method also includes drawing the glass preform to form the optical fiber, wherein the optical fiber has the following properties:
Another aspect of the disclosure is a method of forming an optical fiber configured to guide light of an operating wavelength λ in at least one guided mode. The method includes forming a bait rod having an outer surface with a first periodic grating formed therein. The method also includes pressing a silica soot layer onto the outer surface of the bait rod with a pressure to form a soot preform. The method further includes consolidating the pressed soot preform to form a glass preform, wherein the soot layer is converted to a glass layer, wherein the bait rod is to form a hollow core in the glass preform and wherein the glass layer has an inner surface with a second periodic-grating surface structure that is complementary to the first periodic-grating surface structure. The method also includes drawing the glass preform to form the optical fiber, wherein the optical fiber has the following properties:
Another aspect of the disclosure is a method of forming an optical fiber configured to guide light of an operating wavelength λ in at least one guided mode. The method includes extruding a soot preform through an extrusion die that includes a first periodic-grating to define a hollow core with an inner surface that includes a second periodic-surface grating complementary to the first periodic grating structure. The method also includes consolidating the extruded soot preform into a glass preform. The method also includes drawing the glass preform to form the optical fiber, wherein the optical fiber has the following properties:
It is to be understood that both the foregoing general description and the following Detailed Description represent embodiments of the disclosure and are intended to provide an overview or framework for understanding the nature and character of the disclosure as it is claimed. The accompanying drawings are included to provide a further understanding of the disclosure and are incorporated into and constitute a part of this specification. The drawings illustrate various embodiments of the disclosure and together with the description serve to explain the principles and operations of the disclosure.
Additional features and advantages of the disclosure are set forth in the Detailed Description that follows, and in part will be readily apparent to those skilled in the art from that description or recognized by practicing the disclosure as described herein, including the Detailed Description that follows, the claims, and the appended drawings.
The claims as set forth below are incorporated into and constitute a part of the Detailed Description set forth below.
Additional features and advantages of the disclosure are set forth in the Detailed Description that follows and will be apparent to those skilled in the art from the description or recognized by practicing the disclosure as described herein, together with the claims and appended drawings.
Cartesian coordinates are shown in certain of the Figures for the sake of reference and are not intended as limiting with respect to direction or orientation.
The cladding 20 surrounds a core 30 that has a refractive index nc<ncl and an outer radius r, i.e., the same radius as the inner radius of cladding 20. The core 30 can be hollow (nc=1), in which case cladding inner surface 22 defines the core. In another example, core 30 can be made of solid material such as silica glass or other materials that satisfy ncl>nc. In various examples, the radius r can be in the range from 2 μm≦r≦200 μm or 6 μm≦r≦100 μm or 6 μm≦r≦50 μm. In an example, the radius R can be in the range 50 μm≦R≦500 μm, which serves to keep the fiber relatively flexible.
If fiber flexibility is not required, the radius R can be greater than 500 μm, for example 1 mm, 2 mm or 5 mm. In an example, one or more protective layers (e.g., one or more polymer coatings) (not shown) can be deposited or otherwise disposed on outer surface 24 of cladding 20. In an example, core 30 consists of a single material (e.g., air, silica, etc.).
The inner surface 22 of cladding 20 includes a grating 40 having grating elements 42 that extend inwardly into core 30 toward central axis 12. The grating elements 42 are disposed at different polar angles θ relative to central axis 12. The grating elements 42 run longitudinally down fiber 10 and are generally parallel to central axis 12. The grating elements 42 have a refractive index ng, a width t, an edge-to-edge spacing or “gap width” a, and a height h. The grating element width t and the gap width a define a grating period =a+t. The gap width a between adjacent grating elements 42 can also be defined in terms of a center-to-center angular spacing dδ via the relationship dθ=(a+t)/r. In various examples, the inner surface 22 of cladding 20 is configured to have a number N of grating elements, wherein in various N satisfies 10≦N≦200 or 50≦N≦500 or 100≦N≦1000.
In various examples, grating 40 is configured so that the ratio NA satisfies 0.25≦Λ/λ≦1 or 0.5≦Λ/λ≦1 or 0.6≦Λ/λ≦0.1. In various examples, grating 40 is configured so that the ratio t/a satisfies 0.2≦t/a≦10 or 0.5≦t/a≦2.5 or 1≦t/a≦2.
In an example, grating elements 42 can have any reasonable X-Y cross-sectional shape, including for example a rectangular cross-sectional shape, a round cross-sectional shape, a rounded-edge cross-sectional shape, a triangular cross-sectional shape, etc. The cladding inner surface 22 with grating 40 acts to confine light 14 substantially to core 30 and to form guided modes from the confined light if cladding 20, grating period Λ and grating element height h are properly chosen, as described below.
In an example embodiment, fiber 10 has a relatively wide wavelength window of transmission (i.e., transmission bandwidth) Δλ. For the fiber parameters in examples E1 through E7 set forth in Table 1 below, the tunneling loss TL of the fundamental mode was calculated for the fundamental guided mode LP01 and the higher-order mode LP11 (the ring mode) for different wavelengths in the range from 1,400 nm to 1,700 nm. In various examples, the transmission bandwidth Δλ satisfies Δλ≦10 nm or Δλ≦30 nm or Δλ≦50 nm.
Tables 1 through 7 are presented below just prior to the claims and set forth examples E1 through E31 of fiber 10. The Tables include the key fiber parameters as described above, as well as the real (re) and imaginary (im) components of the fiber's effective index neff, and the tunneling loss TL (dB/m). The tunneling loss TL is a logarithmic measure of how much optical power leaks from the guided mode as it travels down a given length of fiber 10. The values for the ratio /A in the Tables set forth below have been rounded to the third decimal place.
In an example embodiment, fiber 10 has a core radius r in the range 2 μm≦r≦2000 μm, a grating period to wavelength ratio Λ/λ in the range 0.5<Λ/λ<1, a grating element width to grating element spacing ratio t/a in the range 0.2≦t/a≦3, a grating element width to grating element height ratio t/h in the range 0.25≦t/h≦4, and a tunneling loss TL≦0.1 dB/m.
Table 1 below sets forth the first seven examples E1 through E7 of fiber 10 for which the core radius r=24.3 μm. The cladding 20 is pure silica with an index ncl=1.444 at 1550 nm wavelength. The grating index ng=3.5, the grating period Λ=1.272 μm, the air gap a=0.532 μm, the grating element width t=0.74 μm and the grating element height h=0.34 μm. The tunneling loss TL was calculated at wavelengths λ from 1,400 nm to 1,700 nm. It can be seen that the tunneling loss TL can be as low as 0.035 dB/m.
A relatively high grating index ng for grating elements 42 can be obtained by using non-silica-based materials such as chalcogenide glass, crystals and semiconductors. In examples where ncl is the refractive index of SiO2 (i.e., nsl=ncl), the grating index ng satisfies nsl<ng<5, or 1.5·nsl<ng<5, or 2·nsl<ng<5.
Table 2 below sets forth examples E8 through E10. The fiber parameters are the same as those of example E4 in Table 1 above, with some exceptions. Specifically, for example E8, the core is made of silica with an index nc=1.444. When silica is used as the core material, the tunneling loss increases to around 7.15 dB/m, indicating that the version of this fiber that has a hollow (air) core has better transmission performance.
Also, for example E9, the grating index ng=1.444. The tunneling loss TL for this fiber is significantly larger than that for the counterpart example where the grating index was higher. Further, for example 10, there is no grating 40 at all by way of comparison of the tunneling losses. It is observed that the tunneling loss TL reaches a maximum of 276.34 in the absence of grating 40.
In the examples set forth in Tables 1 and 2, grating elements 42 each have a square cross-sectional shape.
Table 3 below sets forth two examples E11 and E12 wherein grating elements 42 each have rounded corners.
Table 4 and Table 5 set forth examples E13 through E21 that have an operating wavelength λ in the range from 1,550 nm to 1,600 nm, with grating index ng=2.8, cladding index ncl=1.444 and core index nc=1. The other fiber parameters were optimized to have a minimum tunneling loss TL. The ratio t/a ranges from about 1.3 to about 2.3.
Table 6 sets forth examples E22 through E27 that have grating indices of ng=1.5 (examples E22-E24) and ng=2 (E25-E27). The core 30 is hollow with a core index nc=1 (air). The cladding index ncl ranges from 1 to 1.2 and is used to reduce the tunneling loss TL. These examples show that, with careful design, a low-index grating 40 can be used to guide light 14 in core 30.
Table 7 sets for examples E28 through E31. The grating index is ng=3.5. The core 30 is hollow with a core index nc=1 (air), but the core has different radii (namely, r=15 μm, 12 μm, 6 μm and 30 μm, respectively) for the different examples. Examples E28 through E31 show that the tunneling loss TL decreases with increasing core radius. This effect is shown clearly in
The fiber 10 can be fabricated using a number of different methods, and two example methods are discussed by way of illustration. The first example method utilizes outside vapor deposition (OVD) and the main steps are schematically illustrated in
Next, silica soot is deposited onto bait rod 116 using OVD to form an outside soot layer 118, thereby forming a soot preform 126 as shown in
Another method of making a hollow-core preform based on extrusion is illustrated in
Although the embodiments herein have been described with reference to particular aspects and features, it is to be understood that these embodiments are merely illustrative of desired principles and applications. It is therefore to be understood that numerous modifications may be made to the illustrative embodiments and that other arrangements may be devised without departing from the spirit and scope of the appended claims.
This application claims the benefit of priority under 35 U.S.C. §119 of U.S. Provisional Application Ser. No. 61/757,870 filed on Jan. 29, 2013 the contents of which are relied upon and incorporated herein by reference in their entirety as if fully set forth.
Number | Date | Country | |
---|---|---|---|
61757870 | Jan 2013 | US |