This invention relates to an optical coupling system. In particular, but not exclusively, it relates to an optical fibre structure for coupling the output of a high-power semi-conductor having a linear emitting region into an optical fibre with high coupling efficiency and brightness.
High-power semi-conductor laser diodes are often used for pumping fibre lasers. In these applications, the output from the fibre laser is applied to a cladding layer of the fibre which has Bragg gratings formed in its core and the energy from the laser diodes is used as pumping energy to cause a lasing effect within the active fibre.
A means is therefore required for coupling the output of these high-power semi-conductor laser diodes into the cladding of the optical fibres.
High-power semi-conductor laser diodes suitable for such laser pumping often have linear emitting regions. Most commonly, these have dimensions of approximately 1×100 μm. The output of such an emitter can be coupled into a multi-mode optical fibre with a core diameter slightly larger than the emitter width, typically around 105 μm, using a simple fast axis collimation scheme. It is desirable to use emitters with larger output width, typically as large as 1,000 μm, as these can produce more power at a lower cost per watt. However, if the output of such lasers is coupled into a circular optical fibre using a straightforward fast axis collimation scheme, then the diameter of the optical fibre core must be very large (ie greater than 1000 g/m) and therefore the brightness (or more correctly radiance) of the fibre coupled output may be too low to be useful as a fibre laser pump source.
Various techniques have been developed for circularising the output of linear semi-conductor laser sources and coupling this into an optical fibre with much smaller diameter than the emitter width. U.S. Pat. No. 4,688,884 discloses a fibre optical coupling system for phased array semi-conductor lasers. This system is for coupling the output from an array of semi-conductor lasers to an optical fibre and has a ‘squashed’ input end which has a generally elliptical, cross-section. The output end is generally circular for coupling to a circular fibre.
The fibre coupler shown in this document however is squashed to produce its input end. Such squashing may cause difficulties during manufacture such as damage the coupler or may lead to unreliable or unquantifiable transmission rates or to non-repeatability amongst different couplers. The coupling efficiency with this coupler may be around 77 to 80% but is generally less than optimal for a given configuration.
There is a need, therefore, for an improved optical coupler and a further need to increase coupling efficiency.
The invention provides an optical fibre coupling structure comprising an optical fibre having an elongate input surface and shaped so that the diameter of the core of the fibre reduces in one dimension away from the input while increasing in the other dimension away from the input to form respective convergent and divergent surfaces, towards an output which is more circular than the input.
Embodiments of the invention will now be described, by way of example only, with reference to the accompanying drawings, in which:
According to the present invention there is provided an optical fibre coupling structure comprising an optical fibre having an elongate input surface and shaped so that the diameter of the core of the fibre reduces in one dimension away from the input while increasing in the other dimension away from the input to form respective convergent and divergent surfaces, towards an output which is more circular than the input.
Preferably, the structure comprises an optical fibre that tapers outward in a direction towards the input and has a wedge formed onto the tapered section.
The optical fibre most preferably has a core which is non-circular in cross-section so as to couple optical rays input at the input end between horizontal and vertical planes.
The invention further provides a method of forming an optical fibre coupling structure comprising tapering an optical fibre to a required output diameter and forming a wedge onto the tapered section by removal of material so as to form an elongate input at the end of the wedge portion.
In a further aspect, there is provided a method of coupling a laser beam into an output optical fibre, using a coupling structure.
Referring now to
The laser emitter 2 is a broad stripe single emitter and typically is arranged to have an output aperture of about 750×1 μm. The laser diode may be used to provide pumping energy through a fibre 3 to a cladding pumped optical fibre laser 3. The coupling structure 1 is mounted between the laser diode 2 and output fibre 3. The structure 1 comprises a large diameter optical fibre that is tapered and has a low angle wedge 4 machined or polish onto the tapered section 5. As is shown in
The optical fibre includes a central core 7 and at least one cladding layer 8. Optical radiation is transmitted within the fibre by virtue of total internal reflection at the core-cladding interface.
Radiation is emitted from the laser diode or other emitter 2 via a fast access collimator 9 into the input face 6 of the coupler. In the coupler, the generally rectangular or otherwise elongate output of the linear emitter is circularised and coupled into an output optical fibre 3 with core diameter smaller than the emitter width.
As is shown in
Secondly, as shown in
It is preferably performed by optical polishing but may be performed by other methods. The wedge may be formed on one or both sides of the fibre.
The coupler may terminate at the largest diameter part 10 of the wedge portion or may continue, as shown in
As shown in
As is well-known, optical transmission in an optical fibre occurs by total internal reflection of light at the core/cladding interface provided at the incident angle of the radiation is less than the critical angle of that interface. In the portion of the coupler in which the core is exposed, the interface is a core-air interface and internal reflection also occurs at this interface provided the critical angle relevant to this interface is not exceeded.
Basically, the structure of the coupler is one in which the diameter of the fibre reduces in one dimension away from the input while increasing in the other dimension away from the input. Thus, the tapering causes a reduction in the horizontal dimension (in the disposition shown in the figures) whilst the wedging causes an increase in the vertical dimension, both in the direction away from the input.
As is shown in
To overcome this, if the coupler is divergent in the other dimension, as shown in
Instead of the term “critical angle” the term “numeral aperture” is often used in relation to optical fibres so that if an incident angle exceeds the numeral aperture of the optical fibre it ceases to be guided by it and is transmitted outwards through the side of the fibre, as shown at 13.
The optical fibre is caused to have a core which is non-circular to provide better coupling between the convergent and divergent surfaces of
A hexagonal core geometry, as shown in
Effectively, the hexagonal or other non-circular orientation increases the coupling of rays between the horizontal and vertical plane and thus increases performance. This can enable the length of the taper to be reduced, making the structure easier to manufacture.
The results show that in general a longer taper length results in higher coupling efficiency. However, a longer tapered section can be more difficult to manufacture and it is therefore desirable to minimise the length of the tapered section. In the example shown, the highest coupling efficiency is seen to be around 90% and this is achieved for a 10 mm taper with a hexagonal core numerical aperture of 0.22. The results show that to obtain the highest coupling efficiency, a hexagonal or other faceted or non-circular core is preferable to a circular section core. A circular core geometry gives lower coupling efficiency as there is insufficient coupling between rays in the horizontal and vertical planes.
Some of these surfaces may have anti-reflection coatings and this would result in even higher coupling efficiency.
Number | Date | Country | Kind |
---|---|---|---|
0522083.5 | Oct 2005 | GB | national |
This application is a continuation application of and claims priority to PCT/GB2006/050357 filed Oct. 27, 2006, which claims priority to GB Application No. 0522083.5 filed on Oct. 29, 2005.
Number | Date | Country | |
---|---|---|---|
Parent | PCT/GB2006/050357 | Oct 2006 | US |
Child | 12061251 | US |