This application claims benefit of priority under 35 U.S.C. 119 to Japanese Patent Application Nos. 2006-344063 filed Dec. 21, 2006, 2007-012206 filed Jan. 23, 2007 and 2007-209393 filed Aug. 10, 2007; and the entire contents of the applications are incorporated herein by reference.
1. Field of the Invention
The present invention relates to an optical film and a polarizing plate (occasionally referred to as “polarizer” hereinafter) that contribute to improving the display characteristics of liquid-crystal display devices, especially VA-mode liquid-crystal display devices.
2. Related Art
Applications of liquid-crystal display devices are expanding year by year as power-saving and space-saving image display devices. Heretofore, one serious drawback of liquid-crystal display devices is that the viewing angle dependence in image exhibition is large. Recently, however, VA-mode, wide-viewing-angle liquid-crystal display devices have been put into practical use, and accordingly, the demand for liquid-crystal display devices is greatly increasing even in the market that requires high-definition image quality, for example, for televisions, etc.
As compared with other liquid-crystal display modes, VA-mode liquid-crystal display devices have the advantage of high contrast, but have a problem in that the contrast change and the color shift are great, depending on the viewing angle. As opposed to this, for example, disclosed is a method for obtaining an achromatic VA-mode liquid-crystal display device, which comprises two retardation layers having different optical characteristics and gives sharp black exhibition even when watched in the oblique direction (for example, see JPA Nos. 2003-121641 and 2006-323329).
Further, in Japanese Patent No. 3648240, proposed is a method for reducing viewing angle-dependent color shift by a combination of an A plate having a smaller Re on the shorter wavelength side and a C plate having a larger Rth on the shorter wavelength side.
In particular, regarding the A plate having a smaller Re on the shorter wavelength side, also proposed are a stretched cellulose acylate film in JPA No. 2002-22941 and a stretched film of a modified norbornene resin in JPA No. 2003-292639, in addition to the stretched film of a modified polycarbonate in the above Japanese Patent No. 3648240.
However, the stretched film of a modified polycarbonate in Japanese Patent No. 3648240, and the stretched film of a modified norbornene in JPA No. 2003-292639 have a large photoelasticity coefficient, and could hardly ensure the adhesiveness to polyvinyl alcohol that is used as a polarizing element; and accordingly, they have a problem in that the display unevenness is great when turned on for a long period of time in high temperature and high humidity condition. The stretched cellulose acylate film described in JPA No. 2002-22941 has a drawback that the humidity dependence of its retardation is large and is therefore problematic in that it causes light leakage and color shift when turned on for a long period of time in high temperature and high humidity condition; and improving it in this point is desired.
The A plate in Japanese Patent No. 3648240 has a large in-plane retardation of Re(550)=150 nm. Accordingly, depending on the viewing azimuth angle, the apparent retardation greatly changes. As a result, when it is set in a panel, it causes a problem of light leakage and color shift depending on the azimuth angle in watching.
Further, since its in-plane retardation is too large, it causes axial shifting and in-plane axial fluctuation when stuck to a polarizing element, and therefore has another problem in that, when the panel is watched from the front, the light leakage increases and the front contrast ratio decreases.
One object of the invention is to provide a novel optical film and a polarizer comprising it, which contribute to improving the display characteristics of liquid-crystal display devices, especially VA-mode liquid-crystal display devices, in particular to reducing the light leakage and color shift that may occur when observed in the oblique direction and to reducing the display characteristic change that may be caused by external environmental change.
In one aspect, the invention provides a biaxial optical film of which in-plane retardation (Re) and thickness-direction retardation (Rth) are larger at a longer wavelength range within a range of from 400 nm to 700 nm,
wherein the in-plane retardation thereof at a wavelength of 550 nm, Re(550), satisfies Re(550)>20 nm and the Nz value thereof (Nz=Rth(550)/Re(550)+0.5) satisfies 1.1≦Nz≦5.
As embodiments of the invention, there are provided the optical film which is stretched in TD by from 1.01 to 2 times; the optical film comprising at least one polymer and at least one additive, wherein at least one additive is a liquid-crystal compound; the optical film comprising at least one liquid-crystal compound in an amount of 0.1 to 30% by mass, wherein the ratio by mass of the at least one liquid-crystal compound to the entire additive is from 40 to 100% by mass; the optical film comprising two or more one liquid-crystal compounds in an amount of 0.1 to 30% by mass, wherein the ratio by mass of the two or more liquid-crystal compounds to the entire additive is from 50 to 100% by mass; and the optical film, comprising at least one compound represented by formula (A) and at least one rod-like compound represented by formula (a) as the liquid crystal compound:
where L1 and L2 independently represent a single bond or a divalent linking group; A1 and A2 independently represent a group selected from the group consisting of —O—, —NR— where R represents a hydrogen atom or a substituent, —S— and —CO—; R1, R2 and R3 independently represent a substituent; X represents a nonmetal atom selected from the groups 14-16 atoms, provided that X may bind with at least one hydrogen atom or substituent; and n is an integer from 0 to 2;
Ar1-L12-X-L13-Ar2 Formula (a)
where Ar1 and Ar2 independently represent an aromatic group; L12 and L13 independently represent —O—CO— or —CO—O—; X represents 1,4-cyclohexylen, vinylene or ethynylene.
The optical film may comprise cellulose acylate as a major ingredient thereof.
The optical film may have a thickness of from 30 to 200 μm.
The optical film may have the in-plane retardation Re10%(548), Re80%(548) and Re60%(548) at a wavelength of 548 nm in an environment of 25° C. and 10% RH, 25° C. and 80% RH, and 25° C. and 60% RH, respectively, satisfying the following formula:
0.1%≦[{Re10%(548)−Re80%(548)}/Re60%(548)]≦20%.
The optical film may have a photoelasticity coefficient of from 0 to 30×10−8 cm2/N.
The optical film may have the in-plane retardation at a wavelength of 548 nm, Re(548) (unit, m), and the film thickness (d) (unit, m) satisfying the following relational formula:
0.00125<Re(548)/d<0.00700.
The optical film may satisfy the following relational formulae (3) to (5):
−2.5×Re(550)+300<Rth(550)<−2.5×Re(550)+500, (3)
−2.5×Re(450)+250<Rth(450)<−2.5×Re(450)+450, (4)
−2.5×Re(630)+350<Rth(630)<−2.5×Re(630)+550. (5)
The optical film may have a width of at least 1470 mm and/or a length of at least 2500 m as rolled.
In another aspect, the invention provides a polarizing plate comprising a polarizing film and the above mentioned optical film on one surface of the polarizing film.
As embodiments of the invention, there are provided the polarizing plate further comprising an outer protective film having a degree of moisture permeation of at most 300 g/(m2·day) on the other surface of the polarizing film; and the polarizing plate wherein the outer protective film is a norbornene-base polymer film.
In the drawings, the reference numerals have the following meanings:
The invention is described hereinunder. In this description, the numerical range expressed by the wording “a number to another number” means the range that falls between the former number indicating the lowermost limit of the range and the latter number indicating the uppermost limit thereof. “Substantially perpendicular or parallel” is meant to include a range of strict angle ±10°.
In this description, Re(λ) and Rth(λ) are an in-plane retardation (nm) and a thickness-direction retardation (nm), respectively, at a wavelength of λ. Re(λ) is measured by applying light having a wavelength of λ nm to a film in the normal direction of the film, using KOBRA 21ADH or WR (by Oji Scientific Instruments).
When a film to be analyze by a monoaxial or biaxial index ellipsoid, Rth(λ) of the film is calculated as follows. Rth(λ) is calculated by KOBRA 21ADH or WR based on six Re(λ) values which are measured for incoming light of a wavelength λ nm in six directions which are decided by a 10° step rotation from 0° to 50° with respect to the normal direction of a sample film using an in-plane slow axis, which is decided by KOBRA 21ADH, as an inclination axis (a rotation axis; defined in an arbitrary in-plane direction if the film has no slow axis in plane); a value of hypothetical mean refractive index; and a value entered as a thickness value of the film.
In the above, when the film to be analyzed has a direction in which the retardation value is zero at a certain inclination angle, around the in-plane slow axis from the normal direction as the rotation axis, then the retardation value at the inclination angle larger than the inclination angle to give a zero retardation is changed to negative data, and then the Rth(λ) of the film is calculated by KOBRA 21ADH or WR.
Around the slow axis as the inclination angle (rotation angle) of the film (when the film does not have a slow axis, then its rotation axis may be in any in-plane direction of the film), the retardation values are measured in any desired inclined two directions, and based on the data, and the estimated value of the mean refractive index and the inputted film thickness value, Rth may be calculated according to the following formulae (21) and (22):
wherein Re(θ) represents a retardation value in the direction inclined by an angle θ from the normal direction; nx represents a refractive index in the in-plane slow axis direction; ny represents a refractive index in the in-plane direction perpendicular to nx; and nz represents a refractive index in the direction perpendicular to nx and ny. And “d” is a thickness of the sample.
When the film to be analyzed is not expressed by a monoaxial or biaxial index ellipsoid, or that is, when the film does not have an optical axis, then Rth(λ) of the film may be calculated as follows:
Re(λ) of the film is measured around the slow axis (judged by KOBRA 21ADH or WR) as the in-plane inclination axis (rotation axis), relative to the normal direction of the film from −50 degrees up to +50 degrees at intervals of 10 degrees, in 11 points in all with a light having a wavelength of λ nm applied in the inclined direction; and based on the thus-measured retardation values, the estimated value of the mean refractive index and the inputted film thickness value, Rth(λ) of the film may be calculated by KOBRA 21ADH or WR.
In the above-described measurement, the hypothetical value of mean refractive index is available from values listed in catalogues of various optical films in Polymer Handbook (John Wiley & Sons, Inc.). Those having the mean refractive indices unknown can be measured using an Abbe refract meter. Mean refractive indices of some major optical films are listed below:
cellulose acylate (1.48), cycloolefin polymer (1.52), polycarbonate (1.59), polymethylmethacrylate (1.49) and polystyrene (1.59).
KOBRA 21ADH or WR calculates nx, ny and nz, upon enter of the hypothetical values of these mean refractive indices and the film thickness. Base on thus-calculated nx, ny and nz, Nz=(nx−nz)/(nx−ny) is further calculated.
In this description, Re(λ) and Rth(λ) such as Re(450), Re(550), Re(630), Rth(450), Rth(550) and Rth(630) are measured as follows: Using a measuring instrument, a sample is analyzed at three or more different wavelengths (for example, λ=479.2, 546.3, 632.8, 745.3 nm), and Re and Rth of the sample are calculated at those wavelengths. The data are approximated according to a Cauchy's formula (up to the trinominal expression, Re=A+B/λ2+C/λ4), to obtain the values A, B and C. From the above, Re and Rth at a wavelength λ are plotted, and Re and Rth at the wavelength λ are obtained as Re(λ) and Rth(λ).
One embodiment of a liquid-crystal display device comprising an optical film of the invention is shown in
Any of the polarizing elements 11 and 12 may be on the backlight side or the display panel side. The first optically-anisotropic layer 14 and the second optically-anisotropic layer 15 may be disposed to be in contact with the surface of the polarizing elements 11 and 12 as a protective film for them. Between the polarizing element 11 and the first optically-anisotropic layer 14, and between the polarizing element 12 and the second optically-anisotropic layer 15, a protective film may be additionally disposed. In this case, the protective film is preferably an isotropic film having a retardation of nearly 0.
In the embodiment shown in
Re(550)>20 nm, (a)
0.5<Nz<10, (b)
−2.5×Re(550)+300<Rth(550)<−2.5×Re(550)+500, (c)
Rth(550)/Re(550)>10. (d)
In the formulae, Re(λ) and Rth(λ) are the in-plane and out-plane retardations (unit: nm), respectively, as measured with incident light having a wavelength of λ nm; and Nz=Rth(550)/Re(550)+0.5.
Now for explaining the effect of this embodiment, first clarified for comparison are problems with a conventional VA-mode liquid-crystal display device.
However, the condition differs in oblique light application as in
A polar angle and an azimuth angle are defined herein. The polar angle is an angle as inclined in the normal direction of a film face, or that is, from the z-axis in
Heretofore, it is proposed to solve the problem of contrast reduction in the oblique direction in a VA-mode liquid-crystal display device, by the use of a biaxial plate and a C plate (for example, Patent Reference 2). Heretofore, various stretched polymer films are used in ordinary optically-compensatory films; but in general, most stretched polymer films satisfy a relation of Re(450)≧Re(550)≧Re(650) and Rth(450)≧Rth(550)≧Rth(650), in which Re indicates the in-plane retardation and Rth indicates the thickness-direction retardation of the films, or that is, they have larger Re and Rth values at shorter wavelengths (hereinafter this characteristic may be referred to as “regular wavelength dispersion characteristics of the retardation”).
The polarization state of the incident light having passed through the polarizer 51 in
The polarization state change of the incident light having passed through the optically-compensatory film 54 of A plate follows, on a Poincare sphere, the trace shown by the arrow “A” in
The liquid-crystal layer of the liquid-crystal cell 53 shows positive refractive anisotropy, and is vertically aligned, and therefore, the polarization state change of the incident light having passed through the liquid-crystal layer follows the trace as indicated by the arrow with “LC” running from the top to the bottom in
Now, the polarization state change of B, G and R running through the optically-compensatory film 54 of C plate is represented by the movement in the normal direction on the S1-S2 plane, as indicated by the arrow with “C” in
In this description, the wavelengths of R, G and B are as follows: R is at a wavelength of 650 nm; G is at a wavelength of 550 nm; and B is a wavelength at 450 nm. R, G and B are not always represented typically by these wavelengths, but they may be suitable wavelengths for specifically defining the optical characteristics of the liquid-crystal display device that exhibits the effect of the invention.
The present inventors have specifically noted the following points for solving the prior-art problems. The polarization state change occurring when light passes through a birefringent medium having a larger thickness-direction retardation Rth than the in-plane retardation Re, such as typically a VA-mode liquid-crystal cell in the black state and a C-plate, produces little displacement on the S1 coordinates for any of R light, G light and B light on a Poincare sphere, as indicated by the arrows “LC” and “C” in
Afterwards, as in
Some examples of optical compensatory mechanisms are shown in
Regarding the retardation of the first and second optically-anisotropic layers, the total of Rth(550) of the first optically-anisotropic layer and Rth(550) of the second optically-anisotropic layer is preferably from 100 nm to 400 nm or so, more preferably from 200 nm to 300 nm or so in a vertically-aligned mode, VA-mode.
Preferred embodiments of the optical film (first optically-anisotropic layer) of the invention are described in detail hereinunder, with respect to the optical characteristics, the materials and the production methods thereof.
The optical film of the invention has the properties capable of the conversion shown in
Regarding the wavelength dispersion characteristics of the retardation of the optical film of the invention, both Re and Rth thereof show a reversed wavelength dispersion profile, concretely satisfying the following formulae (6) to (9):
0.60≦Re(450)/Re(550)≦1, (6)
1≦Re(630)/Re(550)≦1.25, (7)
0.60≦Rth(450)/Rth(550)≦1, (8)
1<Rth(630)/Rth(550)≦1.25; (9)
more preferably, the following formulae (6)′ to (9)′:
0.65≦Re(450)/Re(550)≦1, (6)′
1≦Re(630)/Re(550)≦1.20, (7)′
0.65≦Rth(450)/Rth(550)≦1, (8)′
1<Rth(630)/Rth(550)≦1.20; (8)′
even more preferably, the following formulae (6)″ to (9)″:
0.70≦Re(450)/Re(550)≦1, (6)″
1≦Re(630)/Re(550)≦1.15, (7)″
0.70≦Rth(450)/Rth(550)≦1, (8)″
1<Rth(630)/Rth(550)≦1.15. (9)″
Further, the inventors have studied (1) a rotation matrix that indicates the polarization state change in passing through optically-anisotropic layers having different Re and/or Rth; and reacted the rotation matrix obtained in (1) with the stoke parameters of incident light (S1, S2, S3) to obtain (2) (S1′, S2′, S3′) after passing through the optically-anisotropic layer, through computation; and, (3) as a result of optimization of Re and Rth so that S1′ obtained in (2) could correspond on the S1 coordinates at the extinction point, have found that, with an optically-anisotropic layer of which Re and Rth satisfy the graph shown in
−2.5×Re(550)+300<Rth(550)<−2.5×Re(550)+500, (1)
−2.5×Re(450)+250<Rth(450)<−2.5×Re(450)+450, (2)
−2.5×Re(630)+350<Rth(630)<−2.5×Re(630)+550. (3)
More preferably, the optical film of the invention satisfies the following formulae (1)′ to (3)′, as having a more excellent effect:
−2.5×Re(550)+320<Rth(550)<−2.5×Re(550)+480, (1)′
−2.5×Re(450)+270<Rth(450)<−2.5×Re(450)+430, (2)′
−2.5×Re(630)+370<Rth(630)<−2.5×Re(630)+530. (3)′
Nz is a variable of Re and Rth, and is defined as follows: Nz=Rth(550)/Re(550)+0.5. Nz of the first optically-anisotropic layer, or that is, the optical film of the invention is preferably from 1.1 to 5, more preferably from 1.3 to 4.7.
Nz of the first optically-anisotropic layer is preferably larger, as capable of reducing the color shift in watching in an azimuth angle direction within a broader range. When a biaxial, first optically-anisotropic layer is observed in a predetermined polar angle direction, then the apparent Re thereof changes depending on the azimuth angle in that direction. For example, in case where the first optically-anisotropic layer is disposed in the direction parallel to the panel, then the apparent Re is larger when the azimuth angle is larger, but is smaller when the azimuth angle is smaller. When Nz is small, or that is, when Re is large, then the apparent Re change may increase depending on the azimuth angle; and even though the layer has suitable display characteristics at a predetermined azimuth angle, there may occur slight light leakage or color shift at some other azimuth angle. In order that Re could fall within an ordinary producibility range and that the apparent Re change depending on the azimuth angle could be controlled within a range that could not be detectable by viewers as fluctuation of display characteristics, Nz is preferably at least 0.5. When Re is too large and when axial shifting in attaching to a polarizing element in-plane axial fluctuation has occurred in the film face, then light leakage in watching the panel in the front direction may increase with the result that the front contrast ratio may lower. From this viewpoint, the preferred uppermost limit of Re of the first optically-anisotropic layer is investigated, and Re is preferably not larger than 130 nm. In order that Re and Rth of the first optically-anisotropic layer could satisfy the relationship shown in
As described in the above, from the viewpoint of the latitude in azimuth dependence and axial shift tolerance of light leakage and color shift in the black state, it is desirable that Re of the first optically-anisotropic layer is smaller, or that is, Nz thereof is larger. On the other hand, the sum total of Rth of the first and second optically-anisotropic layers necessary for optical compensation in VA-mode displays is from 100 to 400 nm or so, and therefore, when Nz of the first optically-anisotropic layer is larger, for example, when Rth of the first optically-anisotropic layer is lager, then Rth necessary to the second optically-anisotropic layer shall be small. In order that the polarization state change after passing through the liquid-crystal layer and the second optically-anisotropic layer could reach the extinction point at any wavelength, it is desirable that Rth of the second optically-anisotropic layer shows regular wavelength dispersion characteristics of the retardation (the property that the value is larger at a shorter wavelength); but when Rth of the second optically-anisotropic layer is smaller, then the regular wavelength dispersion profile may be steep. It is difficult to product a film having the property; and from the viewpoint of the production aptitude, it is desirable that Nz of the first optically-anisotropic layer, or that is, the optical film of the invention is at most 5, as shown in
A preferred uppermost limit of Nz of the first optically-anisotropic layer is described more concretely.
As described in the above, for optical compensation of VA-mode displays, it is desirable that the total of Rth(550) of the first optically-anisotropic layer and Rth(550) of the second optically-anisotropic layer is from 100 to 400 nm; and therefore, when Rth(550) of the first optically-anisotropic layer becomes large, then the optimum Rth(550) of the second optically-anisotropic layer shall be small. This relation is schematically shown in
In case where predetermined Re(λ) and Rth(λ) of the first optically-anisotropic layer are given, then the Rth wavelength dispersion characteristics of the second optically-anisotropic layer necessary for reducing the viewing angle-dependent light leakage and color shift are determined by Rth(550) of the second optically-anisotropic layer, Δnd(550) of the liquid-crystal layer and the wavelength dispersion characteristics of Δnd. For simple explanation, a case of an ideal first optically-anisotropic layer is taken into consideration and discussed herein.
Now, a case where the wavelength dispersion characteristics of the retardation of the first optically-anisotropic layer is given by λ/n (n is a positive real number) is taken into consideration and discussed. In this case, when the panel is watched in an oblique direction, then it is ideal that the polarization state after passing through the first optically-anisotropic layer does not change depending on the wavelength. The rotation amount on a Poincare sphere is determined by Δnd/λ; and for reducing the viewing angle light leakage and color shift, the polarization of light of all wavelengths must correspond at the extinction point after passing through the second optically-anisotropic layer. From the condition that “light at 450 nm and that at 550 nm correspond at the extinction point”, the following formula (11) may be established. In this, ΔndVA indicates And of the liquid-crystal layer; and RthB indicates Rth of the film B. (450), (550), (630) each indicate Rth at 450 nm, 550 nm, 630 nm, respectively.
When summarized, the formula (11) may be expressed by the formula (12). Similarly, under the condition that “light at 630 nm and that at 550 nm correspond at the extinction point”, the following formula (13) may be established. The formula (12) and the formula (13) give the formula (14).
In this, the following definitions are made:
δ(RthB)=RthB(630)−RthB(450),
δ(ΔndVA)=ΔndVA(630)−ΔndVA(450).
When δ(RthB)<0, then Rth of the second optically-anisotropic layer shows regular wavelength dispersion characteristics of the retardation; and when δ(RthB)>0, then Rth of the second optically-anisotropic layer shows a profile of reversed wavelength dispersion characteristics of the retardation. Using δ(RthB) and δ(ΔndVA), the formula (14) may be revised into the formula (15).
In general, RthB(550) is smaller than ΔndVA(550). In case where Δnd of the liquid-crystal layer shows regular wavelength dispersion characteristics of the retardation, then the right side of the formula (9) shows a negative value. Since δ(RthB) on the left side of the formula (15) has a negative value, Rth of the second optically-anisotropic layer shows regular wavelength dispersion characteristics of the retardation. When Rth(550) of the second optically-anisotropic layer is smaller, then the absolute value of the first member on the right side of the formula (15) becomes large. Accordingly, δ(Rth3) on the left side is negative and its absolute value is large, and the regular wavelength dispersion characteristics of the retardation is therefore larger.
From the above discussion, when Nz of the first optically-anisotropic layer is too large, then Rth necessary for the second optically-anisotropic layer become small in optical compensation of VA-mode displays, and with that, the second optically-anisotropic layer is required to have a steep profile of regular wavelength dispersion characteristics of the retardation in point of Rth thereof. In case where a polymer film having the necessary characteristics for the second optically-anisotropic layer is produced, the polymer film may be limited in some degree in point of the regular wavelength dispersion characteristics of Rth thereof from the viewpoint of the producibility aptitude. Taking it into consideration, Nz of the optical film of the invention (first optically-anisotropic layer) is preferably at most 5 in order that the degree of the regular wavelength dispersion characteristics of the retardation necessary for Rth of the second optically-anisotropic layer is not too large; more preferably, it is at most 4.7.
The method of controlling Nz of the first optically-anisotropic layer (optical film of the invention) may be selected depending on the material of the first optically-anisotropic layer. In case where the first optically-anisotropic layer is formed of a cellulose acylate film, examples of a method of increasing Nz include adding a compound of a general formula (A) mentioned below, increasing the amount of the compound, lowering the degree of substitution in cellulose acylate, and lowering the draw ratio in film stretching. On the other hand, examples of a method for lowering Nz include reducing the amount of the compound of the formula (A) to be mentioned below, increasing the degree of substitution in cellulose acylate, and increasing the draw ratio in film stretching.
The material of the optical film of the invention (above-mentioned first optically-anisotropic layer) is not specifically defined. When the film is a polymer film, a polarizing element may be stuck to it. As a single member, for example, as an optical compensatory film, it may be built in a liquid-crystal display device. The material for the polymer film is preferably a polymer having good optical properties, transparency, mechanical strength, thermal stability, water shieldability and isotropic properties; however, any material satisfying the above-mentioned condition may be employed herein. For example, it includes polycarbonate-type polymer, polyester-type polymer such as polyethylene terephthalate and polyethylene naphthalate, acrylic polymer such as polymethyl methacrylate, and styrenic polymer such as polystyrene and acrylonitrile/styrene copolymer (AS resin). In addition, also employable are polyolefin-type polymer, for example, polyolefin such as polyethylene and polypropylene, and ethylene/propylene copolymer; vinyl chloride-type polymer; amide-type polymer such as nylon and aromatic polyamide; imide-type polymer, sulfone-type polymer, polyether sulfone-type polymer, polyether-ether ketone-type polymer, polyphenylene sulfide-type polymer, vinylidene chloride-type polymer, vinyl alcohol-type polymer, vinyl butyral-type polymer, arylate-type polymer, polyoxymethylene-type polymer, epoxy-type polymer; and mixed polymer of the above polymers.
As the material to form the polymer film, preferably used is a thermoplastic norbornene-type resin. The thermoplastic norbornene-type resin includes Nippon Zeon's ZEONEX and ZEONOR, and JSR's Arton, etc.
As the material to form the polymer film, especially preferred is a cellulose polymer heretofore used as a transparent protective film for polarizer (hereinafter this may be referred to as cellulose acylate). One typical example of cellulose acylate is triacetyl cellulose. The cellulose material for cellulose acylate includes cotton liter and wood pulp (hardwood pulp, softwood pulp), and cellulose acylate obtained from any such cellulose material is usable herein. As the case may be, those cellulose materials may be mixed for use herein. The cellulose materials are described in detail, for example, in Marusawa & Uda's “Plastic Material Lecture (17), Cellulose Resin” by Nikkan Kogyo Shinbun (1970) and Hatsumei Kyokai's Disclosure Bulletin 2001-1745 (pp. 7-8), and those celluloses described therein may be usable herein. There should not be any specific limitation to the cellulose acylate film for use in the invention.
The degree of substitution of cellulose acylate means the degree of acylation of three hydroxyl groups existing in the constitutive unit ((β)1,4-glycoside-bonding glucose) of cellulose. The degree of substitution (degree of acylation) may be computed by measuring the bonding fatty acid amount per the constitutive unit mass of cellulose. The determination may be carried out according to “ASTM D817-91”.
The cellulose acylate for use in forming the first and second optically-anisotropic layers in the invention is cellulose acetate having a degree of acetyl substitution of from 2.50 to 3.00. More preferably, the degree of acetyl substitution is from 2.70 to 2.97.
Preferably, the cellulose acylate has a mass-average degree of polymerization of from 350 to 800, more preferably from 370 to 600. Also preferably, the cellulose acylate for use in the invention has a number-average molecular weight of from 70000 to 230000, more preferably from 75000 to 230000, even more preferably from 78000 to 120000.
The cellulose acylate may be produced, using an acid anhydride or an acid chloride as the acylating agent for it. One most general production method for producing the cellulose acylate on an industrial scale comprises esterifying cellulose obtained from cotton linter, wood pulp or the like with a mixed organic acid component comprising an organic acid corresponding to an acetyl group and other acyl group (acetic acid, propionic acid, butyric acid) or its acid anhydride (acetic anhydride, propionic anhydride, butyric anhydride).
The cellulose acylate film is preferably produced according to a solvent-casting method. Examples of production of cellulose acylate film according to a solvent-casting method are given in U.S. Pat. Nos. 2,336,310, 2,367,603, 2,492,078, 2,492,977, 2,492,978, 2,607,704, 2,739,069 and 2,739,070, British Patents 640731, 736892, JP-B 45-4554, 49-5614, and JPA Nos. syo 60-176834, syo 60-203430, and syo 62-115035, and their descriptions are referred to herein. The cellulose acylate film may be stretched. Regarding the method and condition for stretching treatment, for example, referred to are JPA Nos. syo 62-115035, hei 4-152125, hei 4-284511, hei 4-298310, and hei 11-48271.
For producing the cellulose acylate film satisfying the condition for the optical film of the invention (first optically-anisotropic layer), an Re enhancer is preferably added to the cellulose acylate film. “Re enhancer” as referred to herein is a compound having the property capable of enhancing in-plane birefringence of the film.
The cellulose acylate film used as the first optically anisotropic layer may comprise at least one compound represented by the formula (A) as a retardation enhancer.
In the formula, L1 and L2 independently represent a single bond or a divalent linking group; A1 and A2 independently represent a group selected from the group consisting of —O—, —NR— where R represents a hydrogen atom or a substituent, —S— and —CO—; R1, R2 and R3 independently represent a substituent; X represents a nonmetal atom selected from the groups 14-16 atoms, provided that X may bind with at least one hydrogen atom or substituent; and n is an integer from 0 to 2.
Among the compounds represented by the formula (A), the compounds represented by the formula (B) are preferred as a retardation enhancer.
In the formula (B), L1 and L2 independently represents a single bond or a divalent group. A1 and A2 independently represent a group selected from the group consisting of —O—, —NR— where R represents a hydrogen atom or a substituent, —S— and —CO—. R1, R2 and R3 independently represent a substituent. And n is an integer from 0 to 2.
Preferred examples of the divalent linking group represented by L1 or L2 in the formula (A) or (B) include those shown below.
And further preferred are —O—, —COO— and —OCO—.
In the formulae (A) and (B), R1 represents a substituent, if there are two or more R, they may be same or different from each other, or form a ring. Examples of the substituent include those shown below.
Halogen atoms such as fluorine, chlorine, bromine and iodine atoms; alkyls (preferably C1-30 alkyls) such as methyl, ethyl, n-propyl, iso-propyl, tert-butyl, n-octyl, and 2-ethylhexyl; cylcoalkyls (preferably C3-30 substituted or non-substituted cycloalkyls) such as cyclohexyl, cyclopentyl and 4-n-dodecylcyclohexyl; bicycloalkyls (preferably C5-30 substitute or non-substituted bicycloalkyls, namely monovalent residues formed from C5-30 bicycloalkanes from which a hydrogen atom is removed) such as bicyclo[1.2.2]heptane-2-yl and bicyclo[2.2.2]octane-3-yl; alkenyls (preferably C2-30 alkenyls) such as vinyl and allyl; cycloalkenyls (preferably C3-30 substituted or non-substituted cycloalkenyls, namely monovalent residues formed from C3-30 cycloalkenes from which a hydrogen atom is removed) such as 2-cyclopentene-1-yl and 2-cyclohexene-1-yl; bicycloalkenyls (preferably C5-30 substituted or non-substituted bicycloalkenyls, namely monovalent residues formed from C5-30 bicycloalkenes from which a hydrogen atom is removed) such as bicyclo[2,2,1]hepto-2-en-1-yl and bicyclo[2,2,2]octo-2-en-4-yl; alkynyls (preferably C2-30 substitute or non-substituted alkynyls) such as etynyl and propargyl; aryls (preferably C6-30 substitute or non-substituted aryls) such as phenyl, p-tolyl and naphthyl; heterocyclic groups (preferably (more preferably C3-30) substituted or non-substituted, 5-membered or 6-membered, aromatic or non-aromatic heterocyclic monovalent residues) such as 2-furyl, 2-thienyl, 2-pyrimidinyl and 2-benzothiazolyl; cyano, hydroxyl, nitro, carboxyl, alkoxys (preferably C1-30 substituted or non-substituted alkoxys) such as methoxy, ethoxy, iso-propoxy, t-butoxy, n-octyloxy and 2-methoxyethoxy; aryloxys (preferably C6-30 substituted or non-substituted aryloxys) such as phenoxy, 2-methylphenoxy, 4-t-butylphenoxy, 3-nitrophenoxy and 2-tetradecanoyl aminophenoxy; silyloxys (preferably C3-20 silyloxys) such as trimethylsilyloxy and t-butyldimethylsilyloxy; hetero-cyclic-oxys (preferably C2-30 substituted or non-substituted hetero-cyclic-oxys) such as 1-phenyltetrazole-5-oxy and 2-tetrahydropyrenyloxy; acyloxys (preferably C2-30 substitute or non-substituted alkylcarbonyloxys and C6-30 substituted or non-substituted arylcarbonyloxys) such as formyloxy, acetyloxy, pivaloyloxy, stearoyoxy, benzoyloxy and p-methoxyphenylcarbonyloxy; carbamoyloxys (preferably C1-30 substituted or non-substituted carbamoyloxys) such as N,N-dimethyl carbamoyloxy, N,N-diethyl carbamoyloxy, morpholinocarbonyloxy, N,N-di-n-octylaminocarbonyloxy and N-n-octylcarbamyloxy; alkoxy carbonyloxys (preferably C2-30 substituted or non-substituted alkoxy carbonyloxys) such as methoxy carbonyloxy, ethoxy carbonyloxy, t-butoxy carbonyloxy and n-octyloxy carbonyloxy; aryloxy carbonyloxys (preferably C7-30 substituted or non-substituted aryloxy carbonyloxys) such as phenoxy carbonyloxy, p-methoxyphenoxy carbonyloxy and p-n-hexadecyloxyphenoxy carbonyloxy; aminos (preferably C0-30 substituted or non-substituted alkylaminos and C6-30 substituted or non-substituted arylaminos) such as amino, methylamino, dimethylamino, anilino, N-methyl-anilino and diphenylamino; acylaminos (preferably C1-30 substituted or non-substituted alkylcarbonylaminos and C6-30 substituted or non-substituted arylcarbonylaminos) such as formylamino, acetylamino, pivaloylamino, lauroylamino and benzoylamino; aminocarbonylaminos (preferably C1-30 substituted or non-substituted aminocarbonylaminos) such as carbamoylamino, N,N-dimethylaminocarbonylamino, N,N-diethylamino carbonylamino and morpholino carbonylamino; alkoxycarbonylaminos (preferably C2-30 substituted or non-substituted alkoxycarbonylaminos) such as methoxycarbonylamino, ethoxycarbonylamino, t-butoxycarbonylamino, n-octadecyloxycarbonylamino and N-methyl-methoxy carbonylamino; aryloxycarbonylaminos (preferably C7-30 substituted or non-substituted aryloxycarbonylaminos) such as phenoxycarbonylamino, p-chloro phenoxycarbonylamino and m-n-octyloxy phenoxy carbonylamino; sulfamoylaminos (preferably C0-30 substituted or non-substituted sulfamoylaminos) such as sulfamoylamino, N,N-dimethylamino sulfonylamino and N-n-octylamino sulfonylamino; alkyl- and aryl-sulfonylaminos (preferably C1-30 substituted or non-substituted alkyl-sulfonylaminos and C6-30 substituted or non-substituted aryl-sulfonylaminos) such as methyl-sulfonylamino, butyl-sulfonylamino, phenyl-sulfonylamino, 2,3,5-trichlorophenyl-sulfonylamino and p-methylphenyl-sulfonylamino; mercapto; alkylthios (preferably substituted or non-substituted C1-30 alkylthios such as methylthio, ethylthio and n-hexadecylthio; arylthios (preferably C6-30 substituted or non-substituted arylthios) such as phenylthio, p-chlorophenylthio and m-methoxyphenylthio; heterocyclic-thios (preferably C2-30 substituted or non-substituted heterocyclic-thios such as 2-benzothiazolyl thio and 1-phenyltetrazol-5-yl-thio; sulfamoyls (preferably C0-30 substituted or non-substituted sulfamoyls) such as N-ethylsulfamoyl, N-(3-dodecyloxypropyl)sulfamoyl, N,N-dimethylsulfamoyl, N-acetylsulfamoyl, N-benzoylsulfamoyl, N-(N′-phenylcarbamoyl)sulfamoyl; sulfo; alkyl- and aryl-sulfinyls (preferably C1-30 substituted or non-substituted alkyl- or C6-30 substituted or non-substituted aryl-sulfinyls) such as methylsulfinyl, ethylsulfinyl, phenylsulfinyl and p-methylphenylsulfinyl; alkyl- and aryl-sulfonyls (preferably C1-30 substituted or non-substituted alkyl-sulfonyls and C6-30 substituted or non-substituted arylsulfonyls) such as methylsulfonyl, ethylsulfonyl, phenylsulfonyl and p-methylphenylsulfonyl; acyls (preferably C2-30 substituted non-substituted alkylcarbonyls, and C7-30 substituted or non-substituted arylcarbonyls) such as formyl, acetyl and pivaloyl benzyl; aryloxycarbonyls (preferably C7-30 substituted or non-substituted aryloxycarbonyls) such as phenoxycarbonyl, o-chlorophenoxycarbonyl, m-nitrophenoxycarbonyl and p-t-butylphenoxycarbonyl; alkoxycarbonyls (preferably C2-30 substituted or non-substituted alkoxycarbonyls) methoxycarbonyl, ethoxycarbonyl, t-butoxycarbonyl and n-octadecyloxycarbonyl; carbamoyls (preferably C1-30 substituted or non-substituted carbamoyls) such as carbamoyl, N-methylcarbamoyl, N,N-dimethylcarbamoyl, N,N-di-n-octylcarbamoyl and N-(methylsulfonyl)carbamoyl; aryl- and heterocyclic-azos (preferably C6-30 substituted or non-substituted arylazos and C3-30 substituted or non-substituted heterocyclicazos) such as phenylazo and p-chlorophenylazo, 5-ethylthio-1,3,4-thiadiazol-2-yl-azo, imides such as N-succinimide and N-phthalimide; phosphinos (preferably C2-30 substituted or non-substituted phosphinos) such as dimethyl phosphino, diphenyl phosphino and methylphenoxy phosphino; phosphinyls (preferably C2-30 substituted or non-substituted phosphinyls) such as phosphinyl, dioctyloxy phosphinyl and diethoxy phosphinyl; phosphinyloxys (preferably C2-30 substituted or non-substituted phosphinyloxys) such as diphenoxyphosphinyloxy and dioctyloxyphosphinyloxy; phosphinylaminos (preferably C2-30 substituted or non-substituted phosphinylaminos) such as dimethoxy phosphinylamino and dimethylamino phosphinylamino; and silyls (preferably C3-30 substituted or non-substituted silyls) such as trimethylsilyl, t-butylmethylsilyl and phenyldimethylsilyl.
The substituents, which have at least one hydrogen atom, may be substituted by at least one substituent selected from these. Examples such substituent include alkylcarbonylaminosulfo, arylcarbonylaminosulfo, alkylsulfonylaminocarbonyl and arylsulfonylaminocarbonyl. More specifically, methylsulfonylaminocarbonyl, p-methylphenylsulfonylaminocarbonyl, acetylaminosulfonyl and benzoylaminosulfonyl are exemplified.
Preferably, R1 represents a hydrogen atom, an alkyl group, an alkenyl group, an aryl group, a heterocyclic group, hydroxyl, carboxyl, an alkoxy group, an acyloxy group, cyano or an amino group; and more preferably, a halogen atom, an alkyl group, cyano or an alkoxy group.
R2 and R3 independently represent a substituent. Examples of the substituent include those exemplified above as examples of R1. Preferably, R2 and R3 independently represent a substituted or non-substituted phenyl or a substituted or non-substituted cyclohexyl; more preferably, a substituted phenyl or a substituted cyclohexyl; and much more preferably, a phenyl having a substituent at a 4-position or a cyclohexyl having a substituent at a 4-position.
R4 and R5 independently represent a substituent. Examples of the substituent include those exemplified above as examples of R1. Preferably, R4 and R5 independently represent an electron-attractant group having the Hammett value, σp, more than 0; more preferably an electron-attractant group having the Hammett value, σp, from 0 to 1.5. Examples of such an electron-attractant group include trifluoromethyl, cyano, carbonyl and nitro. R4 and R5 may bind to each other to form a ring.
It is to be noted that, regarding Hammett constant of the substituent, σp and σm, there are detailed commentaries on the Hammett constant of the substituent, σp and σm in “Hammett Rule-Structure and Reactivity-(Hammeto soku-Kozo to Hanohsei)” published by Maruzen and written by Naoki Inamoto; “New Experimental Chemistry 14 Synthesis and Reaction of Organic Compound V (Shin Jikken Kagaku Koza 14 Yuuki Kagoubutsu no Gousei to Hannou)” on p. 2605, edited by Chemical Society of Japan and published by Maruzen; “Theory Organic Chemistry Review (Riron Yuuki Kagaku Gaisetsu)” on p. 217, published by TOKYO KAGAKU DOZIN CO. LTD., and written by Tadao Nakatani; and Chemical Reviews, Vol. 91, No. 2, pp. 165-195 (1991).
In the formula, A1 and A2 independently represent a group selected from the group consisting of —O—, —NR— where R represents a hydrogen atom or a substituent, —S— and —CO—; and preferably, —O—, —NR— where R represents a substituent selected from those exemplified above as examples of R1, or —S—.
In the formula, X represents a nonmetal atom selected from the groups 14-16 atoms, provided that X may bind with at least one hydrogen atom or substituent. Preferably, X represents ═O, ═S, ═NR or ═C(R)R where R represents a substituent selected from those exemplified as examples of R1.
In the formula, n is an integer from 0 to 2, and preferably 0 or 1.
Examples of the compound represented by the formula (A) or (B) include, but examples of the Re enhancer are not limited to, those shown below. Regarding the compounds shown below, each compound to which is appended (X) is referred to as “Example Compound (X)” unless it is specified.
The compound represented by the formula (A) or (B) may be synthesized referring to known methods. For example, Example Compound (1) may be synthesized according to the following scheme.
In the above scheme, the steps for producing Compound (1-d) from Compound (1-A) may be carried out referring to the description in “Journal of Chemical Crystallography” (1997); 27(9); p. 515-526.
As shown in the above scheme, Example Compound (1) may be produced as follows. A tetrahydrofuran solution of Compound (1-E) is added with methanesulfonic acid chloride, added dropewise with N,N-di-iso-propylethylamine and then stirred. After that, the reaction solution is added with N,N-di-iso-propylethylamine, added dropewise with a tetrahydrofuran of Compound (1-D), and then added dropewise with a tetrahydrofuran solution of N,N-dimethylamino pyridine (DMAP).
The rod-like aromatic compounds described in Japanese Laid-open Patent publication (occasionally referred to as “JPA” hereinafter) No. 2004-50516, on pages 11-14, may be employed as the Re enhancer.
One species or two or more species of compounds may be used as the Re enhancer. Employing two or more species as the Re enhancer is preferable since it is possible to widening the adjustable retardation range and to facilitate adjustment of retardation within the preferred range.
The amount of the Re enhancer is preferably from 0.1 to 20 mass % and more preferably from 0.5 to 10 mass % with respect to 100 parts mass of cellulose acylate. When the cellulose acylate film is produced according to a solvent cast method, the Re enhancer may be added to the dope. The addition of the Re enhancer to the dope may be conducted any stage, and for example, a solution of the Re enhance may be prepared by dissolving it in an organic solvent such as alcohol, methylene chloride or dioxolane and then added to the dope; or the Re enhancer may be added to the dope directly.
And the optical film of the invention may comprise two or more additives. Preferably, with the liquid crystal compound represented by the formula (A), the rod-like liquid crystal compound represented by the formula (a) is used together as the Re enhancer. The ratio of the compound represented by the formula (A) to the total mass of the compounds represented by the formulae (A) and (a) is preferably from 10 to 90% and more preferably from 20 to 80%.
Ar1-L12-X-L13-Ar2 Formula (a)
In the formula (a), Ar1 and Ar2 independently represent an aromatic group; L12 and L13 independently represent —O—CO— or —CO—O—; X represents 1,4-cyclohexylen, vinylene or ethynylene.
In the description, the term “aromatic group” is used for any substituted or non-substituted aryl (aromatic hydrocarbon) group and any substituted or non-substituted aromatic heterocyclic group.
Substituted or non-substituted aryl groups are preferred to substituted or non-substituted aromatic heterocyclic group. A hetero ring in the aromatic heterocyclic group is generally unsaturated. Preferably, the aromatic hetero ring is selected from 5-, 6- and 7-membered rings; and more preferably 5- and 6-membered rings. An aromatic hetero ring generally has the maximum number of double bonds. Preferred examples of the hetero atom embedded in the hetero ring include nitrogen, oxygen and sulfur atoms; and more preferred examples include nitrogen and sulfur atoms.
Examples of the aromatic ring in the aromatic group include benzene, furan, thiophene, pyrrole, oxazole, thiazole, imidazole, triazole, pyridine, pyrimidine and pyrazine rings; and among these, a benzene ring is especially preferred.
Examples of the substituent, that the substituted aryl group and the substituted aromatic heterocyclic group have, include halogen atoms (e.g., F, Cl, Br, and I), hydroxyl, carboxyl, cyano, amino, alkylaminos (e.g., methylamino, ethylamino, butylamino and dimethylamino), nitro, sulfo, carbamoyl, alkylcarbamoyls (e.g., N-methylcarbamoyl, N-ethylcarbamoyl, and N,N-dimethylcarbamoyl), sulfamoyl, alkylsulfamoyls (e.g., N-methylsulfamoyl, N-ethylsulfamoyl, and N,N-dimethylsulfamoyl), ureido, alkylureidos (e.g., N-methylureido, N,N-dimethylureido, and N,N,N′-trimethyl ureido), alkyls (e.g., methyl, ethyl, propyl, butyl, pentyl, heptyl, octyl, isopropyl, s-butyl, t-amyl, cyclohexyl, and cyclopentyl), alkenyls (e.g., vinyl, allyl, and hexenyl), alkynyls (e.g., ethynyl and butynyl), acyls (e.g., formyl, acetyl, butyryl, hexanoyl and lauryl), acyloxys (e.g., acetoxy, butyryloxy, hexanoyloxy, and lauryloxy), alkoxys (e.g., methoxy, ethoxy, propoxy, butoxy, pentyloxy, heptyloxy, and octyloxy), aryloxys (e.g., phenoxy), alkoxycarbonyls (e.g., methoxycarbonyl, ethoxycarbonyl, propoxycarbonyl, butoxycarbonyl, pentyloxycarbonyl, and heptyloxycarbonyl), aryloxycarbonyls (e.g., phenoxycarbonyl), alkoxycarbonylaminos (e.g., butoxycarbonylamino, and hexylcarbonylamino), alkylthios (e.g., methylthio, ethylthio, propylthio, butylthio, pentylthio, heptylthio and octylthio), arylthios (e.g., phenylthio), alkylsulfonyl (e.g., methylsulfonyl, ethylsulfonyl, propylsulfonyl, butylsulfonyl, pentylsulfonyl, heptylsulfonyl, and octylsulfonyl), amidos (e.g., acetamido, butylamido, hexylamido, and laurylamido), and non-aromatic hetero ring residues (e.g., morpholino, and pyridyl).
Among these, halogen atoms, cyano, carboxyl, hydroxyl, amino, alkyl-substituted aminos, acyls, acyloxys, amidos, alkoxycarbonyls, alkoxys, alkylthios and alkyls are preferred.
The alkyl moiety in the alkyl amino, alkoxycarbonyl, alkoxy or alkylthio may have at least one substituent, Examples of the substituent in the alkyl moieties or in the alkyls include halogen atoms, hydroxyl, carboxyl, cyano, amino, alkylaminos, nitro, sulfo, carbamoyl, alkylcarbamoyls, sulfamoyl, alkylsulfamoyls, ureido, alkylureidos, alkenyls, alkynyls, acyls, acyloxys, acylaminos, alkoxys, aryloxys, alkoxycarbonyls, aryloxycarbonyls, alkoxycarbonylaminos, alkylthios, arylthios, alkylsulfonyls, amidos and non-aromatic hetero ring residues. Among these, halogen atoms, aminos, alkylaminos, alkoxycarbonyls and alkoxys are preferred.
In the formula (a), L12 and L13 independently represent —O—CO— or —CO—O—.
In the formula (a), X represents 1,4-cyclohexylen, vinylene or ethynylene.
Examples of the compound represented by the formula (a) include, but are not limited to, those shown below.
The example compounds (1) to (34), (41) and (42) have two asymmetric carbon atoms in the 1- and 4-positions in the cyclohexane ring, however it is noted that their molecular structures are meso-type structures and symmetric. Therefore, there is no enantiomer thereof, and are only geometric isomers, trans and cis types thereof. Of the example compound (1), the trans (1-trans) and cis (1-cis) types are shown below.
As described above, preferably, the molecular structures of the rod-like compounds are linear. Therefore, trans types are preferred to cis types.
Addition to the geometric isomers, there are enantiomers of the example compound (2) and (3), and the total number of the isomers is four. Among the geometric isomers, trans types are preferred to the cis types. And among the enantiomers, they are nearly equal, and D-, L- and racemic bodies are used equally.
There are trans and cis types as a center of the vinylene bond of the example compounds (43) to (45). On the same reason as above, the trans types are preferred to the cis types.
Any combinations of two or more species of which maximum absorption peak wavelengths, λmax, are shorter than 250 nm found in their UV absorption spectra may be employed.
The rod-like compounds may be produced referring to the methods described various literatures such as Mol. Cryst. Liq. Cryst., vol. 53, p. 229 (1979); Mol. Cryst. Liq. Cryst., vol. 89, p. 93 (1982); Mol. Cryst. Liq. Cryst., vol. 145, p. 111 (1987); Mol. Cryst. Liq. Cryst., vol. 170, p. 43 (1989); J. Am. Chem. Soc., vol. 113, p. 1349 (1991); J. Am. Chem. Soc., vol. 118, p. 5346 (1996); J. Am. Chem. Soc., vol. 92, p. 1582 (1970); J. Org. Chem., vol. 40, p. 420 (1975); and Tetrahedron, vol. 48, number 16, p. 3437 (1992).
Aligning the Re enhancer to a higher degree of alignment than that of the polymer imparts a high Re to the polymer film. For this, the Re enhancer preferably has liquid crystallinity. The above-mentioned liquid-crystalline compound for use as the Re enhancer may be added to a polymer composition (preferably cellulose acylate composition) along with other optional additives thereto. More concretely, the Re enhancer is dissolved in an organic solvent such as alcohol, methylene chloride or dioxolane, and then added to a polymer solution (preferably cellulose acylate solution). The ratio by mass of the liquid-crystalline compound relative to all additives to be added is preferably from 40 to 100% by mass, more preferably from 50 to 100% by mass. Also preferably, the amount of the liquid-crystalline compound to be added is from 0.1 to 30% by mass, more preferably from 0.5 to 20% by mass, even more preferably from 1 to 10% by mass.
A plasticizer such as triphenyl phosphate or biphenyl phosphate may be added to the polymer film (preferably cellulose acylate film) for use for the optical film of the invention.
The cellulose acylate film to be used as the optical film of the invention (first optically-anisotropic layer) is preferably produced through stretching. The stretching direction may be any of a transverse direction or a machine direction, any of which is preferred.
A method of stretching in a transverse direction is described, for example, in JPA Nos. syo 62-115035, hei 4-152125, hei 4-284211, hei 4-298310, and hei 11-48271.
Film stretching is attained at room temperature or under heat. The heating temperature is preferably not higher than (the glass transition temperature of the film+20° C.). The film may be stretched while dried, and in case where a solvent has remained in the film, dry stretching is especially effective. A case of stretching a long film in the machine direction is taken into consideration. In the case, the film may be stretched in the machine direction (MD), or that is, in the film-traveling direction; and it may be stretched in the transverse direction (TD), or that is, in the direction perpendicular to the machine direction. In MD stretching, for example, the speed of the film-conveying rollers may be controlled in such a manner that the film-winding speed is higher than the film-peeling speed, then the film may be MD-stretched. In TD stretching, the film is conveyed while held by a tenter in such a manner that the tenter width is gradually broadened, and the film may be TD-stretched. After dried, the film may be stretched using a stretcher (preferably monoaxial stretching with a long stretcher).
Also preferably, the film with solvent remaining therein may be stretched as such. In this case, the solvent content of the film is preferably from 0% by mass to 100% by mass relative to the overall solid content of the film, more preferably from 5% by mass to 80% by mass. In stretching the film with solvent remaining therein, the effective glass transition temperature of the film may lower and the film may be stretched at a lower stretching temperature to a desired draw ratio without broken.
The draw ratio in stretching the film (elongation relative to the unstretched film) is preferably from 1% to 200%, more preferably from 5% to 150%. Especially preferably, the film is stretched in the transverse direction by from 1% to 200%, more preferably by from 5% to 150%. Specifically, for the optical film of the invention, a polymer film produced according to a solution film formation method or the like (preferably cellulose acylate film) is preferably TD-stretched by from 1.01 times to 2 times, more preferably by from 1.05 to 1.5 times. TD-stretching the film to the draw ratio falling within the above-mentioned range stably produces the optical film of the invention that satisfies predetermined characteristics. The stretching speed is preferably from 1%/min to 100%/min, more preferably from 5%/min to 80%/min, even more preferably from 10%/min to 60%/min.
Preferably, the stretched cellulose acylate film is produced according to a process comprising a step of holding the film, after stretched to the maximum draw ratio, at a draw ratio lower than the maximum draw ratio for a predetermined period of time (the step is hereinafter referred to as a relaxation step). The draw ratio in the relaxation step is preferably from 50% to 99% of the maximum draw ration, more preferably from 70% to 97%, even more preferably from 90% to 95%. Also preferably, the time for the relaxation step is from 1 second to 120 seconds, more preferably from 5 seconds to 100 seconds.
The draw ratio and the time in the relaxation step, as defined to fall within the range mentioned above, increases the degree of alignment of the retardation enhancer, therefore producing a cellulose acylate film having a high retardation, in which the retardation fluctuation in the plane direction and the thickness direction of the film is reduced.
Now hereinunder described are the physical properties of the cellulose acylate film favorably used for the optical film of the invention (first optically-anisotropic layer).
Preferably, the haze of the cellulose acylate film is from 0.01% to 0.8%, more preferably from 0.05% to 0.6%. When the haze is more than 0.8%, then the contrast of the liquid-crystal display device tends to lower. The film having a lower haze has more excellent optical potency; but in consideration of the material selection and the production control, the above range is preferred.
The Re enhancer of the above general formula (A) is especially favorable since it hardly increases the haze of the film even though the film is stretched.
For measuring the haze thereof, a sample of the film having a size of 40 mm×80 mm is tested at 25° C. and 60% RH, using a haze meter (HGM-2DP, by Suga Test Instruments) according to JIS K-7136.
The film transmittance may be measured by testing a film sample of 13 mm×40 mm at 25° C. and 60% RH, using a spectrophotometer (U-3210, by Hitachi). The transmittance at a wavelength of 380 nm of the cellulose acylate film favorably used for the first optically-anisotropic layer in the invention is preferably at most 10%, more preferably at most 5%, even more preferably at most 1%. The transmittance of the film at a wavelength of 430 nm is preferably at least 80%, more preferably at least 85%, even more preferably at least 90%. Controlling the transmittance to fall within the range reduces the viewing angle-dependent color shift in the liquid-crystal displays with the optically-anisotropic layer built therein.
The modulus of elasticity of the cellulose acylate film for use for the optical film of the invention (first optically-anisotropic layer) is preferably from 2000 MPa to 6000 MPa, more preferably from 3000 MPa to 5500 MPa. The elasticity ratio in the transverse direction (TD) perpendicular to MD to the machine direction (MD), (TD/MD) is preferably from 0.1 to 10, more preferably from 1 to 2.
The elongation at break of the film is preferably from 3% to 50%, more preferably from 5% to 40%. The ratio of the elongation at break in TD to MD, (TD/MD) is preferably from 0.1 to 50, more preferably from 0.5 to 20.
The modulus of elasticity and the elongation at break may be measured as follows: A film sample of 10 mm×150 mm is conditioned at 25° C. and 60% RH for 2 hours or more, and then, using a tensile tester (Strograph R2, by Toyo Seiki), this is pulled at a pulling rate of 10 mm/min. The chuck distance is 50 mm, and the temperature is 25° C.
Having a modulus of elasticity and an elongation at break falling within the range as above, the film has excellent workability into polarizers, and, when built in a liquid-crystal display device and when continuously turned on for a long period of time, it hardly causes uneven display.
The static friction coefficient of the cellulose acylate film for use for the optical film of the invention (first optically-anisotropic layer) is preferably from 0.1 to 3.0, more preferably from 0.2 to 2.0. The kinematic friction coefficient of the film is preferably from 0.05 to 2.5, more preferably from 0.1 to 1.5. Controlling the static friction coefficient and the kinematic friction coefficient to fall within the range as above stably produces a long film roll.
The friction coefficient of the film may be measured as follows: According to JIS-K-7125 (1987), film pieces are cut out so that their surface and back could be a contact face, then a weight of 200 g is put on it, and the weight is horizontally pulled at a moving speed of 100 mm/min under the condition of a contact area of 80 mm×200 mm. The maximum load before the weight moved (Fs) and the mean load while the weight was moving (Fd) are measured, and the static friction coefficient and the kinematic friction coefficient (μm) are obtained according to the following formulae:
Static Friction Coefficient=Fs(gf)/weight of the weight (gf),
Kinematic Friction Coefficient=Fd(gf)/weight of the weight (gf)
Preferably, the moisture-dependent curl fluctuation in the cellulose acylate film for use for the optical film of the invention (first optically-anisotropic layer) is small. The curl fluctuation per relative humidity 1% in the cellulose acylate film is preferably at most 0.02, more preferably at most 0.015, even more preferably at most 0.010. Controlling the curl fluctuation per relative humidity 1% to fall within the range as above reduces the deformation of the film after worked into polarizer, depending on the service environment moisture change, and therefore prevents the light leakage from liquid-crystal display devices depending on the service environment change.
The curl degree may be measured as follows: The film is cut by 50 mm in the transverse direction and by 2 mm in the machine direction, and the resulting piece is conditioned at a predetermined humidity for 24 hours. Using a curvature scale, the curl degree of the film is measured. The curl value is represented by 1/R, in which R is the radius of curvature expressed by a unit, meter (see JIS K7619).
The moisture-dependent curl fluctuation may be controlled by controlling the additive concentration distribution in the film. The additive concentration distribution may be determined according to the following method.
A cross section of an unstretched film, parallel to the xz plane of the film, is divided into 5 portions from the side of the support used in film formation to the air interface side; and each portion is analyzed using a time-of-flight secondary ion mass spectrometer (TOF-SIMS). The intensity ratio of the cellulose acylate decomposition product-derived positive ion peak, m/Z=109 (C6H5O2+), to the additive ion peak (molecule+H+) is obtained, and the data give the additive concentration distribution.
The Re enhancer of the above formula (A) is characterized in that its concentration in the film on the support side thereof during film formation is higher than the Rth enhancer of a general formula (1) to be mentioned below; and when the two are used as combined, the additive concentration distribution may be readily controlled in the thickness direction of the film, and the combined use is therefore favorable for reducing the moisture-dependent curl fluctuation in the film.
The glass transition temperature (hereinafter this may be referred to as Tg) of the cellulose acylate film for use for the optical film of the invention (first optically-anisotropic layer) is preferably from 130° C. to 200° C., more preferably from 150° C. to 180° C. Having a glass transition temperature controlled to fall within the above range, the cellulose acylate film has good dimensional stability under heat and has excellent workability.
Tg of the film may be measured according to the following method: A film sample of 5 mm×30 mm is conditioned at 25° C. and 60% RH for 2 hours or more, and then this is tested with a kinematic viscoelasticity meter (Vibron DVA-225 (by IT Keisoku Seigyo KK). The chuck distance is 20 mm, the heating speed is 2° C./min, the test temperature range is from 30° C. to 200° C., and the frequency is 1 Hz. A storage elastic modulus is taken on the vertical axis as a logarithmic axis, and a temperature (° C.) is taken on the horizontal axis as a linear axis; and on the graph, the rapid decrease in the storage elastic modulus shown when the storage elastic modulus transfers from the solid region to the glass transition region is drawn as a line 1, and it is drawn as a line 2 in the glass transition region. The point of intersection of the line 1 and the line 2 indicates a temperature at which the storage elastic modulus of the film rapidly decreases during heating and the film begins to soften, or that is, a temperature at which the film begins to transfer to the glass transition region; and this is the glass transition temperature Tg (kinematic viscoelasticity) of the film.
The thermal expansion coefficient of the cellulose acylate film for use for the optical filmof the invention (first optically-anisotropic layer) is preferably from 10 ppm/° C. to 100 ppm/° C., more preferably from 15 ppm/° C. to 80 ppm/° C., even more preferably from 20 ppm/° C. to 60 ppm/° C. Having a thermal expansion coefficient that falls within the above range, the film may prevent display unevenness when the liquid-crystal display device having the optically-anisotropic layer of the film built therein is continuously turned on.
The thermal expansion coefficient of the film may be determined as a dimensional change relative to temperature elevation, as measured with a thermal mechanical analyzer when heated under a constant load given thereto.
The dimensional change of the cellulose acylate film for use for the optical film of the invention (first optically-anisotropic layer) is preferably small. Concretely, the dimensional change of the film before and after treatment at 60° C. and 90% RH for 100 hours is preferably at most 0.10%, more preferably at most 0.05%. The dimensional change of the film before and after treatment at 80° C. and 10% RH for 24 hours is preferably at most 0.10%, more preferably at most 0.05%. The ratio of the absolute value of the dimensional change of the film in MD to TD (MD/TD) is preferably from 0.1 to 100. Having a dimensional change that falls within the range as above, the deformation of the film, after worked into polarizer, may be reduced, depending on the service environment moisture change, and therefore the film may prevent the light leakage from liquid-crystal display devices depending on the service environment change.
The dimensional change may be determined as follows: Two film samples of 30 mm×120 mm are prepared, and conditioned at 25° C. and 60% RH for 24 hours, and using a pin gauge (EF-PH by Mitsutoyo), 6 mm+holes are formed at both edges of the samples at intervals of 100 mm. The original punch distance is measured, L0. One sample is treated in a temperature & humidity chamber, ESPEC's PR-45, at 60° C. and 90% RH for 24 hours, and the punch distance is measured, L1. The other sample is treated in a constant temperature oven, Yamato's DN64, at 80° C. and 10% RH for 24 hours, and the punch distance is measured, L2. The dimensional change in the invention is expressed as a value read to the minimum scale, 1/1000 mm in every distance measurement. According to the following formulae, the dimensional change under each condition may be obtained.
Dimensional change at 60° C. and 90% RH={(L0−L1)/L0}×100,
Dimensional change at 80° C. and 10% RH={(L0−L2)/L0}×100.
Preferably, the cellulose acylate film for use for the optical film of the invention (first optically-anisotropic layer) has excellent surface smoothness. Concretely, the maximum thickness difference of the film (P−V value) is preferably at most 1 μm; and the RMS value of the film represented by the following formula is preferably at most 0.07 μm. More preferably, the P−V value of the film is at most 0.8 μm, even more preferably at most 0.6 μm, still more preferably at most 0.4 μm. The RMS value of the film is more preferably at most 0.06 μm, even more preferably at most 0.05 μm, still more preferably at most 0.04 μm. Having P−V and RMS falling within the range as above, the film has excellent surface smoothness, and may be evenly stuck to a polarizer; and the film may provide flat panels.
di: Thickness within a range of a diameter of 60 mm
N: The member of points measuring thickness within a range of a diameter of 60 mm
The maximum thickness difference of the film (P−V value) and the RMS value of the film may be measured, using Fujinon's stripe analyzer, FX-03. The area for analysis is within a range of φ=60 mm.
The cellulose acylate film for use for the optical film of the invention (first optically-anisotropic layer) is preferably such that the difference between the maximum value and the minimum value of the alignment angle distribution within a range of 60 mm×60 mm is at most 0.40 degrees, more preferably at most 0.30 degrees, even more preferably at most 0.20 degrees, still more preferably at most 0.10 degrees. The film thus improved in the alignment angle distribution to that effect in a small region can extremely reduce the unevenness in cross Nicol observation; and the film may provide flat panels.
In the invention, “alignment angle” does not indicate the angle of the alignment direction of a polymer film, based on a specific direction in the plane of the film. However, in a case of “difference between the maximum value and the minimum value of an alignment angle”, it may mean, based on a common direction, though indefinite, a difference between the maximum value and the minimum value of the angle between that direction and the alignment direction of a polymer film; and therefore the value may be determined indiscriminately.
In the invention, the alignment angle distribution of the polymer film is determined with OPTIPRO (XY scanning stage, halogen lamp light+550 nm interference filter). In this case, the test area is 60 mm×60 mm, and the sample is analyzed at intervals of 4 mm, using a 3 mmφ beam.
The photoelasticity coefficient of the cellulose acylate for use for the optical film of the invention (first optically-anisotropic layer) is preferably from 0 cm2/N to 30×10−8 cm2/N, more preferably not larger than 25×10−8 cm2/N, even more preferably not larger than 18×10−8 cm2/N, both in the machine direction and in the direction perpendicular to it. The photoelasticity coefficient may be determined with an ellipsometer. Having a photoelasticity coefficient that falls within the above range, the optical film of the invention, when it is built in a liquid-crystal display device and when the device is continuously turned on, may prevent uneven displays.
Preferably, the optical film of the invention (first optically-anisotropic layer) satisfies the following formula, in point of the in-plane retardation thereof at a wavelength of 548 nm in an environment of 25° C. and 10% RH, 25° C. and 80% RH, and 25° C. and 60% RH, Re10%(548), Re80%(548) and Re60%(548), respectively:
0.1%≦[{Re10%(548)−Re80%(548)}/Re60%(548)]≦20%.
More preferably, it satisfies the following formula:
0.1%≦[{Re10%(548)−Re80%(548)}/Re60%(548)]≦10%.
When the optical film of the invention shows environment dependence satisfying the above-mentioned relational formula in point of Re and when it is used in a liquid-crystal display device, then it is favorable since it provides an excellent liquid-crystal display device that hardly undergoes light leakage and color shift even when driven in high temperature and high humidity condition.
Not specifically defined, the thickness of the optical film of the invention (first optically-anisotropic layer) is preferably as thin as possible in order to satisfy the requirement of thickness reduction for liquid-crystal display devices. On the other hand, however, the film must have a suitable thickness for satisfying predetermined optical characteristics. From the viewpoint, the film thickness is preferably from 30 to 200 μm, more preferably from 35 to 100 μm.
Also preferably, the optical film of the invention satisfies the following relational formula in point of the in-plane retardation thereof at a wavelength of 548 nm, Re(548) (unit, m) and the film thickness (d) (unit, m):
0.00125<Re(548)/d<0.00700.
More preferably, it satisfies the following relational formula:
0.0015<Re(548)/d<0.006.
Re(548)/d falling within the above range is favorable, from the viewpoint that the film satisfies desirable Re even though it is thin.
One embodiment of the optical film of the invention comprises a structure having a maximum refractive index in the direction nearly parallel to the film stretching direction (hereinafter this is referred to as “positive intrinsic birefringent component), and a structure having a maximum refractive index in the direction nearly perpendicular to the film stretching direction (hereinafter this is referred to as “negative intrinsic birefringent component), in which the negative intrinsic birefringent component has an absorption maximum on a longer wavelength side than the positive intrinsic birefringent component. The polymer that constitutes the major ingredient of the film may have the positive intrinsic birefringent component and the negative intrinsic birefringent component in its molecule; or the additive to the polymer may have them in its molecule. On the other hand, for contributing toward the reduction in the viewing angle-dependent contrast change and color shift of a liquid-crystal display device, Re must have reversed wavelength dispersion characteristics and the value of Re must be large in some degree. For this, there may be employed two methods; (1) a method of using a structure having a large intrinsic birefringence (that is, having a large polarizability anisotropy) both for the positive intrinsic birefringent component and the negative intrinsic birefringent component; and (2) a method of increasing the degree of alignment.
Of those, in the method (1), when a polymer for the film is so designed that it may have a structure having a large polarizability anisotropy introduced thereinto, then the photoelasticity of the polymer may increase, therefore causing a problem in that, when the film is built in a liquid-crystal display device and when the device is kept in high temperature and high humidity condition, then light leakage may increase. On the other hand, in the method (2), the environment change-dependent Re change may tend to increase. In particular, the above problem is serious with a hydrophilic polymer having sufficient adhesiveness to polyvinyl alcohol used for polarizing elements, such as cellulose acylate.
Accordingly, it is especially desirable that the positive intrinsic birefringent component and the negative intrinsic birefringent component are added to both the polymer, or that, is the major ingredient of the film, and the additive thereto so as to complementarily use them, and this embodiment may provide an optical film having a high level of reversed wavelength dispersion characteristics of the retardation and a small photoelasticity coefficient and having a small Re moisture dependence.
The photoelasticity coefficient of the optical film of the invention is preferably from 0 cm2/N to 30×10−8 cm2/N, more preferably from 0 cm2/N to 20×10−8 cm2/N. Having a photoelasticity coefficient that falls within the above range, the film is effective for reducing light leakage when it is built in a liquid-crystal display device and when the device is turned on for a long period of time in high temperature and high humidity condition.
The photoelasticity coefficient may be determined as follows: A film sample having a size of 3.5 cm×12 cm and a thickness of from 30 to 150 μm is analyzed for its Re at a wavelength of 630 nm, under not load or under a load of 250 g, 500 g, 1000 g and 1500 g; and from the inclination of the line that indicates the Re change relative to the stress, the photoelasticity coefficient may be derived. As an instrument for the test, used is an ellipsometer (M150, b Nippon Bunko).
As described in the above, a structure having a large polarizability anisotropy may be introduced into the molecule of the polymer that is the major component of the optical film of the invention, for increasing the Re expressibility of the film; but if so, the photoelasticity coefficient of the film may increase. On the other hand, introducing a substituent having a large polarizability anisotropy into the molecule of the additive to the film is characterized in that the introduction may have a small influence on the photoelasticity coefficient of the film and that the change in the photoelasticity coefficient is small. Combining a polymer having a small photoelasticity coefficient and an additive having a large polarizability anisotropy gives an optical film having a large Re and a small photoelasticity coefficient.
The optical film of the invention (first optically-anisotropic layer) may be built in a liquid-crystal display device as an optical compensatory film. As mentioned in the above, the optical film of the invention is preferably a cellulose acylate film, more preferably a cellulose acylate film comprising at least one Re enhancer.
In general, in a large-panel display device, the contrast reduction and the color shift in the oblique direction are remarkable, and therefore the optical film of the invention is especially suitable for use in large-panel liquid-crystal display devices. In case where the optical film is used in large-panel liquid-crystal display devices, for example, it is shaped to have a film width of at least 1470 mm. As the case may be, the optical film may be produced as a long film in continuous production and wound up into a roll, and it may be cut into sheets having a size capable of being directly built in a liquid-crystal display device as it is; and the optical film of the invention may have a form of such cut sheets. The film roll is stored and transported as it is, and when it is actually built in a liquid-crystal display device or when it is stuck to a polarizing element, then it is cut into a desired size. If desired, the long film may be stuck to a polarizing element of a polyvinyl alcohol produced as a long film like it, and then, when it is actually built in a liquid-crystal display device, it may be cut into a desired size. In one embodiment of a roll of the optical film of the invention, the film having a length of at least 2500 m is wound up into a roll film.
Now hereinunder described in detail are preferred embodiments of the second optically-anisotropic layer that may be combined with the optical film of the invention (first optically-anisotropic layer), in point of its optical characteristics, materials and production methods.
The liquid-crystal display device of the invention preferably comprises a second optically-anisotropic layer having a relatively large Nz value, as combined with the above-mentioned first optically-anisotropic layer (optical film of the invention), in which, concretely, the second optically-anisotropic layer satisfies 0 nm<|Re(550)|<10 nm and |Rth(550)|/|Re(550)|>10. More preferably, the second optically-anisotropic layer satisfies |Rth(550)/Re(550)|>15; and |Re(550)| is as small as possible. The second optically-anisotropic layer satisfying these optical characteristics enables the polarization state change shown in
Not specifically defined, the wavelength dispersion characteristics of Rth of the second optically-anisotropic layer may be reversed wavelength dispersion characteristics of the retardation satisfying the following formula (4), or regular wavelength dispersion characteristics of the retardation satisfying the following formula (5). Especially preferably, the second optically-anisotropic layer has Rth that shows regular wavelength dispersion characteristics satisfying the following formula (5).
Rth(630)−Rth(450)>0, (4)
Rth(630)−Rth(450)≦0. (5)
The material of the second optically-anisotropic layer is not specifically defined. When it is a polymer film, it may be stuck to a polarizing element. As a single member, it may be built in a liquid-crystal display device, serving as an optically-compensatory film. Examples of the material for the polymer film may be the same as those of the polymer film used in forming the optical film of the invention. Above all, preferred is a cellulose acylate film.
For producing a cellulose acylate film satisfying the condition for the second optically-anisotropic layer, an Rth enhancer is preferably added to the cellulose acylate film. “Rth enhancer” as referred to herein is a compound having the property capable of enhancing birefringence in the thickness direction of the film.
Preferably the compounds having an absorption peak at a wavelength from 250 nm to 380 nm and exhibiting high polarizability anisotropy are employed as the Rth enhancer. The compounds represented by the formula (1) are especially preferred as the Rth enhancer.
In the formula, X1 represents a single bond, —NR4—, —O— or —S—; X2 represents a single bond, —NR5—, —O— or —S—; X3 represents a single bond, —NR6—, —O— or —S—. And, R1, R2, and R3 independently represent an alkyl group, an alkenyl group, an aromatic ring group or a hetero-ring residue; R4, R5 and R6 independently represent a hydrogen atom, an alkyl group, an alkenyl group, an aryl group or a hetero-ring group.
Preferred examples, I-(1) to IV-(10), of the compound represented by the formula (1) include, but are not limited to, those shown below.
The compounds represented by the formula (III) are also preferred as the Rth enhancer. The formula (III) will be described in detail.
In the formula (III), R2, R4 and R5 independently represent a hydrogen atom or a substituent; R11 and R13 independently represent a hydrogen atom or an alkyl group; and L1 and L2 independently represent a single bond or a bivalent linking group. In the formula, Ar1 represents an arylene group or an aromatic heterocyclic group; Ar2 represents an arylene group or an aromatic heterocyclic group; n is an integer equal to or more than 3; “n” types of L2 and Ar1 may be same or different from each other. R11 and R13 are different from each other, and the alkyl group represented by R13 doesn't include any hetero atoms.
In the formula (III), R2, R4 and R5 respectively represent a hydrogen atom or a substituent. The substituent may be selected from Substituent Group T described later.
In the formula (III), R2 preferably represents a hydrogen atom, an alkyl group, an alkoxy group, an amino group or hydroxy; more preferably a hydrogen atom, an alkyl group or an alkoxy group; much more preferably a hydrogen atom, a C1-4 alkyl group such as methyl or a C1-12 (the preferred is C1-8, the more preferred is C1-6 and the specially preferred is C1-4) alkoxy group; further much more preferably a hydrogen atom, a C1-4 alkyl group or a C1-4 alkoxy group; especially preferably a hydrogen atom, methyl or methoxy; and most preferably a hydrogen atom.
In the formula (III), R4 preferably represents a hydrogen atom or an electron donating substituent; more preferably a hydrogen atom, an alkyl group, an alkoxy group, an amino group or hydroxy; much more preferably a hydrogen atom, a C1-4 alkyl group or a C1-2 (the preferred is C1-8, the more preferred is C1-6 and the especially preferred is C1-4) alkoxy group; and especially preferably a hydrogen atom, a C1-4 alkyl group or a C1-4 alkoxy group; and most preferably a hydrogen atom or methoxy.
In the formula (III), R5 preferably represents a hydrogen atom, a halogen atom, an alkyl group, an alkoxy group, an amino group or hydroxy; more preferably a hydrogen atom, an alkyl group or an alkoxy group; much more preferably a hydrogen atom, a C1-4 alkyl group such as methyl or a C1-12 (the preferred is C1-8, the more preferred is C1-6 and the especially preferred is C1-4) alkoxy group; especially preferably a hydrogen atom, methyl or methoxy; and most preferably a hydrogen atom.
In the formula (III), R11 and R13 respectively represent a hydrogen atom or an alkyl group, provided that R11 and R13 are different from each other and the alkyl group represented by R13 doesn't include any hetero atoms. The term “hetero atom” is used for any atoms other than hydrogen and carbon atoms and examples of the hetero atom include oxygen, nitrogen, sulfur, phosphorus, halogen (F, Cl, Br, I) and boron atoms.
The alkyl group represented R11 or R13 may have a linear or branched chain structure or a cyclic structure, and be selected from not only non-substituted alkyl groups but also substituted alkyl groups. The alkyl group is preferably selected from substituted or non-substituted C1-30 alkyl groups, substituted or non-substituted C3-30 cycloalkyl groups, substituted or non-substituted C5-30 bicycloalkyl groups, namely monovalent groups made of C5-30 bicycloalkanes by removing a hydrogen atom therefrom, and tricycloalkyl groups.
Preferable examples of the alkyl group represented by R11 or R13 include methyl, ethyl, n-propyl, isopropyl, n-butyl, sec-butyl, n-pentyl, iso-pentyl, n-hexyl, n-heptyl, n-octyl, tert-octyl, 2-ethylhexyl, n-nonyl, 1,1,3-trimethyl hexyl, n-decyl, 2-hexyldecyl, cyclohexyl, cycloheptyl, 2-hexenyl, oleyl, linoleyl, and linolenil. Examples of the cycloalkyl group include cyclohexyl, cyclopentyl, 4-n-dodecylcyclohexyl; and examples of the bicycloalkyl group include bicyclo[1.2.2]heptane-2-yl and bicyclo[2.2.2]octane-3-yl.
R11 preferably represents a hydrogen atom, methyl, ethyl, n-propyl or iso-propyl; and more preferably a hydrogen atom or methyl; and most preferably methyl.
R13 preferably represents a C2 or longer alkyl group, and more preferably a C3 or longer alkyl group. Among theses, branched or cyclic alkyl groups are preferred.
Specific examples (O-1 to O-20) of the alkyl group represented by R13 include, but are not limited to, those shown below. It is noted that “#” means the position of the oxygen atom side.
In the formula (III), Ar1 represents an arylene group or an aromatic heterocyclic group and Ar1 in each repeating unit may be same or different.
In the formula (III), Ar2 represents an aryl group or an aromatic heterocyclic group.
The arylene group presented by Ar1 in the formula (III) may be selected from C6-30 arylene groups, and have a single ring structure or a condensed ring structure with another ring. And the arylene group may have at least one substituent, and the substituent may be selected from Substituent Group T described later. The arylene group represented by Ar1 is preferably selected from C6-20, more preferably C6-12 arylene groups, such as phenylene, p-methylphenylen and naphtylene.
The arylene group presented by Ar2 in the formula (III) may be selected from C6-30 arylene groups, and have a single ring structure or a condensed ring structure with another ring. And the arylene group may have at least one substituent, and the substituent may be selected from Substituent Group T described later. The arylene group represented by Ar2 is preferably selected from C6-20, more preferably C6-12 arylene groups, such as phenylene, p-methylphenylen and naphtylene.
The aromatic heterocyclic group represented by Ar1 or Ar2 in the formula (III) may be selected from the groups of aromatic rings in which at least one hetero atom selected from oxygen, nitrogen and sulfur atoms is embedded, and is preferably selected from the groups of 5- or 6-membered aromatic rings in which at least one of a nitrogen and sulfur atoms is embedded. The aromatic heterocyclic group may have at least one substituent. The substituent may be selected from Substituent Group T.
Examples of the aromatic heterocyclic group represented by Ar1 or Ar2 in the formula (III) include furan, pyrrole, thiophene, imidazole, pyrazole, pyridine, pyrazine, pyridazine, triazole, triazine, indole, indazole, purine, thiazole, thiadiazole, oxazoline, oxazole, oxadiazole, quinoline, isoquinoline, phthalazine, naphthylidine, quinoxaline, quinazoline, cinnoline, pteridine, acridine, phenanthroline, phenadine, tetrazole, benzimidazole, benzoxazole, benzthiazole, benztriazole, tetraza indeline, pyrrolotriazole and pyrazotriazole. Preferred examples of the aromatic heterocyclic group include benzimidazole, benzoxazole, benzthiazole and benztriazole.
In the formula (III), L1 and L2 independently represent a single bond or a bivalent linking group. L1 and L2 may be same or different from each other. And L2 in each repeating unit may be same or different from each other.
The bivalent linking group is preferably selected from the group consisting of —O—, —NR— (R represents a hydrogen atom or a substituted or non-substituted alkyl or aryl group), —CO—, —SO2—, —S—, an alkylene group, a substituted alkylene group, an alkenylene group, a substituted alkenylene group, an alkynylene group, a substituted alkynylene group and any combinations of two or more selected therefrom; and more preferably from the group consisting of —O—, —NR—, —CO—, —SO2NR—, —NRSO2—, —CONR—, —NRCO—, —COO—, —OCO— and an alkynylene group. Preferably, R represents a hydrogen atom.
In the compound represented by the formula (III), Ar1 binds to L1 and L2. For the compound having a phenylene as Ar1, it is preferable that L1-Ar1-L2 and L2-Ar1-L2 are in a para-position (1,4-position) relation.
In the formula (III), n is an integer equal to or more than 3, preferably from 3 to 7, more preferably from 3 to 6 and much more preferably from 3 to 5.
Preferable examples of the formula (III) include the compounds represented by the formula (IV) and formula (V) shown below.
In the formula (IV), R2 and R5 independently represent a hydrogen atom or a substituent; R11 and R13 independently represent a hydrogen atom or an alkyl group; L1 and L2 independently represent a single bond or a bivalent linking group; Ar1 represents an arylene group or an aromatic heterocyclic group; Ar2 represents an arylene group or an aromatic heterocyclic group; n is an integer equal to or more than 3; the “n” types of L2 or Ar1 may be same or different from each other; provided that R11 and R13 are different from each other and the alkyl group represented by R13 doesn't include any hetero atoms.
In the formula (IV), the meanings of R2, R5, R11 and R13 are same as those in the formula (III); and preferred examples of R2, R5, R11 and R13 are same as those in the formula (III). In the formula (IV), the meanings of L1, L2, Ar1 and Ar2 are same as those in the formula (III); and preferred examples of L1, L2, Ar1 and Ar2 are same as those in the formula (III).
In the formula (V), R2 and R5 independently represent a hydrogen atom or a substituent; R1 and R13 independently represent a hydrogen atom or an alkyl group; L1 and L2 independently represent a single bond or a bivalent linking group; Ar1 represents an arylene group or an aromatic heterocyclic group; Ar2 represents an arylene group or an aromatic heterocyclic group; n is an integer equal to or more than 3; the “n” types of L2 or Ar1 may be same or different from each other; provided that R11 and R13 are different from each other and the alkyl group represented by R13 doesn't include any hetero atoms.
In the formula (V), the meanings of R2, R5, R11 and R13 are same as those in the formula (III); and preferred examples of R2, R5, R11 and R13 are same as those in the formula (III). In the formula (V), the meanings of L1, L2, Ar1 and Ar2 are same as those in the formula (III); and preferred examples of L1, L2, Ar1 and Ar2 are same as those in the formula (III).
In the formula (V), R14 represents a hydrogen atom or an alkyl group; and examples of the alkyl group are same as those preferably exemplified as an alkyl group represented by R11 or R13. In the formula, R14 preferably represents a hydrogen atom or a C1-4 alkyl group, more preferably a hydrogen atom or a C1-3 alkyl group, and much more preferably methyl. In the formula, R11 and R14 may be same or different from each other, and it is most preferred that both of R11 and R14 are methyl.
Preferable examples of the compound represented by the formula (V) include the compounds represented by the formula (V-A) and (V-B).
In the formula (V-A), R2 and R5 independently represent a hydrogen atom or a substituent; R11 and R13 independently represent a hydrogen atom or an alkyl group; L1 and L2 independently represent a single bond or a bivalent linking group; Ar1 represents an arylene group or an aromatic heterocyclic group; n is an integer equal to or more than 3; the “n” types of L2 or Ar1 may be same or different from each other; provided that R11 and R13 are different from each other and the alkyl group represented by R13 doesn't include any hetero atoms.
In the formula (V-A), the meanings and preferable examples of R2, R5, R11, R13, L1, L2, Ar1 and n may be same as those in the formula (III).
In the formula (V-B), R2 and R5 independently represent a hydrogen atom or a substituent; R11, R13 and R14 independently represent a hydrogen atom or an alkyl group; L1 and L2 independently represent a single bond or a bivalent linking group; Ar1 represents an arylene group or an aromatic heterocyclic group; n is an integer equal to or more than 3; the “n” types of L2 or Ar1 may be same or different from each other; provided that R11 and R13 are different from each other and the alkyl group represented by R13 doesn't include any hetero atoms.
In the formula (V-B), the meanings and preferable examples of R2, R5, R11, R13, R14, L1, L2, Ar1 and n may be same as those in the formula (III).
“Substituent Group T” will be described below.
Halogen atoms such as fluorine, chlorine, bromine and iodine atoms; alkyls (preferably C1-30 alkyls) such as methyl, ethyl, n-propyl, iso-propyl, tert-butyl, n-octyl, and 2-ethylhexyl; cylcoalkyls (preferably C3-30 substituted or non-substituted cycloalkyls) such as cyclohexyl, cyclopentyl and 4-n-dodecylcyclohexyl; bicycloalkyls (preferably C5-30 substitute or non-substituted bicycloalkyls, namely monovalent residues formed from C5-30 bicycloalkanes from which a hydrogen atom is removed) such as bicyclo[1.2.2]heptane-2-yl and bicyclo[2.2.2]octane-3-yl; alkenyls (preferably C2-30 alkenyls) such as vinyl and allyl; cycloalkenyls (preferably C3-30 substituted or non-substituted cycloalkenyls, namely monovalent residues formed from C3-30 cycloalkenes from which a hydrogen atom is removed) such as 2-cyclopentene-1-yl and 2-cyclohexene-1-yl; bicycloalkenyls (preferably C5-30 substituted or non-substituted bicycloalkenyls, namely monovalent residues formed from C5-30 bicycloalkenes from which a hydrogen atom is removed) such as bicyclo[2.2.1]hepto-2-en-1-yl and bicyclo[2.2.2]octo-2-en-4-yl; alkynyls (preferably C2-30 substitute or non-substituted alkynyls) such as etynyl and propargyl; aryls (preferably C6-30 substitute or non-substituted aryls) such as phenyl, p-tolyl and naphthyl; heterocyclic groups (preferably (more preferably C3-30) substituted or non-substituted, 5-membered or 6-membered, aromatic or non-aromatic heterocyclic monovalent residues) such as 2-furyl, 2-thienyl, 2-pyrimidinyl and 2-benzothiazolyl; cyano, hydroxyl, nitro, carboxyl, alkoxys (preferably C1-30 substituted or non-substituted alkoxys) such as methoxy, ethoxy, iso-propoxy, t-butoxy, n-octyloxy and 2-methoxyethoxy; aryloxys (preferably C6-30 substituted or non-substituted aryloxys) such as phenoxy, 2-methylphenoxy, 4-t-butylphenoxy, 3-nitrophenoxy and 2-tetradecanoyl aminophenoxy; silyloxys (preferably C3-20 silyloxys) such as trimethylsilyloxy and t-butyldimethylsilyloxy; hetero-cyclic-oxys (preferably C2-30 substituted or non-substituted hetero-cyclic-oxys) such as 1-phenyltetrazole-5-oxy and 2-tetrahydropyrenyloxy; acyloxys (preferably C2-30 substitute or non-substituted alkylcarbonyloxys and C6-30 substituted or non-substituted arylcarbonyloxys) such as formyloxy, acetyloxy, pivaloyloxy, stearoyoxy, benzoyloxy and p-methoxyphenylcarbonyloxy; carbamoyloxys (preferably C1-30 substituted or non-substituted carbamoyloxys) such as N,N-dimethyl carbamoyloxy, N,N-diethyl carbamoyloxy, morpholinocarbonyloxy, N,N-di-n-octylaminocarbonyloxy and N-n-octylcarbamyloxy; alkoxy carbonyloxys (preferably C2-30 substituted or non-substituted alkoxy carbonyloxys) such as methoxy carbonyloxy, ethoxy carbonyloxy, t-butoxy carbonyloxy and n-octyloxy carbonyloxy; aryloxy carbonyloxys (preferably C7-30 substituted or non-substituted aryloxy carbonyloxys) such as phenoxy carbonyloxy, p-methoxyphenoxy carbonyloxy and p-n-hexadecyloxyphenoxy carbonyloxy; aminos (preferably C1-30 substituted or non-substituted alkylaminos and C6-30 substituted or non-substituted arylaminos) such as amino, methylamino, dimethylamino, anilino, N-methyl-anilino and diphenylamino; acylaminos (preferably C1-30 substituted or non-substituted alkylcarbonylaminos and C6-30 substituted or non-substituted arylcarbonylaminos) such as formylamino, acetylamino, pivaloylamino, lauroylamino and benzoylamino; aminocarbonylaminos (preferably C1-30 substituted or non-substituted aminocarbonylaminos) such as carbamoylamino, N,N-dimethylaminocarbonylamino, N,N-diethylamino carbonylamino and morpholino carbonylamino; alkoxycarbonylaminos (preferably C2-30 substituted or non-substituted alkoxycarbonylaminos) such as methoxycarbonylamino, ethoxycarbonylamino, t-butoxycarbonylamino, n-octadecyloxycarbonylamino and N-methyl-methoxy carbonylamino; aryloxycarbonylaminos (preferably C7-30 substituted or non-substituted aryloxycarbonylaminos) such as phenoxycarbonylamino, p-chloro phenoxycarbonylamino and m-n-octyloxy phenoxy carbonylamino; sulfamoylaminos (preferably C0-30 substituted or non-substituted sulfamoylaminos) such as sulfamoylamino, N,N-dimethylamino sulfonylamino and N-n-octylamino sulfonylamino; alkyl- and aryl-sulfonylaminos (preferably C1-30 substituted or non-substituted alkyl-sulfonylaminos and C6-30 substituted or non-substituted aryl-sulfonylaminos) such as methyl-sulfonylamino, butyl-sulfonylamino, phenyl-sulfonylamino, 2,3,5-trichlorophenyl-sulfonylamino and p-methylphenyl-sulfonylamino; mercapto; alkylthios (preferably substituted or non-substituted C1-30 alkylthios such as methylthio, ethylthio and n-hexadecylthio; arylthios (preferably C6-30 substituted or non-substituted arylthios) such as phenylthio, p-chlorophenylthio and m-methoxyphenylthio; heterocyclic-thios (preferably C2-30 substituted or non-substituted heterocyclic-thios such as 2-benzothiazolyl thio and 1-phenyltetrazol-5-yl-thio; sulfamoyls (preferably C0-30 substituted or non-substituted sulfamoyls) such as N-ethylsulfamoyl, N-(3-dodecyloxypropyl)sulfamoyl, N,N-dimethylsulfamoyl, N-acetylsulfamoyl, N-benzoylsulfamoyl, N-(N′-phenylcarbamoyl)sulfamoyl; sulfo; alkyl- and aryl-sulfinyls (preferably C1-30 substituted or non-substituted alkyl- or C6-30 substituted or non-substituted aryl-sulfinyls) such as methylsulfinyl, ethylsulfinyl, phenylsulfinyl and p-methylphenylsulfinyl; alkyl- and aryl-sulfonyls (preferably C1-30 substituted or non-substituted alkyl-sulfonyls and C6-30 substituted or non-substituted arylsulfonyls) such as methylsulfonyl, ethylsulfonyl, phenylsulfonyl and p-methylphenylsulfonyl; acyls (preferably C2-30 substituted non-substituted alkylcarbonyls, and C7-30 substituted or non-substituted arylcarbonyls) such as formyl, acetyl and pivaloyl benzyl; aryloxycarbonyls (preferably C7-30 substituted or non-substituted aryloxycarbonyls) such as phenoxycarbonyl, o-chlorophenoxycarbonyl, m-nitrophenoxycarbonyl and p-t-butylphenoxycarbonyl; alkoxycarbonyls (preferably C2-30 substituted or non-substituted alkoxycarbonyls) methoxycarbonyl, ethoxycarbonyl, t-butoxycarbonyl and n-octadecyloxycarbonyl; carbamoyls (preferably C1-30 substituted or non-substituted carbamoyls) such as carbamoyl, N-methylcarbamoyl, N,N-dimethylcarbamoyl, N,N-di-n-octylcarbamoyl and N-(methylsulfonyl)carbamoyl; aryl- and heterocyclic-azos (preferably C6-30 substituted or non-substituted arylazos and C3-30 substituted or non-substituted heterocyclicazos) such as phenylazo and p-chlorophenylazo, 5-ethylthio-1,3,4-thiadiazol-2-yl-azo, imides such as N-succinimide and N-phthalimide; phosphinos (preferably C2-30 substituted or non-substituted phosphinos) such as dimethyl phosphino, diphenyl phosphino and methylphenoxy phosphino; phosphinyls (preferably C2-30 substituted or non-substituted phosphinyls) such as phosphinyl, dioctyloxy phosphinyl and diethoxy phosphinyl; phosphinyloxys (preferably C2-30 substituted or non-substituted phosphinyloxys) such as diphenoxyphosphinyloxy and dioctyloxyphosphinyloxy; phosphinylaminos (preferably C2-30 substituted or non-substituted phosphinylaminos) such as dimethoxy phosphinylamino and dimethylamino phosphinylamino; and silyls (preferably C3-30 substituted or non-substituted silyls) such as trimethylsilyl, t-butylmethylsilyl and phenyldimethylsilyl.
The substituents, which have at least one hydrogen atom, may be substituted by at least one substituent selected from these. Examples such substituent include alkylcarbonylaminosulfo, arylcarbonylaminosulfo, alkylsulfonylaminocarbonyl and arylsulfonylaminocarbonyl. More specifically, methylsulfonylaminocarbonyl, p-methylphenylsulfonylaminocarbonyl, acetylaminosulfonyl and benzoylaminosulfonyl are exemplified.
Same or different two or more substituents may be selected. If possible, the substituents may bond to each other to form a ring.
Preferable examples of the compound represented by the formula (V-A) include the compounds in which R11 is methyl, both of R2 and R5 are hydrogen atoms, R13 is a C3 or longer alkyl group, L1 is a single bond, —O—, —CO—, —NR—, —SO2NR—, —NRSO2—, —CONR—, —NRCO— (R is a hydrogen atom or a substituted or non-substituted alkyl or aryl group, and preferably a hydrogen atom), —COO—, —OCO— or an alkylene; L2 is —O— or —NR— (R is a hydrogen atom or a substituted or non-substituted alkyl or aryl group, and preferably a hydrogen atom); Ar1 is an arylene group, and n is an integer from 3 to 6.
Examples of the compound represented by the formulae (V-A) and (V-B) include, but are not limited to, those shown below.
The compound represented by the formula (III) may be produced by a general esterification or a general amidation of a substituted benzoic acid, which may be synthesized previously, and a phenol derivative or a aniline derivative. The esterification or amidation may be carried out according to any method which can make an ester or amide bonding. For example, the compound may be produced as follows:
a substituted benzoic acid is converted into an acid halide, and, then, a condensation reaction of the acid halide and a phenol derivative or an aniline derivative is carried out; or
a dehydration condensation of a substituted benzoic acid and a phenol derivative or an aniline derivative is carried out in the presence of a condensation agent or catalyst.
The former method is preferred in terms of the production process.
Reaction solvent, which can be employed in the process of producing the compound represented by the formula (III), is preferably selected from the group consisting of hydrocarbon base solvents such as toluene and xylene; ether base solvents such as dimethylether, tetrahydrofuran and dioxane; ketone base solvents; ester base solvents; acetonitrile, dimethyl formamide and dimethylacetamide. One solvent or two or more solvents may be employed. Among these, toluene, acetonitrile, dimethylformamide and dimethylacetamide are preferred.
The reaction temperature is preferably set within the range from 0 to 150° C., more preferably from 0 to 100° C., much more preferably from 0 to 90° C., and especially preferably from 20 to 90° C.
The reaction may be carried out with base or without base, the latter is preferred. Examples of the base include organic bases and inorganic bases, and organic bases such as pyridine and tertiary alkyl amine (e.g. triethyl amine and ethyl diisopropyl amine) are preferred.
The compound represented by the formula (V-A) or (V-B) can be produced according to any usual method. The compounds in which “n” is 4 may be produced as follows:
a reaction of a starting material having a following structure “A” with a derivative having a reactive site such as hydroxyl and amino is carried out to generate an intermediate B-2 shown below; a reaction of the intermediate B-2 with a compound “C” shown below to connect two molecules of the intermediate B-2 with a molecule of the compound “C” shown below; and then a compound represented by the formula (V-A) or (V-B) can be obtained.
The method to be employed for producing the compound is not limited to the above mentioned method.
In the structure “A”, R represents a reactive group such as hydroxyl and a halogen atom; R11, R2, R13 and R5 are same as described above; and R4 represents a hydrogen atom or the above mentioned OR14.
In the formula, R′ represents a reactive group such as carboxyl; R11, R2, R13, R4, R5, Ar1 and L1 are same as described above.
R-Ar2-L2-Ar2-R′ C
In the formula, R and R′ represent a reactive group such as hydroxyl and amino; and Ar2 and L2 are defined as Ar1 and L1 are defined above.
The amount of the Rth enhancer is preferably from 0.1 to 30 mass %, more preferably from 1 to 25 mass % and much more preferably from 3 to 15 mass % with respect to the total mass of cellulose acylate.
When the cellulose acylate film is produced according to a solvent cast method, the Rth enhancer may be added to the dope. The addition of the Rth enhancer to the dope may be conducted any stage, and for example, a solution of the Rth enhancer may be prepared by dissolving it in an organic solvent such as alcohol, methylene chloride or dioxolane and then added to the dope; or the Rth enhancer may be added to the dope directly.
Examples of the Rth enhancer which can be used for producing the second optically anisotropic layer include the compounds represented by the formula (X). The compound represented by the formula (X) is capable of enhancing Rth of which wavelength dependence is regular.
In the formula, n is an integer of 1 or 2. R1 and R2 independently represent a hydrogen atom, a C1-20 alkyl group, or a C6-20 aryl group. R1 and R2 may be same or different from each other, provided at least one of them is not a hydrogen atom. And R1 and R2 may bind to each other, and, in such a case, they represent an atom group which is necessary to form a cyclic amino group. R3 represents a carboxyl, —COOR5, —COR5, or —SO2R5; R4 represents a carboxyl, —COOR6, or —COR6; and R5 and R6 independently represent a C1-20 alkyl group or a C6-20 aryl group, provided that they may bind to each other, and, in such a case, they represent an atom group which is necessary to form 1,3-dioxocyclohexane, barbituric acid, 1,2-diaza-3,3-dioxane cyclopentane or 2,4-diazo-1-alkoxy-3,3-dioxocyclohexane. When n is 2, at least one of R1, R2 and represents an alkylene group or an arylene group, and the compound may be a dimmer.
The C1-20 alkyl group represented by R1 or R2 may have at least one substituent and at least one unsaturated bond therein. Examples of the alkyl group include methyl, ethyl, butyl, n-hexyl, cyclohexyl, n-decyl, n-dodecyl, n-octadecyl, eicosyl, methoxyethyl, ethoxypropyl, 2-ethylhexyl, hydroxyethyl, chloropropyl, N,N-diethylpropyl, cyanoethyl, phenethyl, pentyl, p-t-butylphenethyl, p-t-octylphenethyl, octylphenoxy ethyl, 3-(2,4-di-tert-amyl phenoxy)propyl, ethoxycarbonylmethyl, 2-(2-hydroxyethoxy)ethyl, and 2-furylethyl.
The C6-20 aryl group represented by R1 or R2 may have at least one substituent. Examples of the aryl group include tolyl, phenyl, anisyl, mesityl, chlorophenyl, 2,4-di-tert-amyl phenyl and naphthyl. At least one of R1 and R2 is not a hydrogen atom. And they may bind to each other, and, in such a case, they represent an atom group which is necessary to form a cyclic amino group such as piperidino, morpholino, pyrrolidino, and piperazino).
In the formula, R3 represents carboxyl, —COOR5, —COR5 or —SO2R5; and R4 represents carboxyl, —COOR6 or —COR6. R5 and R6 independently an alkyl group or an aryl group, and the alkyl and aryl groups are defined as same as those represented by R1 or R2. R5 and R6 may bind to each other, and, in such a case, they represent an atom group which is necessary to form 1,3-dioxocyclohexane ring (e.g., dimedone, 1,3-dioxo-5,5-diethylcyclohexane), 1,3-diaza-2,4,6-trioxocyclohexane ring (e.g., barbituric acid, 1,3-dimethyl barbituric acid, 1-phenyl barbituric acid, 1-methyl-3-octyl barbituric acid, 1-ethyl-octyloxycarbonylethyl barbituric acid), 1,2-diaza-3,3-dioxane cyclopentane ring (e.g., 1,2-diaza-1,2-dimethyl-3,5-dioxocyclopentane, 1,2-diaza-1,2-diphenyl-3,5-dioxocyclopentane), or 2,4-diazo-1-alkoxy-3,3-dioxocyclohexane ring (e.g., 2,4-diaza-1-ethoxy-4-ethyl-3,5-dioxocyclohexane, 2,4-diaza-1-ethoxy-4-(3-(2,4-di-tert-amylphenoxy)propyl)-3,5-dioxocyclohexane). When n is 2, at least one of R1, R2 and represents an alkylene group or an arylene group, and the compound may be a dimmer.
Among the formula (X), the compounds represented by the formula (XI) are preferred.
In the formula, R1, R2 and R4 are defined as same as those in the formula (X) respectively. R7 represents —COOR6 or —SO2R6 and R6 is defined as same as it in the formula (X).
Examples of the compound represented by the formula (X) include, but are not limited to, those shown below.
According to the invention, one species or any combinations of plural species of the compound represented by any one of formulae (1), (III) to (V) and (X) may be employed as the Rth enhancer. According to the invention, any combinations of two or more selected from the formulae (I), (III) to (V) and (X) may be also employed as the Rth enhancer.
The cellulose acylate film to be used as the second optically anisotropic layer may comprise a UV absorbent. Some UV absorbents can function as an Rth enhancer. Examples of the UV absorbent include oxybenzophenone compounds, benzotriazole compounds, salicylate compounds, benzophenone compounds, cyanoacrylate compounds, and nickel complex compounds; and preferred are benzotriazole compounds causing little coloration. In addition, UV absorbents described in Japanese Laid-Open Patent Publication Nos. 10-182621 and 8-337574, and UV absorbent polymers described in Japanese Laid-Open Patent Publication No. 6-148430 are also preferably used herein. For the UV absorbent for the cellulose acylate film, preferred are those having an excellent ability to absorb UV rays having a wavelength of at most 370 nm, in terms of preventing degradation of polarizing elements and liquid crystals, and those not almost absorbing visible light having a wavelength of at least 400 nm in terms of the image display capability.
Examples of the benzotriazole-type UV absorbent usable in the invention are 2-(2′-hydroxy-5′-methylphenyl)benzotriazole, 2-(2′-hydroxy-3′,5′-di-tert-butylphenyl)benzotriazole, 2-(2′-hydroxy-3′-tert-butyl-5′-methylphenyl)benzotriazole, 2-(2′-hydroxy-3′,5′-di-tert-butylphenyl)-5-chlorobenzotriazole, 2-(2′-hydroxy-3′-(3″,4″,5″,6″-tetrahydrophthalimidomethyl)-5′-methylphenyl)benzotriazole, 2,2-methylenebis(4-(1,1,3,3-tetramethylbutyl)-6-(2H-benzotriazol-2-yl)phenol, 2-(2′-hydroxy-3′-tert-butyl-5′-methylphenyl)-5-chlorobenzotriazole, 2-(2H-benzotriazol-2-yl)-6-(linear or branched dodecyl)-4-methylphenol, a mixture of octyl-3-[3-tert-butyl-4-hydroxy-5-(chloro-2H-benzotriazol-2-yl)phenyl]propionate and 2-ethylhexyl-3-[3-tert-butyl-4-hydroxy-5-(5-chloro-2H-benzotriazol-2-yl)phenyl]propionate, to which, however, the invention should not be limited. In addition, commercial products of TINUVIN 109, TINUVIN 171, TINUVIN 326 (all by Ciba Speciality Chemicals) are also preferably usable herein.
For producing a cellulose acylate film satisfying properties required for the second optically anisotropic layer, at least one UV absorbent may be employed. The UV absorbent can also function as an agent for controlling wavelength dispersion of retardation. Examples of the UV absorbent include oxybenzophenone compounds, benzotriazole compounds, salicylate compounds, benzophenone compounds, cyanoacrylate compounds, and nickel complex compounds; and preferred are benzotriazole compounds causing little coloration. In addition, UV absorbents described in Japanese Laid-Open Patent Publication Nos. 10-182621 and 8-337574, and UV absorbent polymers described in Japanese Laid-Open Patent Publication No. 6-148430 are also preferably used herein. For the UV absorbent for the cellulose acylate film, preferred are those having an excellent ability to absorb UV rays having a wavelength of at most 370 nm, in terms of preventing degradation of polarizing elements and liquid crystals, and those not almost absorbing visible light having a wavelength of at least 400 nm in terms of the image display capability.
The second optically anisotropic layer may be formed of a liquid crystal composition or any combination of such a layer and a polymer film. The liquid crystal composition comprises at least one liquid crystal compound. Preferably, the liquid crystal compound is selected from discotic liquid crystals having a discotic molecular structure. Preferred examples of the discotic liquid crystal compound include those described in Japanese Laid-open Patent Publication No. 2001-27706.
Preferably, the liquid crystal composition is curable, and comprises a polymerizable ingredient to form a layer by polymerization. The liquid crystal compound it self may be polymerizable or another polymerizable monomer may be added to the composition, and the former is preferred. The curable liquid crystal composition may comprise, if necessary, various additives such as a polymerization initiator, an alignment controlling agent and a surfactant.
The second optically anisotropic layer may be prepared as follows. A curable liquid crystal composition is prepared as a coating liquid, is applied to a surface of a support or an alignment layer. After molecules of the liquid crystal compound, preferably discotic liquid crystal compound, are aligned in a preferred alignment state, irradiated with light and/or heat to start the polymerization, and fixed in the state. And, the layer is prepared. For preparing the layer exhibiting the predetermined properties, which are required for the second optically anisotropic layer, preferably discotic molecules are aligned in a homeotropic alignment state, in which the angle between the optical axis of the discotic plane and the layer plane is orthogonal, and then fixed in the state.
Generally, a layer formed of a curable liquid crystal composition is disposed on a support such as a polymer film. In such embodiments, birefringence of the support such as a polymer film may be utilized actively, and the combination of the layer and support as a whole may exhibit the properties which are required for the second optically anisotropic layer. On the other hand, a polymer film of which Re is n early equal to 0, such as those described in Japanese Laid-open Patent publication No. 2005-138375, may be used as a support, and the layer formed of the curable liquid crystal composition may have properties which are required for the second optically anisotropic layer alone.
The second optically anisotropic layer may be integrated in the liquid crystal display devise as an optical compensation film. The optical compensation film used as the second optically anisotropic layer is preferably selected from cellulose acylate films, and more preferably selected from cellulose acylate films comprising at least one Rth enhancer.
Preferably, the thickness of the second optically anisotropic layer is from 30 to 200 μm.
The invention also provides a polarizer that comprises the optical film of the invention (first optically-compensatory film) and a polarizing element. The first optically-compensatory layer may be a protective film for the polarizing element. For example, a polarizer comprising a polarizing element and an optical film of the invention on one surface thereof may be combined with a liquid-crystal cell in such a manner that the optical film is on the side of the liquid-crystal cell. The polarizer may be produced as a long film in a mode of continuous production, and may be wound up as a roll (for example, as a roll having a length of at least 2500 mm, or a roll having a length of at least 3900 m), and it may be cut into sheets having a size capable of being built in a liquid-crystal display device as it is. The polarizer of the invention may have a form of such cut sheets. For application to large-panel liquid-crystal display devices, the polarizer may have a width of at least 1470 mm, as so mentioned hereinabove.
The protective film 16 is disposed on the outer side, for which, therefore, a material of low moisture permeation is preferred from the viewpoint of the durability of the polarizer. Concretely, preferred is a film having a degree of moisture permeation of at most 300 g/(m2·day), more preferably at most 100 g/(m2·day). Not specifically defined, the lowermost limit of the degree of moisture permeation of the film may be generally 10 g/(m2·day) or so. For the protective film having the characteristics, preferred is a norbornene polymer film, and a commercial product, ZEONOR film may be used. The moisture permeation of the film is measured at 40° C. and 60% RH. Its details are described in JIS-0208.
Because of the reason that a film having a low degree of moisture permeation is poorly adhesive to a polarizing element, a protective film 16′ for the polarizing element 11 may be additionally provided between the polarizing element 11 and the film 16 of low moisture permeation, as in
Between the polarizing element 11 and the optically-compensatory film 14, an additional protective film may also be disposed, having a function of protecting the polarizing element; however, it is desirable that a film having a retardation of nearly 0, for example, the cellulose acylate film described in JPA No. 2005-138375 is used for the protective film of the type in order that the additional protective film would not lower the optical compensatory potency of the structure.
The optical film and the polarizer of the invention are favorably used in vertically-aligned mode (VA-mode) liquid-crystal display devices. One embodiment of the liquid-crystal display device of the invention is a VA-mode liquid-crystal display device, which comprises a VA-mode liquid-crystal cell and a pair of polarizers to sandwich it therebetween, and in which one polarizer is the polarizer of the invention. The other polarizer (hereinafter this is referred to as “second polarizer”) to be combined with this polarizer (hereinafter this is referred to as “first polarizer”) is, for example, a polarizer that comprises a polarizing element and a protective film disposed on one surface thereof and satisfying the optical characteristics necessary for the above-mentioned second optically-anisotropic layer. The protective film is preferably a layer that satisfies the optical characteristics necessary for the second optically-anisotropic layer and having a function of protecting the polarizing element. From these viewpoints, the above-mentioned second optically-anisotropic layer is preferably formed of a cellulose acylate film, more preferably a cellulose acylate film containing an Rth enhancer. The second optically-anisotropic layer may be formed of a curable liquid-crystal composition; and in this case, a polymer film such as a cellulose acylate film is disposed as a protective film, and on the polymer film serving as a support, the second optically-anisotropic layer of a curable liquid-crystal composition may be formed.
Paragraphs below will further specifically explain the present invention referring to Examples and Comparative Examples, without limiting the present invention. The lubricant compositions in Examples and Comparative Examples were evaluated according to the methods described below.
The ingredients were mixed in the ratio indicated in Table 1, thereby preparing cellulose acylate solutions. Using a band caster, the cellulose acylate solution was cast, the resulting web was peeled from the band, and then stretched under the condition shown in Table 1. After stretched, the film was dried, thereby producing cellulose acylate films 101 to 105 and 107 to 111 having the thickness shown in Table 1.
A commercially-available norbornene polymer film, “ZEONOR” (by Nippon Zeon) was stretched under the condition shown in Table 1, thereby producing a norbornene film 106.
Thus fabricated, the films were analyzed for the three-dimensional birefringence thereof at a wavelength of 450 nm, 550 nm and 630 nm, using an automatic birefringence meter KOBRA-21ADH (by Oji Scientific Instruments) according to the method mentioned in the above, thereby obtaining the in-plane retardation Re and the thickness-direction retardation Rth derived from the data of Re at different tilt angles. Table 2 shows Re and Rth at different wavelengths, Nz at a wavelength of 550 nm, and the lowermost limit and the uppermost limit of the above-mentioned formula (3). As in Table 2 below, it is understandable that the films 101 to 105 and 107 to 111 are all optically-compensatory films having optical biaxial characteristics and reversed wavelength dispersion characteristics of Re and Rth necessary for the first optically-anisotropic layer; but the film 106 has regular wavelength dispersion characteristics of Re and Rth and is not an optically-compensatory film satisfying the characteristics necessary for the first optically-anisotropic layer.
A sample of the film having a size of 40 m×80 mm was tested at 25° C. and 60% RH, using a haze meter (HGM-2DP, by Suga Test Instruments) according to JIS K-7136.
A sample of the film having a size of 13 m×40 mm was tested at 25° C. and 60% RH, using a spectrophotometer (U-3210, by Hitachi), to measure its transmittance at a wavelength of 380 nm and 430 nm.
The modulus of elasticity, the elongation at break and the strength at break of the film were measured as follows: A film sample of 10 mm×150 mm was conditioned at 25° C. and 60% RH for 2 hours or more, and then, using a tensile tester (Strograph R2, by Toyo Seiki), this was pulled at a pulling rate of 10 mm/min. The chuck distance was 50 mm, and the temperature was 25° C.
According to JIS-K-7125 (1987), film pieces were cut out so that their surface and back could be a contact face, then a weight of 200 g was put on it, and the weight was horizontally pulled at a moving speed of 100 mm/min under the condition of a contact area of 80 mm×200 mm. The maximum load before the weight moved (Fs) and the mean load while the weight was moving (Fd) were measured, and the static friction coefficient and the kinematic friction coefficient (μm) were obtained according to the following formulae:
Static Friction Coefficient=Fs(gf)/weight of the weight (gf),
Kinematic Friction Coefficient=Fd(gf)/weight of the weight (gf)
The film was cut by 50 mm in the transverse direction and by 2 mm in the machine direction, and the resulting piece was conditioned at a predetermined humidity for 24 hours. Using a curvature scale, the curl degree of the film was measured. The curl value is represented by 1/R.
A cross section of the unstretched film, parallel to the xz plane of the film, was divided into 5 portions from the side of the support used in film formation to the air interface side; and each portion was analyzed using a time-of-flight secondary ion mass spectrometer (TOF-SIMS). The intensity ratio of the cellulose acylate decomposition product-derived positive ion peak, m/Z=109 (C6H5O2+), to the additive ion peak (molecule+H+) was obtained. The test portions were B1, B2, CT, A2 and A1 from the side nearer to the side of the support used in film formation. These portions are at regular intervals in the thickness direction of the film. The intensity ratio to the intensity in CT is shown in the Table below.
A film sample of 5 mm×30 mm was conditioned at 25° C. and 60% RH for 2 hours or more, and then this was tested with a kinematic viscoelasticity meter (Vibron DVA-225 (by IT Keisoku Seigyo KK). The chuck distance was 20 mm, the heating speed was 2° C./min, the test temperature range was from 30° C. to 200° C., and the frequency was 1 Hz. A storage elastic modulus is taken on the vertical axis as a logarithmic axis, and a temperature (° C.) is taken on the horizontal axis as a linear axis; and on the graph, the rapid decrease in the storage elastic modulus shown when the storage elastic modulus transfers from the solid region to the glass transition region is drawn as a line 1, and it is drawn as a line 2 in the glass transition region.
The point of intersection of the line 1 and the line 2 indicates a temperature at which the storage elastic modulus of the film rapidly decreases during heating and the film begins to soften, or that is, a temperature at which the film begins to transfer to the glass transition region; and this is the glass transition temperature Tg (kinematic viscoelasticity) of the film.
The thermal expansion coefficient of the film was determined as follows: Using TA Instruments' TMA2940, the film was heated from 30° C. up to 80° C. at a heating rate of 3° C./min under a load of 0.04 N, and the dimensional change of the film per ° C. was measured.
Two transparent film samples of 30 mm×120 mm were prepared, and conditioned at 25° C. and 60% RH for 24 hours, and using a pin gauge (EF-PH by Mitsutoyo), 6 mmφ holes were formed at both edges of the samples at intervals of 100 mm. The original punch distance was measured, L0. One sample was treated in a temperature & humidity chamber, ESPEC's PR-45, at 60° C. and 90% RH for 24 hours, and the punch distance was measured, L1. The other sample was treated in a constant temperature oven, Yamato's DN64, at 80° C. and 10% RH for 24 hours, and the punch distance was measured, L2. The dimensional change in the invention is expressed as a value read to the minimum scale, 1/1000 mm in every distance measurement. According to the following formulae, the dimensional change under each condition was obtained.
Dimensional change at 60° C. and 90% RH={(L0−L1)/L0}×100,
Dimensional change at 80° C. and 10% RH={(L0−L2)/L0}×100.
The maximum thickness difference of the film (P−V value) and the RMS value of the film were measured, using Fujinon's stripe analyzer, FX-03. The area for analysis was within a range of φ=60 mm.
The alignment angle distribution of the film was determined with OPTIPRO (XY scanning stage, halogen lamp light+550 nm interference filter). The test area was 60 mm×60 mm, and the sample was analyzed at intervals of 4 mm, using a 3 mmφ beam.
A tensile stress was applied to a film sample of 12 mm×120 m in the major axis direction thereof, and the retardation of the film under the condition was measured with an ellipsometer (M150, by Nippon Bunko). From the retardation change relative to the stress, the photoelasticity coefficient of the sample was computed.
Photoelasticity Coefficient=retardation change/stress change.
The data of the physical properties of the produced films 104, 108 and 109 are shown in Table 3.
The optically-compensatory films (films for first optically-anisotropic layer) produced in the above were processed for alkali saponification on their surfaces. Concretely, the film was dipped in an aqueous 1.5 N sodium hydroxide solution at 55° C. for 2 minutes, then washed in a water bath at room temperature, and then neutralized with 0.1 N sulfuric acid at 30° C. Again this was washed in a water bath at room temperature, and then dried with hot air at 100° C. Next, a polyvinyl alcohol film roll having a thickness of 80 μm was continuously stretched in an aqueous iodine solution by 5 times, and dried to prepare a polarizing film having a thickness of 20 μm. The above alkali-saponified polymer film and FUJITAC TD80UL (by FUJI FILM) alkali-saponified in the same manner were prepared; and using an aqueous 3% polyvinyl alcohol (Kuraray's PVA-117H) solution, these were stuck together with the polarizing film in such a manner that their saponified surfaces could be on the side of the polarizing film, thereby obtaining polarizers 101 to 105 and 107 to 111, in which the optically-compensatory film (first optically-anisotropic layer) and TD80UL could be protective films for the polarizing film. In this, the films were so stuck together that the direction MD of the optically-compensatory film and the slow axis of TD80UL could be parallel to the absorption axis of the polarizing film.
The surface of the optically-compensatory film 106 was hydrophilicated, using a corona discharger (by Kasuga Electric) under a condition of 12 W·min/m2. 10 parts of a polyurethane urea (Mitsui Takeda Chemical's Takelac XW-74-C154) and 1 part of an isocyanate-type crosslinking agent (Mitsui Takeda Chemical's Takenate WD-725) were dissolved in water, thereby preparing solution having a controlled solid content of 20%. This was used as an adhesive.
The above adhesive solution was applied to the surface-treated optically-compensatory film 106, and then this was stuck to a saponified FUJITAC TD80UL (by FUJIFILM) with a polarizing element sandwiched therebetween, and cured in an oven at 40° C. for 72 hours, thereby producing a polarizer 106.
The ingredients were mixed in the ratio indicated in Table 4 below, thereby preparing cellulose acylate solutions. Using a band caster, the cellulose acylate solution was cast, the resulting web was peeled from the band, and then stretched under. In Table 1, TD means a direction perpendicular to the machine direction. After stretched, the film was dried, thereby producing cellulose acylate films 201 to 205 and 210.
Commercial products, TD80UL (by FUJIFILM), TF80UL (by FUJIFILM) and TVD80SLD (by FUJIFILM) were used as polymer films 206 to 208 for second optically-anisotropic layer.
The produced films were analyzed for the three-dimensional birefringence thereof at a wavelength of 450 nm, 550 nm and 630 nm, using an automatic birefringence meter KOBRA-21ADH (by Oji Scientific Instruments) according to the method mentioned in the above, thereby obtaining the in-plane retardation Re and the thickness-direction retardation Rth derived from the data of Re at different tilt angles. Table 5 below shows Re and Rth at different wavelengths.
[Fabrication of Film 214 for second optically-anisotropic layer]
<Fabrication of Cellulose Acylate Film (support 1)>
(Preparation of Cellulose Acylate Film (support A)
The following composition was put into a mixing tank, and stirred to dissolve the ingredients, thereby preparing a cellulose acylate solution A.
20 parts by mass of silica particles having a mean particle size of 16 nm (AEROSIL R972, by Nippon Aerosil) and 80 parts by mass of methanol were well stirred and mixed for 30 minutes to prepare a silica particle dispersion. The dispersion was put into a disperser along with the following composition, and further stirred for 30 minutes or more to dissolve the ingredients, thereby preparing a mat agent solution.
The following composition was put into a mixing tank, and stirred under heat to dissolve the ingredients, thereby preparing an additive solution.
94.6 parts by mass of the above cellulose acylate solution A, 1.3 parts by mass of the mat agent solution, and 4.1 parts by mass of the additive solution were mixed, after separately filtered, and then cast using a band caster. In the above compositions, the ratio by mass of the Rth reducer and the wavelength dispersion characteristics-controlling agent to the cellulose acetate was 12% and 1.2%, respectively. The film having a residual solvent content of 30% was peeled away from the band, and dried at 140° C. for 40 minutes, thereby producing a long cellulose acylate film (support 1) having a thickness of 80 μm. The in-plane retardation (Re) of the obtained film was 1 nm; and the thickness-direction retardation (Rth) thereof was 3 nm.
|Re(400)−Re(700)| was 4 nm; and |Rth(400)−Rth(700)| was 12 nm.
The surface of the support 1 was saponified, and, using a wire bar coater, a coating liquid for alignment film having the composition mentioned below was applied onto the saponified surface in an amount of 20 ml/m2. This was dried with hot air at 60° C. for 60 seconds, and then with hot air at 100° C. for 120 seconds, thereby forming a film. Next, the formed film was rubbed in the direction parallel to the slow axis direction of the film, thereby producing an alignment film.
Next, a coating liquid for optically-anisotropic layer having the composition mentioned below was applied onto it, using a wire bar, in such a manner that Rth in the thickness direction of the film after cured could be 100 nm.
This was attached to a metal frame and heated in a thermostat at 125° C. for 3 minutes, thereby aligning the discotic liquid-crystal compound therein. Next, using a high-pressure mercury lamp of 120 W/cm, this was exposed to UV for 30 seconds to crosslink the discotic liquid-crystal compound. The temperature in UV curing was 80° C., and a retardation film was thus produced. The thickness of the optically-anisotropic layer was 1.4 μm. Next, this was left cooled to room temperature. In that manner, a film 214 for second optically-anisotropic layer was fabricated. The optical characteristics of this film and other films are shown in Table 5 below.
The polymer films (films for second optically-anisotropic layer) fabricated in the manner as above were processed for alkali saponification on their surfaces. Concretely, the film was dipped in an aqueous 1.5 N sodium hydroxide solution at 55° C. for 2 minutes, then washed in a water bath at room temperature, and then neutralized with 0.1 N sulfuric acid at 30° C. Again this was washed in a water bath at room temperature, and then dried with hot air at 100° C. Next, a polyvinyl alcohol film roll having a thickness of 80 μm was continuously stretched in an aqueous iodine solution by 5 times, and dried to prepare a polarizing film having a thickness of 20 μm. The above alkali-saponified polymer film and FUJITAC TD80UL (by FUJIFILM) alkali-saponified in the same manner were prepared; and using an aqueous 3% polyvinyl alcohol (Kuraray's PVA-117H) solution, these were stuck together with the polarizing film in such a manner that their saponified surfaces could be on the side of the polarizing film, thereby producing polarizers 201 to 208 and 210 to 214, in which the polymer film (second optically-anisotropic layer) and TD80UL could be protective films for the polarizing film. In these, the films were so stuck together that the direction MD of the polymer film and TD80UL could be parallel to the absorption axis of the polarizing film.
In a VA-mode liquid-crystal TV (LC37-GE2, by Sharp), the polarizer and the retardation plate on both the top and the back of the panel were peeled away, and the liquid-crystal cell was thus taken out of the device and used herein. Like the constitution of
The members were so laminated that the slow axis of the optically-compensatory film 101 to 111 could be perpendicular to the absorption axis of the polarizer 101.
In the VA-mode liquid-crystal display devices 001 to 022 constructed in the above, a backlight was set on the side of the polarizing element 11 in
In the black state, the viewing angle is tilted from the normal direction of the liquid-crystal cell toward the center line direction of the transmission axis of the pair of polarizers (azimuth angle of 45 degrees), and in that condition, it is desirable that the color shift Δxθ and Δyθ always satisfy the following numerical formulae (II) and (III) within a polar angle of from 0 to 80 degrees:
0≦Δxθ≦0.1, (II)
0≦Δyθ≦0.1, (III)
[in the formulae, Δxθ=xθ−xθ0, Δyθ=yθ−yθ0; (xθ0, yθ0) is the chromaticity as measured in the normal direction of the liquid-crystal cell in the black state; (xθ, yθ) is the chromaticity as measured in the direction in which the viewing angle is tilted from the normal direction of the liquid-crystal cell toward the center line direction of the transmission axis of the pair of polarizers in the black state].
When the viewing angle is turned down by 60 degrees from the normal direction of the liquid-crystal cell toward the absorption axis direction of the polarizer on the viewing side and when the device is tested for the chromaticity as rotated by 360 degrees around the normal line as the center starting from the above-mentioned direction as the base point, it is also desirable that the color shift Δxφ and Δyφ always satisfy the following formulae (IV) and (V) within the azimuth angle range of from 0 degree to 360 degrees:
−0.02≦Δxφ≦0.1, (IV)
−0.02≦Δyφ≦0.1, (V)
[in the formulae, Δxφ=xφ−xφ0, Δyφ=yφ−yφ0; (xφ0, yφ0) is the chromaticity as measured by tilting the viewing angle by 60 degrees from the normal direction of the liquid-crystal cell toward the absorption axis direction of the polarizer on the viewing side in the black state; (xφ, yφ) is the chromaticity as measured in the direction of an azimuth angle φ around the normal direction as the center, by tilting the viewing angle by 60 degrees from the normal direction of the liquid-crystal cell toward the absorption axis direction of the polarizer on the viewing side in the black state].
When a contrast ratio at an azimuth angle of 45 degrees and a polar angle of 60 degree (CR@φ=45/Θ=60) is larger, it means that the viewing angle is larger.
The results are shown in Table 6 below.
xθ
yθ
xφ
yφ
xθ
yθ
xφ
yφ
xθ
yθ
xφ
yφ
xθ
yθ
xφ
yφ
It is known that, on the chromaticity coordinates near to neutral gray (x=0.30, y=0.30), the color difference within a range of Δx<0.01 and Δy<0.01 could not be differentiated by human eyes (MacAdam's ellipsoid, Reference “Color Optics” by Ota, pp. 118, FIG. 5(4.1)”.
From the results shown in the above Table, it is understood that the liquid-crystal display devices Nos. 001 to 011 and 013 to 022 comprising any of the optical films 101 to 105 and 107 to 111 of Examples of the invention have a remarkably increased contrast ratio in the oblique direction and their image color shift that occurs when watched in the oblique direction is reduced, as compared with the comparative liquid-crystal display device No. 012 (in this, the first optically-anisotropic layer film is the cellulose acylate film No. 106 having regular wavelength dispersion characteristics of Re and Re and therefore outside the scope of the invention).
In particular, it is understood that, in the liquid-crystal display devices Nos. 001 to 010, 014 and 016 to 022, the optical film of the invention used for the first optically-anisotropic layer is formed of the cellulose acylate film (Nos. 101 to 105, and 108 to 111) satisfying all the above-mentioned formulae (1) to (3), the contrast is especially high and the image color shift that occurs when watched in the oblique direction is remarkably reduced.
The liquid-crystal display devices No. 006 and 014 comprising the optical film No. 104 and 108 of Examples of the invention, respectively, was superior to the liquid-crystal display device No. 015 comprising the optical film No. 109 of the invention, as the front contrast is high and the color shift in the oblique direction is low. This may be because, as shown in Table 3, the physical properties such as the haze level of the optical film Nos. 104 and 108 of the invention were controlled to fall within a preferred range, and therefore the films would contribute further more toward improving the display characteristics.
In the same manner as in Example 1 but changing the polymer type, the amount of the retardation enhancer, the stretching temperature and the stretching draw ratio, various films for first optically-anisotropic layer and films for second optically-anisotropic layer were fabricated; and the films were stuck to a polarizing film to produce polarizers; and using them, VA-mode liquid-crystal display devices 51 to 67 were constructed in the same manner as above, as in Table 7 below.
Thus constructed, the liquid-crystal display devices 51 to 67 were organoleptically tested and evaluated according to the following criteria.
The devices were organoleptically tested for light leakage and color shift in the oblique direction in the black state in a dark room.
⊚: Little light leakage found in every polar angle direction and every azimuth angle direction.
◯: Some but a little light leakage found in a region in which the polar angle is larger than 60 degrees.
Δ: Some light leakage found in a region in which the polar angle is smaller than 60 degrees.
⊚: Little color shift found in every polar angle direction and every azimuth angle direction.
◯: Some but slight color shift found in the polar angle direction of 60 degrees, when rotated by 360 degrees around the normal direction of the liquid-crystal cell.
Δ: Definite color shift found in the polar angle direction of 60 degrees, when rotated by 360 degrees around the normal direction of the liquid-crystal cell.
This had little light leakage and color shift at a polar angle of 60 degrees and at a azimuth angle of 45 degrees; but some light leakage and color shift were shown in a shallow viewing azimuth angle direction and a deep viewing azimuth angle direction.
Red color was shown at a polar angle of 60 degrees and in a deep viewing azimuth angle direction.
Blue color was shown.
Red color was shown.
As compared with the liquid-crystal display devices 51 to 62, the amount of light leakage was large.
The optical characteristics of the first and second optically-anisotropic layers used in the liquid-crystal display devices 51 to 67, and the results of their evaluation are shown in the following Table. Re and Rth of the first optically-anisotropic layer of the liquid-crystal display devices 51 to 67 are plotted on the graphs of
From the evaluation results shown in the above Table 7 and from the plotting of the optical characteristics of the first optically-anisotropic layer shown in the graphs of
The following composition was put into a mixing tank, and stirred to dissolve the ingredients, thereby preparing a cellulose acylate solution 11.
Composition of Cellulose Acylate Solution 11
The following composition was put into a disperser, and stirred to dissolve the ingredients, thereby preparing a mat agent solution 12.
The following composition was put into a mixing tank, and stirred under heat to dissolve the ingredients, thereby preparing a retardation enhancer solution 13.
1.3 parts by mass of the above mat agent solution 12 and 6.0 parts by mass of the retardation enhancer solution 13 were, after separately filtered, mixed using an in-line mixer; then 92.7 parts by mass of the cellulose acylate solution 11 was added thereto and mixed using an in-line mixer, and then this was cast using a band caster, and dried at 100° C. to have a residual solvent content of 40%, and the film was peeled. Using a tenter at an atmosphere temperature of 140° C., the film having a residual solvent content of 15% was stretched in the cross direction to a draw ratio of 40%, and then held at 120° C. for 3 minutes. Next, the clips were taken off, and this was dried at 130° C. for 30 minutes, thereby producing an optical film 501. The residual solvent content of the produced optical film 501 was 0.1%, and the film thickness was 99 μm.
1.3 parts by mass of the above mat agent solution 12 and 6.0 parts by mass of the retardation enhancer solution 13 were, after separately filtered, mixed using an in-line mixer; then 92.7 parts by mass of the cellulose acylate solution 11 was added thereto and mixed using an in-line mixer, and then this was cast using a band caster, and dried at 80° C. to have a residual solvent content of 25%, and the film was peeled. In an atmosphere at 100° C., this was further dried to have a residual solvent content of 5%, and then dried at 130° C. for 30 minutes to produce a cellulose acylate film having a thickness of 108 μm.
While conveyed, the film was 15% stretched in the cross direction at 160° C., and then 5% shrunk in the traveling direction, and held at 120° C. for 3 minutes. The clips were taken off, and this was dried at 120° C. for 30 minutes, thereby producing an optical film 502. The residual solvent content of the produced optical film 502 was 0.2%, and the film thickness was 96 μm.
The following composition was put into a mixing tank, and stirred to dissolve the ingredients, thereby preparing a cellulose acylate solution 21.
The following composition was put into a disperser, and stirred to dissolve the ingredients, thereby preparing a mat agent solution 22.
The following composition was put into a mixing tank, and stirred under heat to dissolve the ingredients, thereby preparing a retardation enhancer solution 23.
1.3 parts by mass of the above mat agent solution 22 and 6.0 parts by mass of the retardation enhancer solution 23 were, after separately filtered, mixed using an in-line mixer; then 92.7 parts by mass of the cellulose acylate solution 21 was added thereto and mixed using an in-line mixer, and then this was cast using a band caster, and dried at 70° C. to have a residual solvent content of 40%, and the film was peeled. Using a tenter at an atmosphere temperature of 130° C., the film having a residual solvent content of 20% was stretched in the cross direction to a draw ratio of 35%, and then held at 120° C. for 3 minutes. Next, the clips were taken off, and this was dried at 120° C. for 30 minutes, thereby producing an optical film 503. The residual solvent content of the produced optical film 503 was 0.1%, and the film thickness was 70 μm.
1.3 parts by mass of the above mat agent solution 22 and 6.0 parts by mass of the retardation enhancer solution 23 were, after separately filtered, mixed using an in-line mixer; then 92.7 parts by mass of the cellulose acylate solution 21 was added thereto and mixed using an in-line mixer, and then this was cast using a band caster, and dried at 120° C. to have a residual solvent content of 15%, and the film was peeled. In an atmosphere at 100° C., this was dried to have a residual solvent content of 5%, and then dried at 120° C. for 30 minutes to produce a cellulose acylate film having a thickness of 95 μm.
While conveyed, the film was 30% stretched in the cross direction and then shrunk by 10% at 140° C., and then held at 120° C. for 3 minutes. The clips were taken off, and this was dried at 120° C. for 30 minutes, thereby producing an optical film 504. The residual solvent content of the produced optical film 504 was 0.1%, and the film thickness was 90 μm.
The following composition was put into a mixing tank, and stirred to dissolve the ingredients, thereby preparing a cellulose acylate solution 31.
The following composition was put into a disperser, and stirred to dissolve the ingredients, thereby preparing a mat agent solution 32.
The following composition was put into a mixing tank, and stirred under heat to dissolve the ingredients, thereby preparing a retardation enhancer solution 33.
1.3 parts by mass of the above mat agent solution 32 and 4.9 parts by mass of the retardation enhancer solution 33 were, after separately filtered, mixed using an in-line mixer; then 93.8 parts by mass of the cellulose acylate solution 31 was added thereto and mixed using an in-line mixer, and then this was cast using a band caster, and dried at 100° C. to have a residual solvent content of 3%, and the film was peeled. Using a tenter at an atmosphere temperature of 155° C., the film was stretched in the cross direction to a draw ratio of 25%. Then, the clips were taken off, and this was dried at 130° C. for 20 minutes, thereby producing an optical film 505. The residual solvent content of the produced optical film 505 was less than 0.1%, and the film thickness was 95 μm.
Optical films 507 to 509 were fabricated in the same manner as that for the optical film 505 of Example 5, for which, however, the type and the amount of the Re enhancer and the stretching temperature were changed as in Table 8.
An optical film 510 was fabricated in the same manner as that for the optical film 505, for which, however, triphenyl phosphate and biphenyl phosphate were not added to the cellulose acylate solution 31 and the type and the amount of the Re enhancer and the stretching temperature were changed as in Table 8.
At room temperature, 120 parts by mass of cellulose acetate having a mean degree of acetylation 59.7%, 9.36 parts by mass of triphenyl phosphate, 4.68 parts by mass of biphenyldiphenyl phosphate, 1.00 part by mass of the following retardation enhancer B, 543.14 parts by mass of methylene chloride, 99.35 parts by mass of methanol and 19.87 parts by mass of n-butanol were mixed to prepare a solution (dope).
The obtained dope was cast onto a glass sheet, dried at room temperature for 1 minute, and dried at 45° C. for 5 minutes. After dried, the residual solvent content of the film was 30% by mass. The cellulose acetate film was peeled from the glass sheet, and dried at 120° C. for 10 minutes. The film was cut into pieces having a suitable size, and stretched at 130° C. in the direction parallel to the casting direction. The side of the film perpendicular to the stretching direction was kept freely shrinkable. After stretched, this was dried at 120° C. for 30 minutes as it was, and the stretched film was taken out. After stretched, the residual solvent content of the film was 0.1% by mass. In that manner, an optical film 511 was obtained. The thickness of the obtained optical film 511 was 95 μm. The stretching draw ratio was 42% times.
The following composition was put into a mixing tank, and stirred to dissolve the ingredients. Then, this was heated at 90° C. for about 10 minutes, and filtered through filter paper having a mean pore size of 34 μm at a constant flow rate, thereby preparing a cellulose acylate solution 41.
Next, the following composition containing the cellulose acylate solution 41 prepared according to the above method was put into a disperser and stirred to prepare a mat agent solution 42.
Next, the following composition containing the cellulose acylate solution prepared according to the above method was put into a mixing tank, and stirred under heat to prepare a retardation enhancer solution 43.
100 parts by mass of the above cellulose acylate solution 41, 1.35 parts by mass of the above mat agent solution 42 and the retardation enhancer solution 43 in the ratio as in Table 8 were mixed to prepare a dope for film formation.
Using a band caster, the above dope was cast. The film having a residual solvent content of 35% by mass was peeled from the band, and, using a tenter, this was stretched in the cross direction to a draw ratio of 25% to produce a cellulose acylate film. In the tenter, the film was stretched in the cross direction while dried with hot air applied thereto, and then shrunk by about 5%, and then this was converted from tenter transportation to roll transportation, and further dried, knurled and wound up as a roll having a width of 1500 mm. In that manner, an optical film 512 was obtained.
The following composition was put into a mixing tank, stirred to dissolve the ingredients, and filtered through filter paper having a mean pore size of 34 μm and a sintered metal filter having a mean pore size of 10 μm.
Next, the following composition containing the cyclic polyolefin solution prepared according to the above method was put into a disperser and stirred to prepare a fine particle dispersion.
100 parts by mass of the above cyclic polyolefin solution D-3 and 1.35 parts by mass of the fine particle dispersion M-1 were mixed to prepare a dope for film formation. Using a band caster, the above dope was cast. The film having a residual solvent content of about 25% by mass was peeled from the band, and dried at 120° C.
Further, in a tenter, the film was dried at 130° C., and stretched by 1.15 times in the direction vertical to the machine direction, and then cooled while held in that condition in an atmosphere at 90° C. for 1 minute, then further cooled to room temperature, and taken out of the tenter, thereby obtaining an optical film 513. Its thickness was 88 μm.
An optical film 514 was fabricated in the same manner as that for the optical film 505, for which, however, the type and the amount of the Re enhancer and the stretching temperature were changed as in Table 8 below.
Thus fabricated, the optical films 501 to 505 and 507 to 515, and a commercial product, Pure Ace (film 205) to be mentioned below were analyzed for Re and Rth at a wavelength of 450 nm, 550 nm and 630 nm, at 25° C. and a relative humidity of 10%, 60% and 80%, using an automatic birefringence meter (KOBRA-WR, by Oji Scientific Instruments).
Further, the film was cut into pieces having a size of 3.5 cm×12 cm, and analyzed for Re with an ellipsometer (M150, by Nippon Bunko) under no load and under a load of 250 g, 500 g, 1000 g and 1500 g; and from the inclination of the line indicating the Re change relative to the stress, the photoelasticity coefficient of the film was computed.
The results are shown in Table 9.
The fabricated optical film 501 was dipped in an aqueous sodium hydroxide solution (2.3 mol/L) at 55° C. for 3 minutes. This was washed in a water bath at room temperature, and neutralized with sulfuric acid (0.05 mol/L) at 30° C. This was again washed in a water bath at room temperature, and dried with hot air at 100° C. In that manner, the surface of the optical film 501 was saponified.
Like that for the above optical film 501, the optical films 502 to 505, 507 to 512 and 514 were saponified on their surface.
The surface of the optical film 513 was hydrophilicated, using a corona discharger (by Kasuga Electric) under a condition of 12 W·min/m2.
The surface of a commercial product, polycarbonate film (Pure Ace WR (trade name by Teijin), using a corona discharger (by Kasuga Electric) under a condition of 12 W·min/m2. This is an optical film 515.
A stretched polyvinyl alcohol film was processed to adsorb iodine, thereby producing a polarizing element.
The saponified optical film 501 was stuck to one surface of the polarizing element, using a polyvinyl alcohol adhesive. A commercial product, cellulose triacetate film (FUJITAC TD80UF, by FUJIFILM) was saponified in the same manner, and stuck to the other surface of the polarizing element opposite to the side of the optical film 501, using a polyvinyl alcohol adhesive.
The polarizing element and the optical film 501 were so disposed that the transmission axis of the former could be parallel to the slow axis of the latter. The polarizing element and the commercial product, cellulose triacetate film were so disposed that the transmission axis of the former could be perpendicular to the slow axis of the latter.
In that manner, a polarizer 501 was fabricated.
Polarizers 502 to 505 and 507 to 515 were fabricated in the same manner as that for the polarizer 501, for which, however, the optical films 502 to 505 and 507 to 515 were used, respectively, in place of the optical film 501.
[Fabrication of Cellulose Acylate Film 601 having Regular Wavelength Dispersion Characteristic of Rth]
The following composition was put into a mixing tank, and stirred to dissolve the ingredients, thereby preparing a cellulose acylate solution 51.
The following composition was put into a disperser, and stirred to dissolve the ingredients, thereby preparing a mat agent solution 52.
The following composition was put into a mixing tank, and stirred under heat to dissolve the ingredients, thereby preparing a wavelength dispersion characteristics-controlling agent solution.
90.4 parts by mass of the above cellulose acylate solution 51, 1.3 parts by mass of the mat agent solution 52, and 8.3 parts by mass of the wavelength dispersion characteristics-controlling agent solution 53 were mixed, after filtered, and the mixture was cast to a width of 1600 mm using a band caster. The film having a residual solvent content of 50% by mass was peeled from the band, held with tenter clips under a condition of 100° C., and stretched in the cross direction to a draw ratio of 4%, and then this was dried to have a residual solvent content of 5% by mass (drying 1). Further, while the stretched width of the film was kept as such, the film was held at 100° C. for 30 seconds. The film was released from the tenter clips, and trimmed at both sides by about 5% in the cross direction; and then while the film was kept free (or that is, while the film was not fixed) in the cross direction, it was led to pass through a drying zone at 135° C., taking 20 minutes (drying 2), and then the film was wound up around a roll. Thus obtained, the cellulose acylate film had a residual solvent content of 0.1% by mass, and the film thickness was 81 μm. Its Rth(446) was 209 nm, Rth(548) was 175 nm, and Rth(629) was 165 nm.
[Fabrication of Cellulose Acylate Film 602 having regular wavelength dispersion characteristic of Rth]
The following composition was put into a mixing tank, and stirred to dissolve the ingredients, thereby preparing a cellulose acylate solution 61.
The following composition was put into a disperser, and stirred to dissolve the ingredients, thereby preparing a mat agent solution 62.
The following composition was put into a mixing tank, and stirred under heat to dissolve the ingredients, thereby preparing a wavelength dispersion characteristics-controlling agent solution.
92.2 parts by mass of the above cellulose acylate solution 61, 1.3 parts by mass of the mat agent solution 62, and 6.5 parts by mass of the wavelength dispersion characteristics-controlling agent solution 63 were mixed, after filtered, and the mixture was cast to a width of 1600 mm using a band caster. The film having a residual solvent content of 60% by mass was peeled from the band, held with tenter clips under a condition of 100° C., and stretched in the cross direction to a draw ratio of 4%, and then this was dried to have a residual solvent content of % by mass (drying 1). Further, while the stretched width of the film was kept as such, the film was held at 100° C. for 30 seconds. The film was released from the tenter clips, and trimmed at both sides by about 5% in the cross direction; and then while the film was kept free (or that is, while the film was not fixed) in the cross direction, it was led to pass through a drying zone at 130° C., taking 20 minutes (drying 2), and then the film was wound up around a roll. Thus obtained, the cellulose acylate film had a residual solvent content of 0.1% by mass, and the film thickness was 51 μm. Its Rth(446) was 113 nm, Rth(548) was 109 nm, and Rth(629) was 107 nm.
[Saponification of Cellulose Acylate Films 601 and 602 having regular wavelength dispersion characteristic of Rth]
The fabricated cellulose acylate films 601 and 602 having regular wavelength dispersion characteristic of Rth were dipped in an aqueous sodium hydroxide solution (2.3 mol/L) at 55° C. for 3 minutes. These were washed in a water bath at room temperature, and neutralized with sulfuric acid (0.05 mol/L) at 30° C. These were again washed in a water bath at room temperature, and dried with hot air at 100° C. In that manner, the cellulose acylate films 601 and 602 having regular wavelength dispersion characteristic of Rth were saponified on their surface.
A commercial product, cellulose acetate film (FUJIFILM's FUJITAC TD80) was dipped in an aqueous sodium hydroxide solution (1.5 mol/L) at 55° C. for 1 minute. This was washed in a water bath at room temperature, and neutralized with sulfuric acid (0.05 mol/L) at 30° C. This was again washed in a water bath at room temperature, and dried with hot air at 100° C.
A stretched polyvinyl alcohol film was processed to adsorb iodine, thereby producing a polarizing element. The cellulose acylate film 601 having regular wavelength dispersion characteristics of Rth, as saponified in the above, was stuck to one surface of the polarizing element, using a polyvinyl alcohol adhesive. The polarizing element and the cellulose acylate film were so disposed that the absorption axis of the former could be parallel to the slow axis of the latter.
Then, the commercial product, cellulose triacetate film saponified in the above was stuck to the other surface of the polarizing element, using a polyvinyl alcohol adhesive. In that manner, a polarizer 601 was fabricated.
In the same manner as that for the polarizer 601, the cellulose acylate film 602 having regular wavelength dispersion characteristics of Rth was processed to fabricate a polarizer 602.
A polarizer 501 as the laminate of the lower polarizing element 11 and the first optically-anisotropic layer 14 in
In addition, liquid-crystal display devices (B) to (N) were constructed, in which, however, the polarizers on the viewers' side and on the backlight side were changed as in Table 10 below.
At a polar angle of 60°, the liquid-crystal display devices (A) to (N) constructed in the above were checked for color shift at an azimuth angle of 0° and at an azimuth angle of 80°. In addition, the devices were turned on continuously for 250 hours in an environment at 35° C. and 80% RH, and checked for light leakage. The results are shown in Table 10. In the following Table, ⊚ means no light leakage; ◯ means light leakage in an area of less than 10% of the overall area; Δ means light leakage in an area of from 5% to less than 10% of the overall area; x means light leakage in an area of 10% or more of the overall area.
From the results in Table 10, it is understood that the liquid-crystal display devices (A) to (I) are favorable as they are free from a trouble of viewing angle-dependent color shift and, even when turned on continuously under high temperature high humidity condition, they are also free from a trouble of light leakage. Above all, the liquid-crystal display devices (F), (G) and (I) comprising the optical films 507, 508 and 510, respectively, which satisfy 0.00125<Re(548)/d<0.00700 and of which the Re humidity dependence is satisfies a range of from 0.1% to 20% and the photoelasticity coefficient satisfies a range of from 0 to 30×10−8 cm2/N, are especially favorable, as free from a trouble of light leakage even though turned on continuously under high temperature and high humidity condition. On the other hand, it is understood that the liquid-crystal display devices (J) and (N) comprising the optical film 511 of which the Re humidity dependence does not satisfy a range of from 0.1% to 20% and the optical film 515 of which the photoelasticity coefficient is larger than 30×10−8 cm2/N, respectively, are free from a trouble of viewing angle-dependent color shift but are inferior to the liquid-crystal display devices (F), (G) and (I) in that their trouble of light leakage under high temperature and high humidity condition is great.
(Preparation of Sol a-2)
187 g (0.80 mol) of acryloxyoxypropyltrimethoxysilane, 27.2 g (0.20 mol) of methyltrimethoxysilane, 320 g (10 mol) of methanol and 0.06 g (0.001 mol) of KF were put into a 1000-ml reactor equipped with a thermometer, a nitrogen duct and a dropping funnel, and with stirring at room temperature, 15.1 g (0.86 mol) of water was gradually and dropwise added thereto. After the addition, this was stirred at room temperature for 3 h ours, and then heated and stirred for 2 hours under reflux of methanol. Next, the low-boiling-point fraction was evaporated away under reduced pressure, and this was filtered to obtain 120 g of a sol a-2. The thus-obtained substance was analyzed through GPC, which confirmed that its mass-average molecular weight was 1500 and the fraction having a molecular weight of from 1000 to 20000 of the oligomer and higher polymer component accounted for 30%.
As a result of 1H-NMR, the structure of the obtained substance was represented by the following structural formula:
The condensation α derived from 29Si-NMR was 0.56. The analytic data confirmed that the major part of the silane coupling agent sol comprises a linear structure.
From gas chromatography, the residual content of the starting acryloxypropyltrimethoxysilane was at most 5%.
(1) Preparation of Coating Liquid for light-scattering layer:
The above coating liquid was filtered through a polypropylene filter having a pore size of 30 μm to prepare a coating liquid 1 for hard coat layer.
The compounds used are shown below.
PET-30: pentaerythritol triacrylate/pentaerythritol tetraacrylate mixture (by Nippon Kayaku).
Irgacure 184: polymerization initiator (by Ciba-Speciality Chemicals).
SX-350: crosslinked polystyrene particles having a mean particle size of 3.5 μm (refractive index 1.60, by Soken Chemical, 30% toluene dispersion, used after dispersed with a polytron disperser at 10000 rpm for 20 minutes).
Crosslinked acryl-styrene particles: mean particle size 3.5 μm (refractive index 1.55, by Soken Chemical, 30% toluene dispersion, used after dispersed with a polytron disperser at 10000 rpm for 20 minutes)
FP-13: fluorine-containing surface modifier
Perfluoro-olefin Copolymer (1)
40 ml of ethyl acetate, 14.7 g of hydroxyethyl vinyl ether and 0.55 g of dilauroyl peroxide were put into a 100-ml autoclave equipped with a stainless stirrer, which was then purged with nitrogen gas. 25 g of hexafluoropropylene (HFP) was introduced into the autoclave, and heated up to 65° C. When the temperature inside the autoclave reached 65° C., the pressure therein was 0.53 MPa (5.4 kg/cm2). The reaction was continued for 8 hours while kept at that temperature, and when the pressure reached 0.31 MPa (3.2 kg/cm2), the heating was stopped and this was left cooled. When the inner temperature lowered to room temperature, the unreacted monomer was purged away, and the autoclave was opened and the reaction liquid was taken out. The obtained reaction liquid was put into a large excessive amount of hexane, and the solvent was removed through decantation, whereby the precipitated polymer was taken out. The polymer was dissolved in a small amount of ethyl acetate, and reprecipitated twice from hexane, whereby the remaining monomer was completely removed. After dried, 28 g of a polymer was obtained. Next, 20 g of the polymer was dissolved in 100 ml of N,N-dimethylacetamide, and with cooling with ice, 11.4 g of acrylic acid chloride was dropwise added to it, and then stirred at room temperature for 10 hours. Ethyl acetate was added to the reaction liquid, and washed with water, and the organic layer was extracted and concentrated; and the obtained polymer was reprecipitated with hexane to obtain 19 g of the perfluoro-olefin polymer (1). The refractive index of the obtained polymer was 1.421.
120 parts of methyl ethyl ketone, 100 parts of acryloyloxypropyltrimethoxysilane (KBM-5103, by Shinetsu Chemical Industry) and 3 parts of diisopropoxyaluminiumethyl acetoacetate were added to and mixed in a reactor equipped with a stirrer and a reflux condenser, and 30 parts of ion-exchanged water was added to it and reacted at 60° C. for 4 hours, and then cooled to room temperature to obtain a sol a. Its mass-average molecular weight was 1600; and the fraction having a molecular weight of from 1000 to 20000 of the oligomer and higher polymer component accounted for 100%. Gas chromatography confirmed the absence of the starting acryloyloxypropyltrimethoxysilane.
13 g of thermal-crosslinkable fluoropolymer having polysiloxane and hydroxyl group and having a refractive index of 1.44 (JTA113, solid concentration 6%, by JSR), 1.3 g of a colloidal silica dispersion MEK-ST-L (trade name by Nissan Chemical, mean particle size 45 nm, solid concentration 30%), 0.65 g of the above sol, 4.4 g of methyl ethyl ketone and 1.2 g of cyclohexanone were mixed and stirred, and filtered through a polypropylene filter having a pore size of 1 μm to prepare a coating liquid 1 for low-refractivity layer. The refractive index of the layer formed of the coating liquid was 1.45.
A roll of triacetyl cellulose film having a thickness of 80 μm (TAC-TD80U, by FUJIFILM) was unrolled, and the coating liquid S1 for undercoat layer was applied onto its one surface (to be an interface with a hard coat layer) so as to have a dry film thickness of 90 nm.
The 80-μm thick triacetyl cellulose film roll (TAC-TD80U, by FUJIFILM) coated with the undercoat layer 1 was unrolled, and using a coater with a throttle die, the coating liquid 1 for coating layer was applied onto the undercoat layer S1-coated surface of the polarizer protective film on a backup roll, through direct extrusion thereonto. This was applied under a condition of a film traveling speed of 30 m/min, and dried at 100° C. for 5 minutes, and the film was wound up.
The 80-μm thick triacetyl cellulose film roll (TAC-TD80U, by FUJIFILM) coated with the undercoat layer 1 and the coating layer was unrolled, and the coating liquid S2 for undercoat layer was applied onto the coating layer so as to have a dry film thickness of 90 nm.
The 80-μm thick triacetyl cellulose film roll (TAC-TD80U, by FUJIFILM) coated with the undercoat layer 1, the coating layer and the undercoat layer 2 was unrolled, and using a coater with a throttle die, the coating liquid 1 for hard coat layer was applied onto the undercoat layer 2 of the polarizer protective film on a backup roll, through direct extrusion thereonto. This was applied under a condition of a film traveling speed of 30 m/min, then dried at 30° C. for 15 seconds and at 90° C. for 20 seconds, and using a 160 W/cm air-cooling metal halide lamp (by Eyegraphics), this was irradiated with UV rays at a dose of 90 mJ/cm2 to cure the coating layer, thereby forming an antiglare layer having a thickness of 6 μm. This was wound up.
The 80-μm thick triacetyl cellulose film roll (TAC-TD80U, by FUJIFILM) coated with the undercoat layer 1, the coating layer, the undercoat layer 2 and the hard coat layer was unrolled, and using a coater with a throttle die, the coating liquid 1 for low-refractivity layer was applied onto the hard coat layer of the polarizer protective film on a backup roll, through direct extrusion thereonto. This was dried at 120° C. for 150 seconds and at 140° C. for 8 minutes, and using a 240 W/cm air-cooling metal halide lamp (by Eyegraphics) in an atmosphere having an oxygen concentration of 0.1% after purging with nitrogen, this was irradiated with UV rays at a dose of 300 mJ/cm2, thereby forming a low-refractivity layer having a thickness of 100 nm. This was wound up to produce a polarizer protective film 701.
Like that for the optical film 501, the polarizer protective film 701 fabricated in the above was saponified.
A polarizer 701 was fabricated in the same manner as that for the polarizer 507, for which, however, the protective film to be stuck to the polarizing element on the side thereof opposite to the optical film 507 was changed to the polarizer protective film 701. The constitutive layers were so laminated that the surface not coated with the moisture-proof layer (coating layer) could face the polarizing element.
A liquid-crystal display device O was fabricated in the same manner as that for the liquid-crystal display device F, for which, however, the polarizer 507 used in constructing the liquid-crystal display device F was changed to the polarizer 701. Thus constructed, the liquid-crystal display device O was kept turned on for 500 hours in an environment at 50° C. and 90% RH and checked for display unevenness. As a result, the liquid-crystal display device O showed no display unevenness, and was extremely good.
Number | Date | Country | Kind |
---|---|---|---|
2006-344063 | Dec 2006 | JP | national |
2007-012206 | Jan 2007 | JP | national |
2007-209393 | Aug 2007 | JP | national |