In some aspects of the present description, a backlight for providing illumination to a display panel is provided, the backlight including a plurality of discrete spaced apart light sources configured to emit light and arranged two-dimensionally on a first substrate substantially reflective at least in regions between the light sources, a reflective polarizer disposed on the plurality of discrete spaced apart light sources, a first optical diffuser disposed between the reflective polarizer and the plurality of light sources and having a plurality of positive microlenses arranged in a regular two-dimensional array, and a second optical diffuser disposed between the reflective polarizer and the plurality of light sources and having a plurality of retroreflective elements arranged in a regular two-dimensional array. The second optical diffuser is configured to receive the emitted light and retroreflect the received light for incident angles less than a predetermined threshold value and transmit at least 60% of the received light for incident angles greater than the predetermined threshold value. The reflective polarizer and the first and second optical diffusers are substantially co-extensive in length and width with the plurality of light sources. For a substantially normally incident light and for a visible wavelength range extending from about 420 nm to about 680 nm, the reflective polarizer has an average optical reflectance of at least 60% when the incident light is polarized along an in-plane first direction and an average optical transmittance of at least 60% when the incident light is polarized along an in-plane orthogonal second direction.
In some aspects of the present description, an optical stack for use in a backlight for providing illumination to a display panel is provided, the optical stack including an optical diffuser having a plurality of retroreflective elements arranged in a regular two-dimensional array, and an optical filter disposed on, and substantially co-extensive in length and width with, the optical diffuser. The optical diffuser is configured to receive a first light at a first wavelength emitted by a light source of the backlight and retroreflect the received first light for incident angles less than a predetermined threshold value and transmit at least 60% of the received first light for incident angles greater than the predetermined threshold value. The optical filter includes a plurality of polymeric layers numbering at least 10 in total, and each of the polymeric layers having an average thickness of less than about 500 nm. For the first wavelength, the optical filter has an optical transmittance of greater than about 60% for a first incident angle less than about 10 degrees and an optical transmittance of less than about 50% for a second incident angle greater that about 40 degrees.
In the following description, reference is made to the accompanying drawings that form a part hereof and in which various embodiments are shown by way of illustration. The drawings are not necessarily to scale. It is to be understood that other embodiments are contemplated and may be made without departing from the scope or spirit of the present description. The following detailed description, therefore, is not to be taken in a limiting sense.
Electronic devices such as computers and smart mobile devices often include a backlit display, such as a liquid crystal display. These displays typically include a backlight unit for providing illumination to the display. For example, edge-lit backlight units have light-emitting diodes that emit light into an edge surface of a light guide plate, where the light is distributed laterally across the display to serve as backlight illumination. Another example is the direct-lit backlight units, which have two-dimensional arrays of light sources (e.g., light-emitting diodes) that emit light vertically through the display. However, direct-lit backlight units can be bulky and may produce non-uniform backlight illumination.
According to some aspects of the present description, a display system including a display (e.g., a liquid crystal display) illuminated by a backlight unit. The backlight unit includes a substrate (e.g., a printed circuit board), a plurality of light sources mounted on the substrate, a reflective polarizer, and a light spreading film stack formed over the printed circuit board that spreads light received from the plurality of light sources. The light spreading film stack includes a light expanding film under a partially reflective layer. In some embodiments, the backlight unit may further include one or more of a color conversion layer, a brightness enhancement film, and a diffuser.
According to some aspects of the present description, a backlight for providing illumination to a display panel may include a plurality of discrete spaced apart light sources (e.g., light-emitting diodes) configured to emit light and arranged two-dimensionally on a first substrate substantially reflective at least in regions between the light sources, a reflective polarizer disposed on the plurality of discrete spaced apart light sources, a first optical diffuser disposed between the reflective polarizer and the plurality of light sources and having a plurality of positive microlenses arranged in a regular two-dimensional array, and a second optical diffuser disposed between the reflective polarizer and the plurality of light sources and having a plurality of retroreflective elements arranged in a regular two-dimensional array.
In some embodiments, the positive microlenses in the plurality of positive microlenses may be disposed on a common second substrate. In some embodiments, the regions of the first substrate between the light sources may have an average optical reflectance of at least 50%, or at least 60%, or at least 70%, or at least 80%, or at least 90% in the visible wavelength range.
In some embodiments, the second optical diffuser may be configured to receive the emitted light and retroreflect the received light for incident angles less than a predetermined threshold value and transmit at least 60%, or at least 65%, or at least 70%, or at least 75%, or at least 80%, or at least 85%, or at least 90% of the received light for incident angles greater than the predetermined threshold value. In some embodiments, the reflective polarizer and the first and second optical diffusers may be substantially co-extensive in length and width with the plurality of light sources. In some embodiments, for a substantially normally incident light and for a visible wavelength range extending from about 420 nm to about 680 nm, the reflective polarizer may have an average optical reflectance of at least 60%, or at least 70%, or at least 80%, or at least 90%, or at least 95% when the incident light is polarized along an in-plane first direction (e.g., along the x-axis of the reflective polarizer) and an average optical transmittance of at least 60%, or at least 70%, or at least 80%, or at least 90%, or at least 95% when the incident light is polarized along an in-plane orthogonal second direction (e.g., along the y-axis of the reflective polarizer).
In some embodiments, at least one of the light sources in the plurality of discrete spaced apart light sources may be configured to emit ultraviolet light having a wavelength less than about 420 nm. In some embodiments, at least one of the light sources in the plurality of discrete spaced apart light sources may be a blue light emitting light source configured to emit blue light having a wavelength between about 420 nm and about 480 nm. In some embodiments, at least one of the light sources in the plurality of discrete spaced apart light sources may be a green light emitting light source configured to emit green light having a wavelength between about 490 nm and about 560 nm. In some embodiments, at least one of the light sources in the plurality of discrete spaced apart light sources may be a red light emitting light source configured to emit red light having a wavelength between about 590 nm and about 670 nm.
In some embodiments, the reflective polarizer may include a plurality of polymeric layers numbering at least 10, or at least 50, or at least 100, or at least 200, or at least 300, or at least 400, or at least 500 in total. In some embodiments, each of the polymeric layers may have an average thickness of less than about 500 nm, or less than about 400 nm, or less than about 300 nm, or less than about 200 nm, or less than about 150 nm, or less than about 100 nm. In some embodiments, the reflective polarizer may further include at least one skin layer disposed on the plurality of polymeric layers and having an average thickness of greater than about 500 nm, or about 750 nm, or about 1000 nm.
In some embodiments, the positive microlenses in the plurality of positive microlenses may have focal lengths between about 10 microns and about 100 microns. In some embodiments, in a plan view (e.g., along a z-axis or thickness direction of the first optical diffuser, the positive microlenses in the plurality of positive microlenses may cover greater than about 60%, or greater than about 65%, or greater than about 70%, or greater than about 75%, or greater than about 80%, or greater than about 85%, or greater than about 90% of the first optical diffuser.
In some embodiments, the backlight may further include a light converting film disposed between the reflective polarizer and the plurality of discrete spaced apart light sources. In some embodiments, the light converting film (e.g., color filters) may include one or more light converting materials configured to receive the emitted light from the light sources and convert at least portions of the received emitted light to blue, green, and red lights. In such embodiments, the backlight may further include an optical filter disposed between the light converting film and the second optical diffuser. In some embodiments, the optical filter may include a plurality of polymeric layers numbering at least 10, or at least 50, or at least 100, or at least 200, or at least 300, or at least 400, or at least 500 in total. In some embodiments, each of the polymeric layers may have an average thickness of less than about 500 nm, or about 400 nm, or about 300 nm, or about 200 nm, or about 150 nm, or about 100 nm. In such embodiments, for a substantially normally incident light polarized along each of the first and second directions, the optical filter may have an average optical transmittance of greater than about 50%, or greater than about 55%, or greater than about 60%, or greater than about 65%, or greater than about 70%, or greater than about 75%, or greater than about 80%, or greater than about 85% for a blue wavelength range extending from about 420 nm to about 480 nm and an optical reflectance of greater than about 50%, or about 55%, or about 60%, or about 65%, or about 70%, or about 75%, or about 80%, or about 85%, or about 90% for each of a green wavelength range extending from about 490 nm to about 520 nm and a red wavelength range extending from about 530 nm to about 680 nm.
In some embodiments, the retroreflective elements of the second optical diffuser include at least one optical interface embedded in the second optical diffuser and configured to totally internally reflect the received light for the incident angles less than the predetermined threshold value. In some embodiments, at least one of the retroreflective elements of the second optical diffuser comprises a pyramid having at least three sides meeting at a peak having at least three peak angles formed by adjacent sides in the at least three sides. In some embodiments, the at least three sides may be configured to totally internally reflect the received light for the incident angles less than the predetermined threshold value. In some such embodiments, each of the at least three peak angles may be between about 85 degrees and about 95 degrees. In some embodiments, at least one of the retroreflective elements of the second optical diffuser may include a substantially spherical solid bead partially embedded in a material to define an optical interface therebetween the material and the bead, the optical interface configured to totally internally reflect the received light for the incident angles less than the predetermined threshold value.
Some embodiments of the backlight may further include additional layers and films. For example, in some embodiments, the backlight may further include one or more third optical diffusers disposed between the second optical diffuser and the light sources and configured to scatter the emitted light. In some such embodiments, the backlight may further include one or more fourth optical diffusers disposed between the reflective polarizer and the first optical diffuser and configured to scatter the emitted light. In some embodiments, the backlight may further include a first prismatic film (e.g., a collimating film or brightness enhancement film) disposed between the reflective polarizer and the light sources and having a plurality of first prisms extending along a first longitudinal direction (e.g., a y-axis of the backlight assembly). In some such embodiments, the backlight may further include a second prismatic film disposed between the reflective polarizer and the first prismatic film and having a plurality of second prisms extending along a second longitudinal direction (e.g., an x-axis of the backlight assembly) different than the first longitudinal direction.
In some embodiments, a display system may include a display panel disposed on any of the backlights described herein. In some embodiments, the display panel may be configured to receive light emitted by the backlight and to form an image for viewing by a viewer.
According to some aspects of the present description, an optical stack for use in a backlight for providing illumination to a display panel may include an optical diffuser having a plurality of retroreflective elements arranged in a regular two-dimensional array, and an optical filter disposed on, and substantially co-extensive in length and width with, the optical diffuser.
In some embodiments, the optical diffuser may be configured to receive a first light at a first wavelength emitted by a light source of the backlight and retroreflect the received first light for incident angles less than a predetermined threshold value, and to transmit at least 60%, or at least 65%, or at least 70%, or at least 75%, or at least 80%, or at least 85%, or at least 90% of the received first light for incident angles greater than the predetermined threshold value.
In some embodiments, the optical filter may include a plurality of polymeric layers numbering at least 10, or at least 50, or at least 100, or at least 200, or at least 300, or at least 400, or at least 500 in total. In some embodiments, each of the polymeric layers may have an average thickness of less than about 500 nm, or greater than about 400 nm, or greater than about 300 nm, or greater than about 200 nm, or greater than about 150 nm, or greater than about 100 nm.
In some embodiments, for the first wavelength, the optical filter may have an optical transmittance of greater than about 60%, or greater than about 65%, or greater than about 70%, or greater than about 75%, or greater than about 80%, or greater than about 85% for a first incident angle less than about 10 degrees, or less than about 8 degrees, or less than about 6 degrees, or less than about 4 degrees, or less than about 2 degrees, or less than about 1 degree and an optical transmittance of less than about 50%, or less than about 45%, or less than about 40%, or less than about 35%, or less than about 30%, or less than about 250%, of less than about 20% for a second incident angle greater that about 40 degrees, or greater than about 45 degrees, or greater than about 50 degrees, or greater than about 55 degrees, or greater than about 60 degrees.
Turning now to the figures,
In some embodiments, backlight 300 includes a plurality of discrete spaced apart light sources 10 (e.g., light-emitting diodes), a reflective polarizer 30 disposed on the plurality of spaced apart light sources 10, a first optical diffuser 40 disposed between the reflective polarizer 30 and the plurality of light sources 10, and a second optical diffuser 50 disposed between the reflective polarizer 30 and the plurality of light sources 10 and including a plurality of retroreflective elements 51 arranged in a regular two-dimensional array. In some embodiments, the light sources may be arranged two-dimensionally (e.g., along the plane defined by x-axis and the y-axis) on a first substrate 11. In some embodiments, the first substrate 11 may be substantially reflective at least in regions 12 between the plurality of light sources 10. In some embodiments, the at least regions 12 of the first substrate 11 between the light sources 10 may have an average optical reflectance of at least 50%, or at least 60%, or at least 70%, or at least 80%, or at least 90% in the visible wavelength range.
In some embodiments, reflective polarizer 30 is configured such that, for a substantially normally incident light and for a visible (human-visible) wavelength range extending from about 420 nm to about 680 nm, the reflective polarizer has an average optical reflectance of at least 60%, or at least 70%, or at least 80%, or at least 90%, or at least 95% when the incident light is polarized along an in-plane first direction (e.g., polarized along the x-axis as shown in
In some embodiments, first optical diffuser 40 may include a plurality of positive microlenses 41 arranged in a regular two-dimensional array on first optical diffuser 40. In some embodiments, the positive microlenses 41 may be disposed on a common second substrate 42. In some embodiments, the positive microlenses may have focal lengths between about 10 microns and about 100 microns. In some embodiments, in a plan view (e.g., along z-axis), the positive microlenses may cover greater than about 60%, or greater than about 65%, or greater than about 70%, or greater than about 75%, or greater than about 80%, or greater than about 85%, or greater than about 90% of the first optical diffuser.
In some embodiments, second optical diffuser 50 includes a plurality of retroreflective elements 51 arranged in a regular two-dimensional array, as discussed for
In some embodiments, the reflective polarizer 30 and the first optical diffuser 40 and second optical diffuser 50 may be substantially co-extensive in length (e.g., along the x-axis) and width (e.g., y-axis) with the plurality of light sources 10. In some embodiments, the reflective polarizer may include a plurality of polymeric layers numbering at least 10, or at least 50, or at least 100, or at least 200, or at least 300, or at least 400, or at least 500 in total, and each of the polymeric layers may have an average thickness of less than about 500 nm, or less than about 400 nm, or less than about 300 nm, or less than about 200 nm, or less than about 150 nm, or less than about 100 nm. In some embodiments, the reflective polarizer may further include at least one skin layer disposed on the plurality of polymeric layers, the at least one skin layer having an average thickness of greater than about 500 nm, or about 750 nm, or about 1000 nm (see also
In some embodiments, backlight 300 may further include a light converting film 70 disposed between the reflective polarizer 30 and the plurality of discrete spaced apart light sources 10. In some embodiments, light converting film 70 may include one or more light converting materials configured to receive the emitted light 20 from the light sources 10 and convert at least portions of the received emitted light to blue light 22b, green light 22g, and red light 22r.
In some embodiments, optical stack 500 may further include optical filter 100 (see also
In some embodiments, backlight 300 may further include one or more third optical diffusers 80, 81 disposed between second optical diffuser 50 and light sources 10 and configured to scatter the emitted light. In some embodiments, backlight 300 may further include one or more fourth optical diffusers 82, 83 disposed between reflective polarizer 30 and first optical diffuser 40 and configured to scatter the emitted light. In some embodiments, backlight 300 may further include a first prismatic film 90 disposed between the reflective polarizer 30 and light sources 10. In some embodiments, first prismatic film 90 may include a plurality of first prisms 91 extending along a first longitudinal direction (e.g., along the y-axis of
In some embodiments, at least one of the light sources 10 of backlight 300 may be configured to emit ultraviolet light having a wavelength less than about 420 nm. In some embodiments, at least one of the light sources 10 of backlight 300 may be a blue light emitting light source configured to emit blue light having a wavelength between about 420 nm and about 480 nm. In some embodiments, at least one of the light sources 10 of backlight 300 may be a green light emitting light source configured to emit green light having a wavelength between about 490 nm and about 560 nm. In some embodiments, at least one of the light sources 10 of backlight 300 may be a red light emitting light source configured to emit red light having a wavelength between about 590 nm and about 670 nm.
In some embodiments, for light incident at a first incident angle less than about 10 degrees, or less than about 8 degrees, or less than about 6 degrees, or less than about 4 degrees, or less than about 2 degrees or less than about 1 degree (e.g., substantially normally incident light, shown as the 0-degree, solid line of
In some embodiments, for a substantially normally incident light polarized along each of the in-plane first and second directions, the optical filter may have an average optical transmittance of greater than about 50%, or greater than about 55%, or greater than about 60%, or greater than about 65%, or greater than about 70%, or greater than about 75%, or greater than about 80%, or greater than about 85% for the blue wavelength 10b range extending from about 420 nm to about 480 nm, and an optical reflectance of greater than about 50%, or greater than about 55%, or greater than about 60%, or greater than about 65%, or greater than about 70%, or greater than about 75%, or greater than about 80%, or greater than about 85%, or greater than about 90% for each of the green wavelength range 10g and the red wavelength range 10r. See
In some embodiments, one of the functions of optical diffuser 50 may be that of a light-spreading film. That is, a light beam 110 emitted by light sources 10 may have a first maximum cone angle 131 (e.g., 60 degrees) before passing through optical diffuser 50, producing a light beam 111 with a second maximum cone angle β2 larger than β1 (e.g., 120 degrees) after passing through optical diffuser 50. In some embodiments, when optical diffuser 50 is combined with other films in an optical stack (such as optical filter 100), the result may be an improvement in optical properties of the display (e.g., improved uniformity of the backlight).
In some embodiments, optical diffuser 50 may be configured to receive a first light 20a, 20b at a first wavelength (e.g., a human-visible wavelength) emitted by a light sources 10 and retroreflect the received first light 20a for incident angles α1 less than a predetermined threshold value θt as retroreflected light 21a, and transmit at least 60%, or at least 65%, or at least 70%, or at least 75%, or at least 80%, or at least 85%, or at least 90% of the received first light 20b for incident angles α2 greater than the predetermined threshold value θt as transmitted light 21b.
In some embodiments, for the first wavelength, the optical filter 100 may have an optical transmittance of greater than about 60%, or greater than about 65%, or greater than about 70%, or greater than about 75%, or greater than about 80%, or greater than 85% for a first incident angle less than about 10 degrees, or less than about 8 degrees, or less than about 6 degrees, or less than about 4 degrees, or less than about 2 degrees, or less than about 1 degree, and an optical transmittance of less than about 50%, or less than about 45%, or less than about 40%, or less than about 35%, or less than about 30%, or less than about 25%, or less than about 20% for a second incident angle greater that about 40 degrees, or greater that about 45 degrees, or greater that about 50 degrees, or greater that about 55 degrees, or greater that about 60 degrees.
Finally,
Terms such as “about” will be understood in the context in which they are used and described in the present description by one of ordinary skill in the art. If the use of “about” as applied to quantities expressing feature sizes, amounts, and physical properties is not otherwise clear to one of ordinary skill in the art in the context in which it is used and described in the present description, “about” will be understood to mean within 10 percent of the specified value. A quantity given as about a specified value can be precisely the specified value. For example, if it is not otherwise clear to one of ordinary skill in the art in the context in which it is used and described in the present description, a quantity having a value of about 1, means that the quantity has a value between 0.9 and 1.1, and that the value could be 1.
Terms such as “substantially” will be understood in the context in which they are used and described in the present description by one of ordinary skill in the art. If the use of “substantially equal” is not otherwise clear to one of ordinary skill in the art in the context in which it is used and described in the present description, “substantially equal” will mean about equal where about is as described above. If the use of “substantially parallel” is not otherwise clear to one of ordinary skill in the art in the context in which it is used and described in the present description, “substantially parallel” will mean within 30 degrees of parallel. Directions or surfaces described as substantially parallel to one another may, in some embodiments, be within 20 degrees, or within 10 degrees of parallel, or may be parallel or nominally parallel. If the use of “substantially aligned” is not otherwise clear to one of ordinary skill in the art in the context in which it is used and described in the present description, “substantially aligned” will mean aligned to within 20% of a width of the objects being aligned. Objects described as substantially aligned may, in some embodiments, be aligned to within 10% or to within 5% of a width of the objects being aligned.
All references, patents, and patent applications referenced in the foregoing are hereby incorporated herein by reference in their entirety in a consistent manner. In the event of inconsistencies or contradictions between portions of the incorporated references and this application, the information in the preceding description shall control.
Descriptions for elements in figures should be understood to apply equally to corresponding elements in other figures, unless indicated otherwise. Although specific embodiments have been illustrated and described herein, it will be appreciated by those of ordinary skill in the art that a variety of alternate and/or equivalent implementations can be substituted for the specific embodiments shown and described without departing from the scope of the present disclosure. This application is intended to cover any adaptations or variations of the specific embodiments discussed herein. Therefore, it is intended that this disclosure be limited only by the claims and the equivalents thereof.
Number | Date | Country | |
---|---|---|---|
63305431 | Feb 2022 | US |