The present invention relates to an optical filter.
In imaging apparatuses employing an imaging sensor such as a charge coupled device (CCD) or a complementary metal oxide semiconductor (CMOS), any of various optical filters is disposed ahead of the imaging sensor in order to obtain an image with good color reproduction. Imaging sensors generally have spectral sensitivity over a wide wavelength range from the ultraviolet to infrared regions. The visual sensitivity of humans lies solely in the visible region. Thus, a technique is known in which an optical filter shielding against infrared light or ultraviolet light is disposed ahead of an imaging sensor in an imaging apparatus in order to allow the spectral sensitivity of the imaging sensor to approximate to the visual sensitivity of humans.
There are the following types of optical filters: optical filters using light reflection; and optical filters using light absorption. Examples of the former include an optical filter including a dielectric multilayer film, and examples of the latter include an optical filter including a film containing a light absorber capable of absorbing light with a given wavelength. The latter are desirable in view of their spectral properties less likely to vary depending on the incident angle of incident light.
For example, Patent Literature 1 describes a near-infrared-absorbing filter formed of a near-infrared absorber and resin. The near-infrared absorber may include a particular phosphonic acid compound, particular phosphoric acid ester compound, and copper salt. The particular phosphonic acid compound has a monovalent group R1 bonded to a phosphorus atom P and represented by —CH2CH2—R11. Rn represents a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, or a fluorinated alkyl group having 1 to 20 carbon atoms.
Although the near-infrared-absorbing filter described in Patent Literature 1 can effectively absorb light with wavelengths of 800 nm to 1200 nm, it is difficult to say that the near-infrared-absorbing filter described in Patent Literature 1 has desirable light absorption properties in the wavelength range of 350 nm to 400 nm and the wavelength range of 650 nm to 800 nm. Therefore, the present invention provides an optical filter capable of exhibiting, with a simple configuration, desirable optical characteristics that are unachievable by only the near-infrared-absorbing filter described in Patent Literature 1.
The present invention provides an optical filter including:
The above optical filter can exhibit the desirable optical characteristics with a simple configuration.
Hereinafter, embodiments of the present invention will be described with reference to the drawings. The following description is directed to some examples of the present invention, and the present invention is not limited by these examples.
In some cases, it is desirable for optical filters to have properties of permitting transmission of light with wavelengths of 450 nm to 600 nm and cutting off light with wavelengths of 300 nm to 400 nm and wavelengths of 650 nm to 1100 nm. However, for example, the optical filter described in Patent Literature 1 does not have sufficient light absorption properties in the wavelength range of 350 nm to 400 nm and the wavelength range of 650 nm to 800 nm, and a light-absorbing layer or light-reflecting film is additionally needed to cut off light with wavelengths of 350 nm to 400 nm and wavelengths of 650 nm to 800 nm. As just described above, it is difficult to achieve an optical filter having the above desirable properties with a simple structure (for example, a single layer). In fact, the present inventor went through much trial and error to achieve an optical filter having the above desirable properties with a simple structure. That eventually led the present inventor to the optical filter according to the present invention.
As shown in
Herein, the term “spectral transmittance” refers to a transmittance obtained when light with a given wavelength is incident on an object such as a specimen, the term “average transmittance” refers to an average of spectral transmittances in a given wavelength range, and the term “maximum transmittance” refers to the maximum spectral transmittance in a given wavelength range. Additionally, the term “transmittance spectrum” herein refers to one in which spectral transmittances at wavelengths in a given wavelength range are arranged in the wavelength order.
Herein, the term “IR cut-off wavelength” refers to a wavelength at which the spectral transmittance is 50% when light with wavelengths of 300 nm to 1200 nm is incident on an optical filter at a given incident angle and which lies in the wavelength range of 600 nm or more. The term “first IR cut-off wavelength” refers to an IR cut-off wavelength for light incident on an optical filter at an incident angle of 0°. Additionally, the term “UV cut-off wavelength” refers to a wavelength at which the spectral transmittance is 50% when light with wavelengths of 300 nm to 1200 nm is incident on an optical filter at a given incident angle and which lies in the wavelength range of 450 nm or less. The term “first UV cut-off wavelength” is a UV cut-off wavelength for light incident on an optical filter at an incident angle of 0°.
As the optical filter 1a exhibits the above optical characteristics (i) to (v), the optical filter 1a permits transmission of a large amount of light with wavelengths of 450 nm to 600 nm and can effectively cut off light with wavelengths of 300 nm to 400 nm and wavelengths of 650 nm to 1100 nm. Therefore, a transmittance spectrum of the optical filter 1a conforms better to the visual sensitivity of humans than does a transmittance spectrum of the near-infrared-absorbing filter described in Patent Literature 1. Moreover, the optical filter 1a can exhibit the above optical characteristics (i) to (v) without a layer other than the UV-IR-absorbing layer 10.
As to the above (i), the optical filter 1a desirably has an average transmittance of 80% or more and more desirably an average transmittance of 82% or more in the wavelength range of 450 nm to 600 nm.
As to the above (iii), the optical filter 1a desirably has a spectral transmittance of 1% or less in the wavelength range of 300 nm to 360 nm. This allows the optical filter 1a to more effectively cut off light in the ultraviolet region.
As to the above (iv), the first IR cut-off wavelength (a wavelength at which the spectral transmittance is 50%) desirably lies in the wavelength range of 630 nm to 650 nm. In this case, a transmittance spectrum of the optical filter 1a conforms better to the visual sensitivity of humans.
As to the above (v), the first UV cut-off wavelength (a wavelength at which the spectral transmittance is 50%) desirably lies in the wavelength range of 390 nm to 420 nm. In this case, a transmittance spectrum of the optical filter 1a conforms better to the visual sensitivity of humans.
The optical filter 1a desirably exhibits the following optical characteristic (vi) when light with wavelengths of 300 nm to 1200 nm is incident at an incident angle of 0°. The optical filter 1a can thus shield against infrared light with a relatively long wavelength (a wavelength of 1000 to 1100 nm). Conventionally, a light-reflecting film formed of a dielectric multilayer film is commonly used to cut off light with such a wavelength. The optical filter 1a can effectively cut off light with such a wavelength without using such a dielectric multilayer film. Even when a light-reflecting film formed of a dielectric multilayer film is necessary, the optical filter 1a can lower a reflection performance level required of the light-reflecting film. Therefore, the number of dielectrics laminated in the light-reflecting film can be decreased and the cost needed to form the light-reflecting film can be decreased.
The optical filter 1a desirably exhibits the following optical characteristic (vii) when light with wavelengths of 300 nm to 1200 nm is incident at an incident angle of 0°. In this case, infrared light with a longer wavelength (1100 to 1200 nm) can be cut off. This allows the optical filter 1a to effectively cut off light with such a wavelength without using a dielectric multilayer film or with a small number of dielectrics laminated in a dielectric multilayer film.
For example, in the optical filter 1a, an absolute value of a difference between a second IR cut-off wavelength and the first IR cut-off wavelength is 10 nm or less (optical characteristic (viii)). The second IR cut-off wavelength is an IR cut-off wavelength obtained when light with wavelengths of 300 nm to 1200 nm is incident on the optical filter 1a at an incident angle of 40°. In this case, the transmittance properties of the optical filter 1a in the vicinity of the first IR cut-off wavelength are less likely to vary with the incident angle of light incident on the optical filter 1a. Consequently, a central portion and peripheral portion of an image obtained using an imaging apparatus in which the optical filter 1a is disposed ahead of an imaging sensor can be prevented from presenting unintended color tones.
In the optical filter 1a, the absolute value of the difference between the second IR cut-off wavelength and first IR cut-off wavelength is desirably 5 nm or less.
For example, in the optical filter 1a, an absolute value of a difference between a third IR cut-off wavelength and the first IR cut-off wavelength is 15 nm or less (optical characteristic (ix)). The third IR cut-off wavelength is an IR cut-off wavelength obtained when light with wavelengths of 300 nm to 1200 nm is incident on the optical filter 1a at an incident angle of 50°. In this case, even when the incident angle of light incident on the optical filter 1a greatly changes, variation in transmittance properties in the vicinity of the first IR cut-off wavelength of the optical filter 1a can be reduced. Consequently, high-quality images can be easily obtained when the optical filter 1a is disposed ahead of an imaging sensor in an imaging apparatus capable of capturing images at a wide angle of view.
For example, in the optical filter 1a, an absolute value of a difference between a fourth IR cut-off wavelength and the first IR cut-off wavelength is 20 nm or less. The fourth IR cut-off wavelength is an IR cut-off wavelength obtained when light with wavelengths of 300 nm to 1200 nm is incident on the optical filter 1a at an incident angle of 60°. In this case, high-quality images can be easily obtained when the optical filter 1a is disposed ahead of an imaging sensor in an imaging apparatus capable of capturing images at a wide angle of view.
For example, in the optical filter 1a, an absolute value of a difference between a second UV cut-off wavelength and the first UV cut-off wavelength is 10 nm or less (optical characteristic (x)). The second UV cut-off wavelength is a UV cut-off wavelength obtained when light with wavelengths of 300 nm to 1200 nm is incident on the optical filter 1a at an incident angle of 40°. In this case, the transmittance properties of the optical filter 1a in the vicinity of the first UV cut-off wavelength are less likely to vary with the incident angle of light incident on the optical filter 1a. Consequently, a central portion and peripheral portion of an image obtained using an imaging apparatus in which the optical filter 1a is disposed ahead of an imaging sensor can be prevented from presenting unintended color tones.
In the optical filter 1a, the absolute value of the difference between the second UV cut-off wavelength and first UV cut-off wavelength is desirably 5 nm or less.
For example, in the optical filter 1a, an absolute value of a difference between a third UV cut-off wavelength and the first UV cut-off wavelength is 15 nm or less (optical characteristic (xi)). The third UV cut-off wavelength is a UV cut-off wavelength obtained when light with wavelengths of 300 nm to 1200 nm is incident on the optical filter 1a at an incident angle of 50°. In this case, even when the incident angle of light incident on the optical filter 1a greatly changes, variation in transmittance properties in the vicinity of the first UV cut-off wavelength of the optical filter 1a can be reduced. Consequently, high-quality images can be easily obtained when the optical filter 1a is disposed ahead of an imaging sensor in an imaging apparatus capable of capturing images at a wide angle of view.
For example, in the optical filter 1a, an absolute value of a difference between a fourth UV cut-off wavelength and the first UV cut-off wavelength is 20 nm or less. The fourth UV cut-off wavelength is a UV cut-off wavelength obtained when light with wavelengths of 300 nm to 1200 nm is incident on the optical filter 1a at an incident angle of 60°. In this case, high-quality images can be easily obtained when the optical filter 1a is disposed ahead of an imaging sensor in an imaging apparatus capable of capturing images at a wide angle of view.
The optical filter 1a desirably exhibits the following optical characteristic (xii) when light with wavelengths of 300 nm to 1200 nm is incident at an incident angle of 0°.
The optical filter 1a desirably further exhibits the following optical characteristic (xiii) when light with wavelengths of 300 nm to 1200 nm is incident at an incident angle of 0°.
RGB color filters used in imaging apparatuses not only permit transmission of light in wavelength ranges of the corresponding RGB colors but sometimes permit transmission of light with wavelengths of 800 nm or more. Therefore, in the case where an infrared cut filter used in an imaging apparatus has a spectral transmittance not reduced to a certain level in the above wavelength range, light in the above wavelength range is incident on a pixel of an imaging sensor and the corresponding signal is output from the pixel. When the imaging apparatus is used to obtain a digital image under a sufficiently large amount of visible light, the obtained digital image is not greatly affected by a small amount of infrared light transmitted through a color filter and received by a pixel of the imaging sensor. However, such infrared light tends to have a stronger influence under a small amount of visible light or on a dark part of an image, and sometimes a bluish or reddish color is added to the image.
As described above, color filters used along with imaging sensors such as a CMOS and CCD sometimes permit transmission of light in the wavelength range of 800 to 950 nm or 800 to 1000 nm. The optical filter 1a having the above optical characteristics (xii) and (xiii) can prevent the above defect of images.
The UV-IR-absorbing layer 10 is not particularly limited as long as the UV-IR-absorbing layer 10 absorbs infrared light and ultraviolet light to allow the optical filter 1a to exhibit the above optical characteristics (i) to (v). The UV-IR-absorbing layer 10, for example, includes a UV-IR absorber formed by a phosphonic acid and copper ion.
When the UV-IR-absorbing layer 10 includes the UV-IR absorber formed by a phosphonic acid and copper ion, the phosphonic acid includes, for example, a first phosphonic acid having an aryl group. In the first phosphonic acid, the aryl group is bonded to a phosphorus atom. Thus, the optical filter 1a easily exhibits the above optical characteristics (i) to (v).
The aryl group of the first phosphonic acid is, for example, a phenyl group, benzyl group, toluyl group, nitrophenyl group, hydroxyphenyl group, halogenated phenyl group in which at least one hydrogen atom of a phenyl group is substituted by a halogen atom, or halogenated benzyl group in which at least one hydrogen atom of a benzene ring of a benzyl group is substituted by a halogen atom. The first phosphonic acid desirably includes a portion that has the halogenated phenyl group. In that case, the optical filter 1a easily exhibits the above optical characteristics (i) to (v) more reliably.
When the UV-IR-absorbing layer 10 includes the UV-IR absorber formed by the phosphonic acid and copper ion, the phosphonic acid desirably further includes a second phosphonic acid having an alkyl group. In the second phosphonic acid, the alkyl group is bonded to a phosphorus atom.
The alkyl group of the second phosphonic acid is, for example, an alkyl group having 6 or less carbon atoms. This alkyl group may be linear or branched.
When the UV-IR-absorbing layer 10 includes the UV-IR absorber formed by the phosphonic acid and copper ion, the UV-IR-absorbing layer 10 desirably further includes a phosphoric acid ester allowing the UV-IR absorber to be dispersed and matrix resin.
The phosphoric acid ester included in the UV-IR-absorbing layer 10 is not limited to any particular one, as long as the phosphoric acid ester allows good dispersion of the UV-IR absorber. For example, the phosphoric acid ester includes at least one of a phosphoric acid diester represented by the following formula (c1) and a phosphoric acid monoester represented by the following formula (c2). In the formulae (c1) and (c2), R21, R22, and R3 are each a monovalent functional group represented by —(CH2CH2O)nR4, wherein n is an integer of 1 to 25 and R4 is an alkyl group having 6 to 25 carbon atoms. R21, R22, and R3 may be the same or different functional groups.
The phosphoric acid ester is not particularly limited. The phosphoric acid ester can be, for example, PLYSURF A208N (polyoxyethylene alkyl (C12, C13) ether phosphoric acid ester), PLYSURF A208F (polyoxyethylene alkyl (C8) ether phosphoric acid ester), PLYSURF A208B (polyoxyethylene lauryl ether phosphoric acid ester), PLYSURF A219B (polyoxyethylene lauryl ether phosphoric acid ester), PLYSURF AL (polyoxyethylene styrenated phenylether phosphoric acid ester), PLYSURF A212C (polyoxyethylene tridecyl ether phosphoric acid ester), or PLYSURF A215C (polyoxyethylene tridecyl ether phosphoric acid ester). All of these are products manufactured by DKS Co., Ltd. The phosphoric acid ester can be NIKKOL DDP-2 (polyoxyethylene alkyl ether phosphoric acid ester), NIKKOL DDP-4 (polyoxyethylene alkyl ether phosphoric acid ester), or NIKKOL DDP-6 (polyoxyethylene alkyl ether phosphoric acid ester). All of these are products manufactured by Nikko Chemicals Co., Ltd.
The matrix resin included in the UV-IR-absorbing layer 10 is, for example, a heat-curable or ultraviolet-curable resin in which the UV-IR absorber is dispersible. Additionally, as the matrix resin can be used a resin that has a transmittance of, for example, 70% or more, desirably 75% or more, and more desirably 80% or more for light with wavelengths of 350 nm to 900 nm in the form of a 0.1-mm-thick resin layer. The content of the phosphonic acid is, for example, 3 to 180 parts by mass with respect to 100 parts by mass of the matrix resin.
The matrix resin included in the UV-IR-absorbing layer 10 is not particularly limited as long as the above properties are satisfied. The matrix resin is, for example, a (poly)olefin resin, polyimide resin, polyvinyl butyral resin, polycarbonate resin, polyamide resin, polysulfone resin, polyethersulfone resin, polyamideimide resin, (modified) acrylic resin, epoxy resin, or silicone resin. The matrix resin may contain an aryl group such as a phenyl group and is desirably a silicone resin containing an aryl group such as a phenyl group. If the UV-IR-absorbing layer 10 is excessively hard (rigid), the likelihood of cure shrinkage-induced cracking during the production process of the optical filter 1a increases with increasing thickness of the UV-IR-absorbing layer 10. When the matrix resin is a silicone resin containing an aryl group, the UV-IR-absorbing layer 10 is likely to have high crack resistance. Moreover, with the use of a silicone resin containing an aryl group, the UV-IR absorber formed by the above phosphonic acid and copper ion is less likely to be aggregated when included. Further, when the matrix resin of the UV-IR-absorbing layer 10 is a silicone resin containing an aryl group, it is desirable for the phosphoric acid ester included in the UV-IR-absorbing layer 10 to have a flexible, linear organic functional group, such as an oxyalkyl group, just as does the phosphoric acid ester represented by the formula (el) or formula (c2). This is because interaction derived from the combination of the above phosphonic acid, a silicone resin containing an aryl group, and phosphoric acid ester having a linear organic functional group such as an oxyalkyl group makes aggregation of the UV-IR absorber less likely and can impart good rigidity and good flexibility to the UV-IR-absorbing layer. Specific examples of the silicone resin available as the matrix resin include KR-255, KR-300, KR-2621-1, KR-211, KR-311, KR-216, KR-212, and KR-251. All of these are silicone resins manufactured by Shin-Etsu Chemical Co., Ltd.
As shown in
The transparent dielectric substrate 20 is, for example, made of glass or resin. When the transparent dielectric substrate 20 is made of glass, the glass is, for example, borosilicate glass such as D 263, soda-lime glass (blue plate glass), white sheet glass such as B 270, alkali-free glass, or infrared-absorbing glass such as copper-containing phosphate glass or copper-containing fluorophosphate glass. When the transparent dielectric substrate 20 is made of infrared-absorbing glass such as copper-containing phosphate glass or copper-containing fluorophosphate glass, the infrared absorption performance necessary for the optical filter 1a can be achieved by a combination of the infrared absorption performance of the transparent dielectric substrate 20 and the infrared absorption performance of the UV-IR-absorbing layer 10. Therefore, the level of the infrared absorption performance required of the UV-IR-absorbing layer 10 can be lowered. Examples of such an infrared-absorbing glass include BG-60, BG-61, BG-62, BG-63, and BG-67 manufactured by SCHOTT AG, 500EXL manufactured by Nippon Electric Glass Co., Ltd., and CM5000, CM500, C5000, and C500S manufactured by HOYA CORPORATION. Moreover, the infrared-absorbing glass may have ultraviolet absorption properties.
The transparent dielectric substrate 20 may be a transparent crystalline substrate, such as magnesium oxide, sapphire, or quartz. For example, sapphire is very hard and is thus scratch resistant. Therefore, as a scratch-resistant protective material (protective filter), a sheet-shaped sapphire is sometimes disposed ahead of a camera module or lens included in mobile devices such as smartphones and mobile phones. Formation of the UV-IR-absorbing layer 10 on such a sheet-shaped sapphire makes it possible to protect camera modules and lenses and shield against ultraviolet light or infrared light. This eliminates the need to dispose an optical filter having ultraviolet- or infrared-shielding performance around an imaging sensor such as a CCD or CMOS or inside a camera module. Therefore, the formation of the UV-IR-absorbing layer 10 on a sheet-shaped sapphire can contribute to achievement of camera modules reduced in profile.
When the transparent dielectric substrate 20 is made of resin, the resin is, for example, a (poly)olefin resin, polyimide resin, polyvinyl butyral resin, polycarbonate resin, polyamide resin, polysulfone resin, polyethersulfone resin, polyamideimide resin, (modified) acrylic resin, epoxy resin, or silicone resin.
As shown in
The optical filter 1a can be produced, for example, by applying a composition (UV-IR-absorbing composition) for forming the UV-IR-absorbing layer 10 to one principal surface of the transparent dielectric substrate 20 to form a film and drying the film. The method for preparing the UV-IR-absorbing composition and the method for producing the optical filter 1a will be described with an example in which the UV-IR-absorbing layer 10 includes the UV-IR absorber formed by the phosphonic acid and copper ion.
First, an exemplary method for preparing the UV-IR-absorbing composition will now be described. A copper salt such as copper acetate monohydrate is added to a given solvent such as tetrahydrofuran (THF), and the mixture is stirred to give a copper salt solution. To this copper salt solution is then added a phosphoric acid ester compound such as a phosphoric acid diester represented by the formula (c1) or a phosphoric acid monoester represented by the formula (c2), and the mixture is stirred to prepare a solution A. A solution B is also prepared by adding the first phosphonic acid to a given solvent such as THF and stirring the mixture. When a plurality of phosphonic acids are used as the first phosphonic acid, the solution B may be prepared by adding each phosphonic acid to a given solvent such as THF, stirring the mixture, and mixing a plurality of preliminary liquids each prepared to contain a different phosphonic acid. In the preparation of the solution B, an alkoxysilane monomer is desirably added.
The addition of an alkoxysilane monomer to the UV-IR-absorbing composition can prevent particles of the UV-IR absorber from aggregating with each other. This enables the UV-IR absorber to be dispersed well in the UV-IR-absorbing composition even when the content of the phosphoric acid ester is decreased. When the UV-IR-absorbing composition is used to produce the optical filter 1a, a treatment is performed so that sufficient hydrolysis and polycondensation reactions of the alkoxysilane monomer occur. Owing to the treatment, a siloxane bond (—Si—O—Si—) is formed and the optical filter 1a has good moisture resistance. The optical filter 1a additionally has good heat resistance. This is because a siloxane bond is greater in binding energy and chemically more stable than bonds such as a —C—C— bond and —C—O— bond and is thus excellent in heat resistance and moisture resistance.
Next, the solution B is added to the solution A while the solution A is stirred, and the mixture is further stirred for a given period of time. To the resultant solution is then added a given solvent such as toluene, and the mixture is stirred to obtain a solution C. Subsequently, the solution C is subjected to solvent removal under heating for a given period of time to obtain a solution D. This process removes the solvent such as THF and the component such as acetic acid (boiling point: about 118° C.) generated by disassociation of the copper salt and yields a UV-IR absorber formed by the first phosphonic acid and copper ion. The temperature at which the solution C is heated is chosen based on the boiling point of the to-be-removed component disassociated from the copper salt. During the solvent removal, the solvent such as toluene (boiling point: about 110° C.) used to obtain the solution C is also evaporated. A certain amount of this solvent desirably remains in the UV-IR-absorbing composition. This is preferably taken into account in determining the amount of the solvent to be added and the time period of the solvent removal. To obtain the solution C, o-xylene (boiling point: about 144° C.) may be used instead of toluene. In this case, the amount of o-xylene to be added can be reduced to about one-fourth of the amount of toluene to be added, because the boiling point of o-xylene is higher than the boiling point of toluene.
When the UV-IR-absorbing composition further includes the second phosphonic acid, a solution H is additionally prepared for example, as follows. First, a copper salt such as copper acetate monohydrate is added to a given solvent such as tetrahydrofuran (THF), and the mixture is stirred to give a copper salt solution. To this copper salt solution is then added a phosphoric acid ester compound such as a phosphoric acid diester represented by the formula (c1) or a phosphoric acid monoester represented by the formula (c2), and the mixture is stirred to prepare a solution E. A solution F is also prepared by adding the second phosphonic acid to a given solvent such as THF and stirring the mixture. When a plurality of phosphonic acids are used as the second phosphonic acid, the solution F may be prepared by adding each phosphonic acid to a given solvent such as THF, stirring the mixture, and mixing a plurality of preliminary liquids each prepared to contain a different phosphonic acid. The solution F is added to the solution E while the solution E is stirred, and the mixture is further stirred for a given period of time. To the resultant solution is then added a given solvent such as toluene, and the mixture is stirred to obtain a solution G. Subsequently, the solution G is subjected to solvent removal under heating for a given period of time to obtain a solution H. This process removes the solvent such as THF and the component such as acetic acid generated by disassociation of the copper salt and yields another UV-IR absorber formed by the second phosphonic acid and copper ion. The temperature at which the solution G is heated is determined as in the case of the solution C. The solvent for obtaining the solution G is also determined as in the case of the solution C.
The UV-IR-absorbing composition can be prepared by adding the matrix resin such as a silicone resin to the solution D and stirring the mixture. When the UV-IR-absorbing composition includes the UV-IR absorber formed by the second phosphonic acid and copper ion, the UV-IR-absorbing composition can be prepared by adding the matrix resin such as a silicone resin to the solution D, stirring the mixture to obtain a solution I, and further adding the solution H to the solution I and stirring the mixture.
The UV-IR-absorbing composition is applied to one principal surface of the transparent dielectric substrate 20 to form a film. For example, the UV-IR-absorbing composition in a liquid form is applied by spin coating or with a dispenser to one principal surface of the transparent dielectric substrate 20 to form a film. Next, this film is subjected to a given heat treatment to cure the film. For example, the film is exposed to an environment at a temperature of 50° C. to 200° C. The film is subjected to a humidification treatment, if necessary, to sufficiently hydrolyze the alkoxysilane monomer included in the UV-IR-absorbing composition. For example, the cured film is exposed to an environment at a temperature of 40° C. to 100° C. and a relative humidity of 40% to 100%. A repeating structure (Si—O)n— of a siloxane bond is thus formed. The optical filter 1a can be produced in this manner. In common hydrolysis and polycondensation reactions of an alkoxysilane containing a monomer, both the alkoxysilane and water are in a liquid composition sometimes. However, if water is added beforehand to the UV-IR-absorbing composition to produce the optical filter, the phosphoric acid ester or UV-IR absorber is deteriorated in the course of the formation of the UV-IR-absorbing layer, and the UV-IR absorption performance can be decreased or the durability of the optical filter can be impaired. Therefore, the humidification treatment is desirably performed after the film is cured by the given heat treatment.
When the transparent dielectric substrate 20 is a glass substrate, a resin layer including a silane coupling agent may be formed between the transparent dielectric substrate 20 and UV-IR-absorbing layer 10 to improve the adhesion between the transparent dielectric substrate 20 and UV-IR-absorbing layer 10.
<Modifications>
The optical filter 1a can be modified in various respects. For example, the optical filter 1a may be modified to optical filters 1b to 1f shown in
As shown in
As shown in
As shown in
As shown in
As shown in
The optical filters 1a to if may be modified to include an infrared-absorbing film (not shown) in addition to the UV-IR-absorbing layer 10, if necessary. The infrared-absorbing film includes, for example, an organic infrared absorber, such as a cyanine-based, phthalocyanine-based, squarylium-based, diimmonium-based, or azo-based infrared absorber or an infrared absorber composed of a metal complex. The infrared-absorbing film includes, for example, one infrared absorber or two or more infrared absorbers selected from these infrared absorbers. The organic infrared absorber can absorb light in a relatively narrow wavelength range (absorption band) and is suitable for absorbing light with a wavelength in a given range.
The optical filters 1a to if may be modified to include an ultraviolet-absorbing film (not shown) in addition to the UV-IR-absorbing layer 10, if necessary. The ultraviolet-absorbing film includes, for example, an ultraviolet absorber, such as a benzophenone-based, triazine-based, indole-based, merocyanine-based, or oxazole-based ultraviolet absorber. The ultraviolet-absorbing film, for example, includes one ultraviolet absorber or two or more ultraviolet absorbers selected from these ultraviolet absorbers. The ultraviolet absorber can include ultraviolet absorbers absorbing ultraviolet light with a wavelength, for example, around 300 nm to 340 nm, emitting light (fluorescence) with a wavelength longer than the absorbed wavelength, and functioning as a fluorescent agent or fluorescent brightener. The ultraviolet-absorbing film can reduce incidence of ultraviolet light which deteriorates the materials, such as resin, used in the optical filter.
The above infrared absorber or ultraviolet absorber may be contained beforehand in the transparent dielectric substrate 20 made of the resin. The infrared-absorbing film and ultraviolet-absorbing film each can be formed, for example, by forming a resin containing the infrared absorber or ultraviolet absorber into a film. In this case, it is necessary for the resin to allow the infrared absorber or ultraviolet absorber to be appropriately dissolved or dispersed therein and be transparent. Examples of such a resin include a (poly)olefin resin, polyimide resin, polyvinyl butyral resin, polycarbonate resin, polyamide resin, polysulfone resin, polyethersulfone resin, polyamideimide resin, (modified) acrylic resin, epoxy resin, and silicone resin.
The optical filters 1a to if may be modified to further include a reflecting film reflecting infrared light and/or ultraviolet light, if necessary. As such a reflecting film can be used, for example, a film formed by vapor deposition of a metal such as aluminum or a dielectric multilayer film in which a layer formed of a high-refractive-index material and a layer formed of a low-refractive-index material are alternately laminated. The reflecting film may be formed as each principal surface of the optical filter, or may be formed as one principal surface of the optical filter. When the reflecting film is formed in the former manner, the stress on the front side and that on the back side are balanced, and that decreases the likelihood of warping of the optical filter. When the reflecting film is a dielectric multilayer film, a material, such as TiO2, ZrO2, Ta2O5, Nb2O5, ZnO, or In2O3, having a refractive index of 1.7 to 2.5 is used as the high-refractive-index material. A material, such as SiO2, Al2O3, or MgF2, having a refractive index of 1.2 to 1.6 is used as the low-refractive-index material. Examples of the method for forming the dielectric multilayer film include chemical vapor deposition (CVD), sputtering, and vacuum deposition.
The optical filters 1a to if are each disposed ahead (on the side closer to an object) of an imaging sensor, such as a CCD or CMOS, in an imaging apparatus in order to, for example, allow the spectral sensitivity of the imaging sensor in the imaging apparatus to approximate to the visual sensitivity of humans.
Further, as shown in
In the camera module 100, the optical filter 1a functions also as a cover (protective filter) that protects the lens system 2. In this case, a sapphire substrate is desirably used as the transparent dielectric substrate 20 of the optical filter 1a. Having high scratch-resistance, a sapphire substrate is desirably disposed, for example, on the external side (the side opposite to the imaging sensor 4). The optical filter 1a consequently exhibits high scratch-resistance, for example, on external contact and has the optical characteristics (i) to (v) (and desirably further has the optical characteristics (vi) to (xiii)). This eliminates the need to dispose an optical filter for cutting off infrared light or ultraviolet light near the imaging sensor 4 and facilitates a reduction of the camera module 100 in profile. It should be noted that
The present invention will be described in more detail by examples. The present invention is not limited to the examples given below. First, methods for evaluation of optical filters according to Examples and Comparative Examples will be described.
<Measurement of Transmittance Spectra of Optical Filter>
Transmittance spectra shown upon incidence of light with wavelengths of 300 nm to 1200 nm on the optical filters according to Examples and Comparative Examples were measured using an ultraviolet-visible spectrophotometer (manufactured by JASCO Corporation, product name: V-670). The incident angle of the light incident on the optical filters was changed from 0° to 65° at 5° intervals to measure a transmittance spectrum at each angle.
<Measurement of Thickness of UV-IR-Absorbing Layer>
The thicknesses of the optical filters according to Examples and Comparative Examples were measured with a digital micrometer. For each optical filter according to Example or Comparative Example having a transparent dielectric substrate made of, for example, glass, the thickness of the UV-IR-absorbing layer of the optical film was determined by subtracting the thickness of the transparent glass substrate from the thickness of the optical filter measured with a digital micrometer.
1.125 g of copper acetate monohydrate ((CH3COO)2Cu·H2O) and 60 g of tetrahydrofuran (THF) were mixed, and the mixture was stirred for 3 hours to obtain a copper acetate solution. To the obtained copper acetate solution was then added 0.412 g of PLYSURF A208N (manufactured by DKS Co., Ltd.) which is a phosphoric acid ester compound, and the mixture was stirred for 30 minutes to obtain a solution A. 10 g of THF was added to 0.441 g of phenylphosphonic acid (C6H5PO(OH)2) (manufactured by Nissan Chemical Industries, Ltd.), and the mixture was stirred for 30 minutes to obtain a solution B-1. 10 g of THF was added to 0.661 g of 4-bromophenylphosphonic acid (C6H4BrPO(OH)2) (manufactured by Tokyo Chemical Industry Co., Ltd.), and the mixture was stirred for 30 minutes to obtain a solution B-2. Next, the solutions B-1 and B-2 were mixed, and the mixture was stirred for 1 minute. 1.934 g of methyltriethoxysilane (MTES: CH3Si(OC2H5)3) (manufactured by Shin-Etsu Chemical Co., Ltd.) and 0.634 g of tetraethoxysilane (TEOS: Si(OC2H5)4) (manufactured by KISHIDA CHEMICAL Co., Ltd., special grade) were added, and the mixture was further stirred for 1 minute to obtain a solution B. The solution B was added to the solution A while the solution A was stirred, and the mixture was stirred at room temperature for 1 minute. To the resultant solution was then added 25 g of toluene, and the mixture was stirred at room temperature for 1 minute to obtain a solution C. This solution C was placed in a flask and subjected to solvent removal using a rotary evaporator (manufactured by Tokyo Rikakikai Co., Ltd., product code: N-1110SF) under heating by means of an oil bath (manufactured by Tokyo Rikakikai Co., Ltd., product code: OSB-2100). The temperature of the oil bath was controlled to 105° C.
A solution D which had been subjected to the solvent removal was then collected from the flask. The solution D which is a dispersion of fine particles of copper phenyl-based phosphonate (absorber) including copper phenylphosphonate and copper 4-bromophenylphosphonate was transparent, and the fine particles were well dispersed therein.
0.225 g of copper acetate monohydrate and 36 g of THF were mixed, and the mixture was stirred for 3 hours to obtain a copper acetate solution. To the obtained copper acetate solution was then added 0.129 g of PLYSURF A208N which is a phosphoric acid ester compound, and the mixture was stirred for 30 minutes to obtain a solution E. 10 g of THF was added to 0.144 g of n-butylphosphonic acid (C4H9PO(OH)2) (manufactured by Nippon Chemical Industrial Co., Ltd.), and the mixture was stirred for 30 minutes to obtain a solution F. The solution F was added to the solution E while the solution E was stirred, and the mixture was stirred at room temperature for 1 minute. To the resultant solution was then added 25 g of toluene, and the mixture was stirred at room temperature for 1 minute to obtain a solution G. This solution G was placed in a flask and subjected to solvent removal using a rotary evaporator under heating by means of an oil bath. The temperature of the oil bath was controlled to 105° C. A solution H which had been subjected to the solvent removal was then collected from the flask. The solution H which is a dispersion of fine particles of copper butylphosphonate was transparent, and the fine particles were well dispersed therein.
To the solution D was added 2.200 g of a silicone resin (manufactured by Shin-Etsu Chemical Co., Ltd., product name: KR-300), and the mixture was stirred for 30 minutes to obtain a solution I. The solution H was added to the solution I, and the mixture was stirred for 30 minutes to obtain a UV-IR-absorbing composition (solution J) according to Example 1. For the UV-IR-absorbing composition (solution J) according to Example 1, the contents of the components are shown in Table 1 on a mass basis, and the contents of the components and the percentage contents of the phosphonic acids are shown in Table 2 on an amount-of-substance basis. The percentage content of each phosphonic acid is determined by rounding a value to one decimal place, and thus the sum of the percentage contents may not always be 100 mol %.
The UV-IR-absorbing composition according to Example 1 was applied with a dispenser to a 30 mm×30 mm central region of one principal surface of a transparent glass substrate (manufactured by SCHOTT AG, product name: D 263) made of borosilicate glass and having dimensions of 76 mm×76 mm×0.21 mm. A film was thus formed on the substrate. The thickness of the film was determined through trial and error so that the optical filter would have an average transmittance of about 1% in the wavelength range of 700 to 730 nm. When the UV-IR-absorbing composition was applied to the transparent glass substrate, a frame having an opening corresponding in dimensions to the region where the film-forming liquid was applied was put on the transparent glass substrate to hold back the film-forming liquid and prevent the film-forming liquid from spreading. The amount of the film-forming liquid applied was adjusted, so that the film obtained had a desired thickness. Subsequently, the transparent glass substrate with the undried film was placed in an oven and heat-treated at 85° C. for 6 hours to cure the film. After that, the transparent glass substrate with the film formed thereon was placed in a thermo-hygrostat set at a temperature of 85° C. and a relative humidity of 85% for a 20-hour humidification treatment. An optical filter according to Example 1 including a UV-IR-absorbing layer formed on a transparent glass substrate was thus obtained. The humidification treatment was performed to promote hydrolysis and polycondensation of the alkoxysilanes contained in the UV-IR-absorbing composition applied onto the transparent glass substrate and form a hard and dense matrix of the UV-IR-absorbing layer. The thickness of the UV-IR-absorbing layer of the optical filter according to Example 1 was 170 μm. Transmittance spectra shown by the optical filter according to Example 1 at incident angles ranging from 0° to 65° were measured. The transmittance spectra shown thereby at incident angles of 0°, 40°, 50°, and 60° are shown in
UV-IR-absorbing compositions according to Examples 2 to 15 were prepared in the same manner as in Example 1, except that the amounts of the compounds added were adjusted as shown in Table 1. Optical filters according to Examples 2 to 15 were produced in the same manner as in Example 1, except that the UV-IR-absorbing compositions according to Examples 2 to 15 were used instead of the UV-IR-absorbing composition according to Example 1 and that the thicknesses of the UV-IR-absorbing layers were adjusted as shown in Table 1. The contents and percentage contents of the phosphonic acids are shown in Table 2 on an amount-of-substance basis. The percentage content of each phosphonic acid is determined by rounding a value to one decimal place, and thus the sum of the percentage contents may not always be 100 mol %. Transmittance spectra shown by the optical filter according to Example 2 at incident angles ranging from 0° to 65° were measured. The transmittance spectra shown thereby at incident angles of 0°, 40°, 50°, and 60° are shown in
The UV-IR-absorbing composition according to Example 2 was applied with a dispenser to a 30 mm×30 mm central region of one principal surface of a transparent glass substrate (manufactured by SCHOTT AG, product name: D 263) made of borosilicate glass and having dimensions of 76 mm×76 mm×0.21 mm. A film having a given thickness was thus formed on the substrate. When the UV-IR-absorbing composition was applied to the transparent glass substrate, a frame having an opening corresponding in dimensions to the region where the film-forming liquid was applied was put on the transparent glass substrate to hold back the film-forming liquid and prevent the film-forming liquid from spreading. Next, the transparent glass substrate with the undried film was placed in an oven and heat-treated at 85° C. for 6 hours to cure the film. After that, the film was separated from the transparent glass substrate. The separated film was placed in a thermo-hygrostat set at a temperature of 85° C. and a relative humidity of 85% for a 20-hour humidification treatment. An optical filter according to Example 16 consisting only of a UV-IR-absorbing layer was thus obtained. The thickness of the light-absorbing layer alone was measured with a digital micrometer. The thickness of the optical filter according to Example 16 turned out to be 132 μm. Transmittance spectra shown by the optical filter according to Example 16 at incident angles ranging from 0° to 65° were measured. The transmittance spectra shown thereby at incident angles of 0°, 40°, 50°, and 60° are shown in
The UV-IR-absorbing composition according to Example 2 was applied with a dispenser to a 30 mm×30 mm central region of one principal surface of a transparent glass substrate (manufactured by SCHOTT AG, product name: D 263) made of borosilicate glass and having dimensions of 76 mm×76 mm×0.21 mm. A film with about half the thickness of the film in Example 2 was thus formed on the substrate. When the UV-IR-absorbing composition was applied to the transparent glass substrate, a frame having an opening corresponding in dimensions to the region where the film-forming liquid was applied was put on the transparent glass substrate to hold back the film-forming liquid and prevent the film-forming liquid from spreading. Next, the transparent glass substrate with the undried film was placed in an oven and heat-treated at 85° C. for 6 hours to cure the film. Subsequently, the UV-IR-absorbing composition according to Example 2 was applied with a dispenser to a 30 mm×30 mm central region of the other principal surface of the transparent glass substrate. A film with about half the thickness of the thickness of the film in Example 2 was thus formed on the substrate. When the UV-IR-absorbing composition was applied to the transparent glass substrate, a frame having an opening corresponding in dimensions to the region where the film-forming liquid was applied was put on the transparent glass substrate to hold back the film-forming liquid and prevent the film-forming liquid from spreading. Next, the transparent glass substrate with the undried film was placed in an oven and heat-treated at 85° C. for 6 hours to cure the film. Then, the transparent glass substrate with the above films formed on both principal surfaces thereof was placed in a thermo-hygrostat set at a temperature of 85° C. and a relative humidity of 85% for a 20-hour humidification treatment. An optical filter according to Example 17 in which UV-IR-absorbing layers were formed on both sides of a transparent glass substrate was thus obtained. The sum of the thicknesses of the UV-IR-absorbing layers formed on both sides of the transparent glass substrate was 193 μm. Transmittance spectra shown by the optical filter according to Example 17 at incident angles ranging from 0° to 65° were measured. The transmittance spectra shown thereby at incident angles of 0°, 40°, 50°, and 60° are shown in
An optical filter according to Example 18 in which UV-IR-absorbing layers were formed on both sides of a transparent glass substrate was produced in the same manner as in Example 17, except that a transparent glass substrate (manufactured by SCHOTT AG, product name: D 263) made of borosilicate glass and having dimensions of 76 mm×76 mm×0.07 mm was used instead of the transparent glass substrate as used in Example 17. The sum of the thicknesses of the UV-IR-absorbing layers formed on both sides of the transparent glass substrate was 183 μm. Transmittance spectra shown by the optical filter according to Example 18 at incident angles ranging from 0° to 65° were measured. The transmittance spectra shown thereby at incident angles of 0°, 40°, 50°, and 60° are shown in
A UV-IR-absorbing composition according to Example 19 was prepared in the same manner as in Example 1, except that PLYSURF A208F (manufactured by DKS Co., Ltd.) was used as a phosphoric acid ester compound instead of PLYSURF A208N and that the amounts of the compounds added were adjusted as shown in Table 1. An optical filter according to Example 19 was produced in the same manner as in Example 1, except that the UV-IR-absorbing composition according to Example 19 was used instead of the UV-IR-absorbing composition according to Example 1 and that the thickness of the UV-IR-absorbing layer was adjusted to 198 μm. Transmittance spectra shown by the optical filter according to Example 19 were measured, and the results of observing the transmittance spectrum shown thereby at an incident angle of 0° are shown in Tables 7 and 8.
A UV-IR-absorbing composition according to Example 20 was prepared in the same manner as in Example 1, except that 4-fluorophenylphosphonic acid (C6H4FPO(OH)2) (manufactured by Tokyo Chemical Industry Co., Ltd.) was used instead of 4-bromophenylphosphonic acid and that the amounts of the compounds added were adjusted as shown in Table 1. An optical filter according to Example was produced in the same manner as in Example 1, except that the UV-IR-absorbing composition according to Example 20 was used instead of the UV-IR-absorbing composition according to Example 1 and that the thickness of the UV-IR-absorbing layer was adjusted to 168 μm. Transmittance spectra shown by the optical filter according to Example 20 were measured, and the results of observing the transmittance spectrum shown thereby at an incident angle of 0° are shown in Tables 7 and 8.
An optical filter according to Example 21 was produced in the same manner as in Example 2, except that a 100-μm-thick infrared-absorbing glass substrate was used instead of the transparent glass substrate as used in Example 2 and that the thickness of the UV-IR-absorbing layer was adjusted to 76 μm. This infrared-absorbing glass substrate contains copper and has a transmittance spectrum shown in
Optical filters according to Examples 22 to 37 were each produced in the same manner as in Example 2, except that the conditions of the humidification treatment of the dried film were changed as shown in Table 3 and that the thickness of the UV-IR-absorbing layer was adjusted as shown in Table 3. Transmittance spectra shown by the optical filters according to Examples 22 to 24 at an incident angle of 0° were measured. The results are separately shown in
An optical filter according to Example 38 was produced in the same manner as in Example 2, except that a 0.3-mm-thick sapphire substrate was used instead of the transparent glass substrate as used in Example 2 and that the thickness of the UV-IR-absorbing layer was adjusted to 168 μm. A transmittance spectrum shown by the optical filter according to Example 38 at an incident angle of 0° was measured. The result is shown in
A solution D (dispersion of fine particles of copper phenyl-based phosphonate) according to Comparative Example 1 was prepared in the same manner as in Example 1, except that the amounts of the compounds added were adjusted as shown in Tables 4 and 5. To the solution D according to Comparative Example 1 was added 2.200 g of a silicone resin (manufactured by Shin-Etsu Chemical Co., Ltd., product name: KR-300), and the mixture was stirred for 30 minutes to obtain a UV-IR-absorbing composition according to Comparative Example 1. An optical filter according to Comparative Example 1 was produced in the same manner as in Example 1, except that the UV-IR-absorbing composition according to Comparative Example 1 was used instead of the UV-IR-absorbing composition according to Example 1 and that the thickness of the UV-IR-absorbing layer was adjusted to 126 μm. Transmittance spectra shown by the optical filter according to Comparative Example 1 were measured, and the results of observing the transmittance spectrum shown thereby at an incident angle of 0° are shown in Tables 9 and 10. Moreover, based on the results of the measurement of the transmittance spectrum shown by the optical filter according to Comparative Example 1 at an incident angle of 0°, a transmittance spectrum was calculated on the assumption that the thickness of the UV-IR-absorbing layer of the optical filter according to Comparative Example 1 was changed to 200 μm. The results of observing this transmittance spectrum are shown in Tables 9 and 10 as Comparative Calculation Example 1.
A solution D (dispersion of fine particles of copper phenyl-based phosphonate) according to Comparative Example 2 was prepared in the same manner as in Example 1, except that the amounts of the compounds added were adjusted as shown in Tables 4 and 5. To the solution D according to Comparative Example 2 was added 4.400 g of a silicone resin (manufactured by Shin-Etsu Chemical Co., Ltd., product name: KR-300), and the mixture was stirred for 30 minutes to obtain a UV-IR-absorbing composition according to Comparative Example 2. An optical filter according to Comparative Example 2 was produced in the same manner as in Example 1, except that the UV-IR-absorbing composition according to Comparative Example 2 was used instead of the UV-IR-absorbing composition according to Example 1, that the thickness of the UV-IR-absorbing layer was adjusted to 217 μm, and that the conditions of the heat treatment for curing the film and conditions of the humidification treatment were changed as shown in Table 6. Transmittance spectra shown by the optical filter according to Comparative Example 2 were measured, and the results of observing the transmittance spectrum shown thereby at an incident angle of 0° are shown in Tables 9 and 10. Moreover, based on the results of the measurement of the transmittance spectrum shown by the optical filter according to Comparative Example 2 at an incident angle of 0°, a transmittance spectrum was calculated on the assumption that the thickness of the UV-IR-absorbing layer of the optical filter according to Comparative Example 2 was changed to 347 μm. The results of observing this transmittance spectrum are shown in Tables 9 and 10 as Comparative Calculation Example 2.
1.125 g of copper acetate monohydrate and 60 g of THF were mixed, and the mixture was stirred for 3 hours to obtain a copper acetate solution. To the obtained copper acetate solution was then added 0.624 g of PLYSURF A208F (manufactured by DKS Co., Ltd.), and the mixture was stirred for 30 minutes to obtain a solution A. 10 g of THF was added to 0.832 g of phenylphosphonic acid (manufactured by Nissan Chemical Industries, Ltd.), and the mixture was stirred for 30 minutes to obtain a solution B-1. 1.274 g of MTES (manufactured by Shin-Etsu Chemical Co., Ltd.) and 1.012 g of TEOS (manufactured by KISHIDA CHEMICAL Co., Ltd., special grade) were added to the solution B-1, and the mixture was further stirred for 1 minute to obtain a solution B. The solution B was added to the solution A while the solution A was stirred, and the mixture was stirred at room temperature for 1 minute. To the resultant solution was then added 25 g of toluene, and the mixture was stirred at room temperature for 1 minute to obtain a solution C. This solution C was placed in a flask and subjected to solvent removal using a rotary evaporator (manufactured by Tokyo Rikakikai Co., Ltd., product code: N-1110SF) under heating by means of an oil bath (manufactured by Tokyo Rikakikai Co., Ltd., product code: OSB-2100). The temperature of the oil bath was controlled to 105° C. A solution D according to Comparative Example 3 which had been subjected to the solvent removal was then collected from the flask. The solution D (dispersion of fine particles of copper phenylphosphonate) according to Comparative Example 3 was transparent, and the fine particles were well dispersed therein.
To the solution D according to Comparative Example 3 was added 4.400 g of a silicone resin (manufactured by Shin-Etsu Chemical Co., Ltd., product name: KR-300), and the mixture was stirred for 30 minutes to obtain a UV-IR-absorbing composition according to Comparative Example 3. An optical filter according to Comparative Example 3 was produced in the same manner as in Example 1, except that the UV-IR-absorbing composition according to Comparative Example 3 was used instead of the UV-IR-absorbing composition according to Example 1, that the thickness of the UV-IR-absorbing layer was adjusted to 198 μm, and that the conditions of the heat treatment for curing the film were changed as shown in Table 6. Transmittance spectra shown by the optical filter according to Comparative Example 3 were measured, and the results of observing the transmittance spectrum shown thereby at an incident angle of 0° are shown in Tables 9 and 10. Moreover, based on the results of the measurement of the transmittance spectrum shown by the optical filter according to Comparative Example 3, a transmittance spectrum was calculated on the assumption that the thickness of the UV-IR-absorbing layer of the optical filter according to Comparative Example 3 was changed to 303 μm. The results of observing this transmittance spectrum are shown in Tables 9 and 10 as Comparative Calculation Example 3.
1.125 g of copper acetate monohydrate and 60 g of THF were mixed, and the mixture was stirred for 3 hours to obtain a copper acetate solution. To the obtained copper acetate solution was then added 0.891 g of PLYSURF A208F which is a phosphoric acid ester compound, and the mixture was stirred for 30 minutes to obtain a solution E. 10 g of THF was added to 0.670 g of n-butylphosphonic acid (manufactured by Nippon Chemical Industrial Co., Ltd.), and the mixture was stirred for 30 minutes to obtain a solution F. The solution F was added to the solution E while the solution E was stirred, and the mixture was stirred at room temperature for 1 minute. To the resultant solution was then added 25 g of toluene, and the mixture was stirred at room temperature for 1 minute to obtain a solution G. This solution G was placed in a flask and subjected to solvent removal using a rotary evaporator under heating by means of an oil bath. The temperature of the oil bath was controlled to 105° C. A solution H according to Comparative Example 4 which had been subjected to the solvent removal was then collected from the flask. The solution H which is a dispersion of fine particles of copper butylphosphonate was transparent, and the fine particles were well dispersed therein.
To the solution H according to Comparative Example 4 was added 4.400 g of a silicone resin (manufactured by Shin-Etsu Chemical Co., Ltd., product name: KR-300), and the mixture was stirred for 30 minutes to obtain a UV-IR-absorbing composition according to Comparative Example 4. An optical filter according to Comparative Example 4 was produced in the same manner as in Comparative Example 2, except that the UV-IR-absorbing composition according to Comparative Example 4 was used instead of the UV-IR-absorbing composition according to Comparative Example 2, that the thickness of the UV-IR-absorbing layer was adjusted to 1002 μm, and that the humidification treatment of the film was not performed. Transmittance spectra shown by the optical filter according to Comparative Example 4 were measured, and the results of observing the transmittance spectrum shown thereby at an incident angle of 0° are shown in Tables 9 and 10. Moreover, based on the results of the measurement of the transmittance spectrum shown by the optical filter according to Comparative Example 4 at an incident angle of 0°, transmittance spectra were calculated on the assumption that the thickness of the UV-IR-absorbing layer of the optical filter according to Comparative Example 4 was changed to 1216 μm and 385 μm. The results of observing these transmittance spectra are shown in Tables 9 and 10 as Comparative Calculation Example 4-A and Comparative Calculation Example 4-B.
An optical filter according to Comparative Example 5 was produced in the same manner as in Example 2, except that the thickness of the UV-IR-absorbing layer was adjusted to 191 μm and that the humidification treatment of the film was not performed. Transmittance spectra shown by the optical filter according to Comparative Example 5 were measured, and the results of observing the transmittance spectrum shown thereby at an incident angle of 0° are shown in Tables 9 and 10. Based on the results of the measurement of the transmittance spectrum shown by the optical filter according to Comparative Example 5 at an incident angle of 0°, a transmittance spectrum was calculated on the assumption that the thickness of the UV-IR-absorbing layer of the optical filter according to Comparative Example 5 was changed to 148 μm. The results of observing this transmittance spectrum are shown in Tables 9 and 10 as Comparative Calculation Example 5.
Optical filters according to Comparative Examples 6 and 7 were each produced in the same manner as in Example 2, except that the thickness of the UV-IR-absorbing layer was adjusted as shown in Table 9 and that the humidification treatment of the film was adjusted as shown in Table 6. Transmittance spectra shown by the optical filters according to Comparative Examples 6 and 7 were measured, and the results of observing the transmittance spectra shown thereby at an incident angle of 0° are shown in Tables 9 and 10. Based on the results of the measurement of the transmittance spectrum shown by the optical filter according to Comparative Example 6 at an incident angle of 0°, a transmittance spectrum was calculated on the assumption that the thickness of the UV-IR-absorbing layer of the optical filter according to Comparative Example 6 was changed to 155 μm. The results of observing this transmittance spectrum are shown in Tables 9 and 10 as Comparative Calculation Example 6. Additionally, based on the results of the measurement of the transmittance spectrum shown by the optical filter according to Comparative Example 7 at an incident angle of 0°, a transmittance spectrum was calculated on the assumption that the thickness of the UV-IR-absorbing layer of the optical filter according to Comparative Example 7 was changed to 161 μm. The results of observing this transmittance spectrum are shown in Tables 9 and 10 as Comparative Calculation Example 7.
A solution D (dispersion of fine particles of copper phenyl-based phosphonate) according to Comparative Example 8 was prepared in the same manner as in Comparative Example 1. 0.225 g of copper acetate monohydrate and 36 g of THF were mixed, and the mixture was stirred for 3 hours to obtain a copper acetate solution. To the obtained copper acetate solution was then added 0.178 g of PLYSURF A208F (manufactured by DKS Co., Ltd.) which is a phosphoric acid ester compound, and the mixture was stirred for 30 minutes to obtain a solution E. 10 g of THF was added to 0.134 g of n-butylphosphonic acid (manufactured by Nippon Chemical Industrial Co., Ltd.), and the mixture was stirred for 30 minutes to obtain a solution F. The solution F was added to the solution E while the solution E was stirred, and the mixture was stirred at room temperature for 1 minute. To the resultant solution was then added 25 g of toluene, and the mixture was stirred at room temperature for 1 minute to obtain a solution G. This solution G was placed in a flask and subjected to solvent removal using a rotary evaporator under heating by means of an oil bath. The temperature of the oil bath was controlled to 105° C. A solution H according to Comparative Example 8 which had been subjected to the solvent removal was then collected from the flask. To the solution D according to Comparative Example 8 was added 2.200 g of a silicone resin (manufactured by Shin-Etsu Chemical Co., Ltd., product name: KR-300), and the mixture was stirred for 30 minutes to obtain a solution I according to Comparative Example 8. The solution H according to Comparative Example 8 was added to the solution I according to Comparative Example 8, and the mixture was stirred. Aggregation of copper phosphonate particles occurred and a UV-IR-absorbing composition having a high transparency could not be obtained.
An attempt to prepare a UV-IR-absorbing composition containing n-butylphosphonic acid, as the only phosphonic acid, in an amount shown in Table 4 and no alkoxysilane monomer resulted in aggregation of copper phosphonate particles, and a homogeneous UV-IR-absorbing composition having a high transparency could not be obtained.
According to Table 7, the optical filters according to Examples 1 to 38 have the optical characteristics (i) to (vii). Moreover, according to Tables 11, 13, 15, 17, and 19, the optical filters according to Examples 1, 2, and 16 to 18 further have the optical characteristics (viii) to (xi). Furthermore, according to other results (incident angles: 0° to 65°) (not shown) of the transmittance spectrum measurement of the optical filters according to Examples 3 to 15 and 19 to 38, the optical filters according to these Examples also further have the optical characteristics (viii) to (xi).
According to Table 9, the optical filter according to Comparative Example 1 does not have the optical characteristics (ii), (vi), and (vii), and does not have the desired properties in the infrared region. Additionally, Comparative Calculation Example 1 indicates that an increase in thickness of the UV-IR-absorbing layer can improve the infrared region properties but shortens the first IR cut-off wavelength, resulting in failure to achieve the optical characteristic (iv). These indicate that an optical filter having all the optical characteristics (i) to (v) cannot be produced with the use of the UV-IR-absorbing composition according to Comparative Example 1. Likewise, the results for Comparative Example 2 and Comparative Calculation Example 2 and the results for Comparative Example 3 and Comparative Calculation Example 3 in Table 9 indicate that an optical filter having all the optical characteristics (i) to (v) cannot be produced with the use of the UV-IR-absorbing compositions according to Comparative Examples 2 and 3.
According to Table 9, the optical filter according to Comparative Example 4 does not have the optical characteristics (iii) and (v), and does not have the desired properties in the ultraviolet region. Additionally, Comparative Calculation Example 4-A indicates that an increase in thickness of the UV-IR-absorbing layer can achieve the optical characteristics (iii) and (v) but makes it difficult to achieve the optical characteristic (i). Comparative Calculation Example 4-B indicates that a decrease in thickness of the UV-IR-absorbing layer can improve the optical characteristic (i) but much worsens the optical characteristics (iii) and (v), and also increases the maximum transmittance in the wavelength range of 750 to 1080 nm. These indicate that an optical filter having all the optical characteristics (i) to (v) cannot be produced with the use of the UV-IR-absorbing composition according to Comparative Example 4.
According to Table 9, the optical filter according to Comparative Example 5 does not have the optical characteristics (i) and (iv). Comparative Calculation Example 5 indicates that a decrease in thickness of the UV-IR-absorbing layer increases the average transmittance in the wavelength range of 450 to 600 nm but does not change the IR cut-off wavelength very much, and also increases the maximum transmittance in the wavelength range of 750 to 1080 nm. These indicate that an optical filter having all the optical characteristics (i) to (v) cannot be produced by the method for producing the optical filter according to Comparative Example 5. It is indicated that the humidification treatment not only promotes the hydrolysis and polycondensation of the alkoxysilane monomers in the UV-IR-absorbing composition to promote the curing of the UV-IR-absorbing layer, but also affects a transmittance spectrum of the optical filter.
According to Table 9, the optical filter according to Comparative Example 6 does not have the optical characteristic (iv). Comparative Calculation Example 6 indicates that a decrease in thickness of the UV-IR-absorbing layer can increase the IR cut-off wavelength but also increases the maximum transmittance in the wavelength range of 750 to 1080 nm. These indicate that an optical filter having all the optical characteristics (i) to (v) cannot be produced by the method for producing the optical filter according to Comparative Example 6. In particular, it is indicated that the humidification treatment conditions in Comparative Example 6 are insufficient.
According to Table 9, the optical filter according to Comparative Example 7 does not have the optical characteristics (i) and (iv). Comparative Calculation Example 7 indicates that a decrease in thickness of the UV-IR-absorbing layer can increase the IR cut-off wavelength but also increases the maximum transmittance in the wavelength range of 750 to 1080 nm. These indicate that an optical filter having all the optical characteristics (i) to (v) cannot be produced by the method for producing the optical filter according to Comparative Example 7. In particular, it is indicated that the humidification treatment conditions in Comparative Example 7 are insufficient.
As shown in Table 2, the UV-IR-absorbing composition according to Example 3 has the highest percentage content of n-butylphosphonic acid and the UV-IR-absorbing composition according to Example 5 has the lowest percentage content of n-butylphosphonic acid among the UV-IR-absorbing compositions according to Examples 3 to 5. This fact and Table 8 indicate that an increase in the percentage content of the alkyl-based phosphonic acid in the UV-IR-absorbing composition expands the wavelength range where the spectral transmittance is 1% or less within the wavelength range of 700 to 1200 nm to the long-wavelength side and expands the wavelength range where the spectral transmittance is 0.1% or less within the wavelength range of 700 to 1200 nm to the long-wavelength side. The same can be said for Examples 6 to 8, for Examples 9 and 10, and for Examples 11 to 15.
As shown in Table 2, the UV-IR-absorbing composition according to Example 11 has the highest percentage content of n-butylphosphonic acid, the UV-IR-absorbing composition according to Example 12 has the second highest percentage content of n-butylphosphonic acid, the UV-IR-absorbing composition according to Example 13 has the third highest percentage content of n-butylphosphonic acid, and the UV-IR-absorbing composition according to Example has the lowest percentage content of n-butylphosphonic acid among the UV-IR-absorbing compositions according to Examples 11 to 15. According to the results for Examples 11 to 15 in Table 7, Example 11 is the lowest, Example 12 is the second lowest, Example 13 is the third lowest, and Example 15 is the highest in terms of the maximum transmittance of the optical filter in the wavelength range of 1000 to 1100 nm and the maximum transmittance of the optical filter in the wavelength range of 1100 to 1200 nm. These indicate that the performance of shielding against light with a wavelength in the infrared region is improved by increasing the percentage content of the alkyl-based phosphonic acid in the UV-IR-absorbing composition within the given range.
As shown in Table 2, the UV-IR-absorbing composition according to Example 7 has the highest percentage content of 4-bromophenylphosphonic acid and the UV-IR-absorbing composition according to Example 13 has the lowest percentage content of 4-bromophenylphosphonic acid among the UV-IR-absorbing compositions according to Examples 7, 10, and 13. According to the results for Examples 7, 10, and 13 in Table 7, the higher percentage content of 4-bromophenylphosphonic acid the UV-IR-absorbing composition has, the greater the UV cut-off wavelength is. This indicates that the optical characteristics of the optical filter can be optimized by adjusting the percentage content of 4-bromophenylphosphonic acid in the UV-IR-absorbing composition.
The UV-IR-absorbing compositions using which the optical filters according to Examples 22 to 37 and Comparative Examples 5 to 7 were produced were prepared in the same manner as for the UV-IR-absorbing composition according to Example 2. However, as shown in Tables 7 to 10, the optical filters according to these Examples and these Comparative Examples have different optical characteristics from those of the optical filter according to Example 2. As described above, the humidification treatment was performed in order to promote the hydrolysis and polycondensation of the alkoxysilanes contained in the UV-IR-absorbing compositions. Depending on the conditions of the humidification treatment, the average transmittance in the wavelength range of 450 to 600 nm and the IR cut-off wavelength differed among the optical filters according to these Examples and these Comparative Examples.
According to the results for Comparative Calculation Examples 5 to 7 in Table 9, the UV cut-off wavelength can be adjusted by changing the thickness of the UV-IR-absorbing layer. However, when any of the methods for producing the optical filters according to Comparative Examples 5 to 7 are employed, it is difficult to keep an IR cut-off wavelength within the desired range and satisfy the optical characteristics (i) to (xi) exclusive of the optical characteristics related to the IR cut-off wavelength as well. Thus, the amount of water vapor (water vapor exposure amount) in an environment to which the treated article had been exposed in the humidification treatment in each of Examples or each of some Comparative Examples was determined as follows. The results are shown in Tables 3 and 6. A saturated water vapor pressure e [hPa] at a temperature t [° C.] was determined by Tetens' equation: e=6.11×10(7.5t/(t+237.3)). A water vapor concentration ρv [g/m3] was determined using the saturated water vapor pressure e [hPa] and a relative humidity φ[%] by the following equation: ρv=217×e×φ/(t+273.15). “Amount of water vapor×hour [mol/m3·hour]” was defined as the water vapor exposure amount. As shown in Tables 3 and 6, it is indicated that when the temperature is or more, the humidification treatment performed at a relative humidity of 70% or more for a treatment time of 1 hour or more results in achievement of good optical characteristics. These treatment conditions correspond to the conditions for achieving a water vapor exposure amount of 5.0 [mol/m3·hour] or more. It is indicated that extending the treatment time to ensure a similar water vapor exposure amount results in achievement of good optical characteristics when the temperature is as low as 40° C. and the relative humidity is 70% in the humidification treatment or when the temperature is 60° C. and the relative humidity is as low as 40% in the humidification treatment. These results indicate that the humidification treatment is desirably performed for a short period of time in an environment at a temperature of 60° C. or more and a relative humidity of 70% or more to efficiently provide good optical characteristics for the optical filter.
Number | Date | Country | Kind |
---|---|---|---|
2017-145519 | Jul 2017 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
5764416 | Rahn | Jun 1998 | A |
6168825 | O'Brien et al. | Jan 2001 | B1 |
7025908 | Hayashi et al. | Apr 2006 | B1 |
10809427 | Kubo | Oct 2020 | B2 |
11300719 | Kubo et al. | Apr 2022 | B2 |
11535726 | Kubo | Dec 2022 | B2 |
20040165098 | Keda | Aug 2004 | A1 |
20050035336 | Kuwabara | Feb 2005 | A1 |
20100210772 | Hiwatashi | Aug 2010 | A1 |
20100220377 | Yamada et al. | Sep 2010 | A1 |
20110042771 | Huang et al. | Feb 2011 | A1 |
20120243077 | Osawa et al. | Sep 2012 | A1 |
20140063597 | Shimmo et al. | Mar 2014 | A1 |
20140300956 | Kubo et al. | Oct 2014 | A1 |
20140350146 | Tsubouchi | Nov 2014 | A1 |
20150160386 | Takemura | Jun 2015 | A1 |
20150293283 | Nara et al. | Oct 2015 | A1 |
20150293284 | Tatemura | Oct 2015 | A1 |
20150331163 | Iwasaki et al. | Nov 2015 | A1 |
20160116653 | Murayama et al. | Apr 2016 | A1 |
20160170105 | Nagaya et al. | Jun 2016 | A1 |
20160195651 | Yoshioka et al. | Jul 2016 | A1 |
20160326043 | Sun | Nov 2016 | A1 |
20170017023 | Sugiyama et al. | Jan 2017 | A1 |
20170066933 | Shiono et al. | Mar 2017 | A1 |
20170146708 | Lah | May 2017 | A1 |
20170184765 | Shiono et al. | Jun 2017 | A1 |
20170343710 | Shiono et al. | Nov 2017 | A1 |
20180003872 | Kubo et al. | Jan 2018 | A1 |
20180114805 | Takiguchi et al. | Apr 2018 | A1 |
20180282521 | Kubo et al. | Oct 2018 | A1 |
20180346729 | Miyake et al. | Dec 2018 | A1 |
20190219749 | Shimmo et al. | Jul 2019 | A1 |
20200040161 | Kubo et al. | Feb 2020 | A1 |
20200233130 | Kubo | Jul 2020 | A1 |
20230152502 | Kubo | May 2023 | A1 |
Number | Date | Country |
---|---|---|
205157947 | Apr 2016 | CN |
1672047 | Jun 2006 | EP |
H1152127 | Feb 1999 | JP |
2001154015 | Jun 2001 | JP |
2002069305 | Mar 2002 | JP |
2005325292 | Nov 2005 | JP |
2009242650 | Oct 2009 | JP |
2011203467 | Oct 2011 | JP |
2011227528 | Nov 2011 | JP |
2013156460 | Aug 2013 | JP |
2014191346 | Oct 2014 | JP |
2015043061 | Mar 2015 | JP |
2015229743 | Dec 2015 | JP |
2016157123 | Sep 2016 | JP |
6087464 | Mar 2017 | JP |
6232161 | Nov 2017 | JP |
6267823 | Jan 2018 | JP |
2019012121 | Jan 2019 | JP |
9926952 | Jun 1999 | WO |
2011071052 | Jun 2011 | WO |
2014034386 | Mar 2014 | WO |
2014104370 | Jul 2014 | WO |
2015056734 | Apr 2015 | WO |
2015099060 | Jul 2015 | WO |
2016043166 | Mar 2016 | WO |
2016114362 | Jul 2016 | WO |
2016133099 | Aug 2016 | WO |
2017006571 | Jan 2017 | WO |
2017051512 | Mar 2017 | WO |
2017094858 | Jun 2017 | WO |
2017135359 | Aug 2017 | WO |
2018021222 | Feb 2018 | WO |
2018155634 | Aug 2018 | WO |
2018221424 | Dec 2018 | WO |
Entry |
---|
International Search Report and Written Opinion issued for International Patent Application No. PCT/JP2018/022490, dated Sep. 11, 2018, 9 pages including English translation of Search Report. |
International Search Report and Written Opinion issued for International Patent Application No. PCT/JP2018/022491, dated Sep. 11, 2018, 10 pages including English translation of Search Report. |
Number | Date | Country | |
---|---|---|---|
20230204833 A1 | Jun 2023 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16633474 | US | |
Child | 18158790 | US |