This invention generally relates to optical fiber technology. Particularly, this invention relates to the fabrication of an optical filter assembly suitable for use in, for example, an optical fiber system.
Optical filters, including for example thin film filters, are commonly employed in an optical fiber system. Particularly, in a wavelength division multiplexing optical fiber system, thin film filters are commonly employed to multiplex and demultiplex optical signals. Common optical filters include edge-pass optical filters and bandpass optical filters. There are two types of edge-pass optical filters, shortpass optical filters and longpass optical filters. A characteristic of an edge-pass optical filter is the cutoff wavelength. The cutoff wavelength may be interpreted as the center wavelength of the edge of the edge-pass filter. The passband wavelengths of a shortpass optical filter are shorter than the cutoff wavelength and the stopband wavelengths of the shortpass optical filter are longer than the cutoff wavelength. The passband wavelengths of a longpass optical filter are longer than the cutoff wavelength and the stopband wavelengths of the longpass optical filter are shorter than the cutoff wavelength. A characteristic of a bandpass optical filter is the center wavelength. The center wavelength of a bandpass filter is the center wavelength of the passband. Throughout this specification, when referring to an edge-pass optical filter, the center wavelength means the cutoff wavelength of the edge-pass optical filter. When referring to a bandpass optical filter, the center wavelength means the center wavelength of the passband. Many optical filters, including thin film filters, substantially allow light with wavelengths in its passband to pass through and substantially reflect light with wavelengths in its stopband.
For wavelength division multiplexing optical fiber system applications, it is desirable that the optical filter employed in the system has a highly accurate center wavelength. Unfortunately, the production yield of many types of optical filters, including for example thin film filters, is relatively low at the center wavelength accuracy required by a typical wavelength division multiplexing optical fiber system. To improve production yield of an optical apparatus, including for example those that are suitable for wavelength division multiplexing optical fiber system applications, it is desirable to provide an optical filter assembly that comprises an optical filter, in which, the center wavelength tolerance of the optical filter assembly is different from the center wavelength tolerance of the optical filter employed in the optical filter assembly. Preferably, the center wavelength tolerance of the optical filter assembly is tighter than the center wavelength tolerance of the optical filter employed in the optical filter assembly. Tightening the center wavelength tolerance of the optical filter assembly can be achieved if the center wavelength of the optical filter assembly can be adjusted to one that is different from the specified center wavelength of the optical filter in the optical filter assembly. Many representative conventional methods for fabricating the optical filter assembly, including for example the method disclosed in U.S. Pat. No. 6,454,465 to Uschitsky, et al., employ optical testing and orienting the optical filter in the optical filter assembly to adjust the optical filter assembly center wavelength. Optical testing and orienting the optical filter in the optical filter assembly is costly. It is therefore desirable to eliminate optical testing and orienting the optical filter in the optical filter assembly fabrication process.
According to an embodiment of the present invention an optical filter assembly, which is suitable for use in, for example an optical fiber system, comprises a focusing lens, an optical filter, and a first holder holding the focusing lens and the optical filter in position. A method for fabricating this optical filter assembly comprises: selecting a combination of focusing lens, optical filter, and the relative position and orientation of the focusing lens and the optical filter according to the desirable center wavelength characteristic of the optical filter assembly; and position and securing the focusing lens and the optical filter onto the first holder so that the focusing lens and the optical filter are substantially in the select relative position and orientation.
A better understanding of the invention may be gained from the consideration of the following detailed descriptions taken in conjunction with the accompanying drawings in which:
In the description that follows, like parts are indicated throughout the specification and drawings with the same reference numerals. The present invention is not limited to the specific embodiments illustrated herein.
One skilled in the art understands that the center wavelength of many types of optical filters, including for example the thin film filters, which includes the wavelength division multiplexing filter, is a function of the incident angle of the light incident to the optical filter. This function varies with the optical filter design, and this function is well understood for numerous types of optical filter designs. Consequently, the industry typically specifies the center wavelength of an optical filter at a selected incident angle. An optical filter assembly, which is suitable for using an embodiment fabrication method of the present invention, comprises an optical filter and a focusing lens. According to the embodiment fabrication method, by selecting a combination of the center wavelength of the optical filter and the focal length of the focusing lens employed, the center wavelength of the resulted optical filter assembly can be adjusted; preferably to a desirable wavelength. One skilled in the art readily understands that the measured center wavelength of the resulted optical filter assembly may vary with the measurement condition. Changing the measurement condition, including for example, the distance between the incident light and the optical axis of focusing lens 101, may change the center wavelength of the resulted optical filter assembly. Therefore, associated with each optical filter assembly, there is a center wavelength characteristic. This center wavelength characteristic includes at least one center wavelength and the associated measurement condition.
In the arrangement shown in
Referring again to
An embodiment fabrication method for fabricating an optical filter assembly, for example the ones shown in
An alternative embodiment fabrication method for fabricating an optical filter assembly comprises: selecting a combination of focusing lens 101 from a group of one or more focusing lenses of different focal lengths, optical filter 102 from a group of one or more optical filters of different center wavelengths, and the relative position and orientation of focusing lens 101 and optical filter 102 for the optical filter assembly according to the desirable center wavelength characteristic of the optical filter assembly; positioning and securing optical filter 102 at a predetermined position on first holder 103; and positioning and securing focusing lens 101 at a position on first holder 103 according to the selected relative position and orientation of focusing lens 101 and optical filter 102.
Another alternative embodiment fabrication method for fabricating an optical filter assembly comprises: selecting a combination of focusing lens 101 from a group of one or more focusing lenses of different focal lengths, optical filter 102 from a group of one or more optical filters of different center wavelengths, and the relative position and orientation of focusing lens 101 and optical filter 102 for the optical filter assembly according to the desirable center wavelength characteristic of the optical filter assembly; positioning focusing lens 101 and optical filter 102 at their respective predetermined positions, which are according to the selected according to the selected relative position and orientation of focusing lens 101 and optical filter 102, on first holder 103; and securing focusing lens 101 and optical filter 102 at their respective predetermined positions on first holder 103.
The process of selecting a combination of focusing lens 101 and optical filter 102 from a group of one or more optical filters of different center wavelengths and a group of one or more focusing lenses of different focal lengths, and the relative position and orientation of focusing lens 101 and optical filter 102 for the optical filter assembly according to the desirable center wavelength characteristic of the optical filter assembly typically employs, for example, an algorithm, a lookup table, a graph, a computer program, experience, or a combination thereof as an aid. This process of selecting does not require any optical alignment of focusing lens 101 and optical filter 102. Further, the
Table 1 is an example lookup table. It was compiled from the experimental data on focusing lenses 101 and optical filters 102. Focusing lens 101 and optical filter 102 employed for compiling Table 1 are a plano-convex lens and a type of bandpass thin film filter respectively. Many skilled in the art refer to this type of bandpass thin film filter as a wavelength division multiplexing (WDM) filter. Specifically, Table 1 is for matching a plano-convex lens to a 100 GHz bandwidth WDM filter with center wavelength between 1543.03 nm to 1543.58 nm to form an optical filter assembly that has center wavelength of 1542.94 nm±0.02 nm with the separation between input port 111 and output port 112 at 125 μm. The WDM filter wavelength in Table 1 is specified at zero degree incident angle. The 1542.94 nm wavelength is commonly known to one skilled in the art as ITU Channel 43 of a WDM system. Table 2 is another example lookup table and it is for a 100 GHz bandwidth WDM filters with center wavelength between 1560.70 nm to 1561.25 nm. Specifically, Table 2 is for matching a plano-convex lens to a 100 GHz bandwidth WDM filter with center wavelength between 1560.70 nm to 1561.25 nm to form an optical filter assembly that has center wavelength of 1560.61 nm±0.02 m with the separation between input port 111 and output port 112 at 125 μm. The 1560.61 nm wavelength is commonly known to one skilled in the art as ITU Channel 21 of a WDM system.
An representative approach of applying the lookup tables is to pick a WDM filter and then use the lookup tables to look up the focal length of the focusing lens 101 to be assembled in the optical filter assembly with the WDM filter according to the center wavelength of the WDM filter and the ITU Channel number of the center wavelength of the finished optical filter assembly. For example, for a WDM filter with center wavelength of 1543.15 nm, using Table 1, matches with a focusing lens of 2.40 mm focal length and the resulted optical filter assembly is expected to center on ITU Channel 43 with ±0.02 nm tolerance for a 125 μm separation between input port 111 and output port 112. An alternative approach of applying the lookup tables is to pick a focal length of focusing lens 101 in the lookup table and then use the lookup tables to look up the center wavelength range of the WDM filter to be assembled in the optical filter assembly with focusing lens 101 and the ITU Channel number of the center wavelength of the finished optical filter assembly.
There are numerous variations to the embodiments discussed above which will be trivial to the one skilled in the art. Examples of these variations include but are not limited to:
Although the embodiment of the invention has been illustrated and that the form has been described, it is readily apparent to those skilled in the art that various modifications may be made therein without departing from the spirit of the invention.
This application is a continuation-in-part application of patent application Ser. No. 11/041,668, filed on Jan. 23, 2005, which is incorporated by reference herein. Patent application Ser. No. 11/041,668 is related to Provisional Patent Application Ser. No. 60/538,931, filed on Jan. 24, 2004, which is incorporated by reference herein.
Number | Date | Country | |
---|---|---|---|
60538931 | Jan 2004 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11041688 | Jan 2005 | US |
Child | 11451655 | Jun 2006 | US |