The invention relates to optical filters.
In the field of optics, wavelength filtering, i.e. extraction of an optical signal of a specific wavelength from a signal comprising a number of spectral components, is an important function. For example, in the field of optical communication, wavelength filtering allows a particular optical communication channel to be extracted from a plurality of wavelength-multiplexed channels, allowing that channel to processed further; for example it might be amplified, routed or demodulated. In the field of optical communication, components for performing filtering and other operations are required to be integrated with other optical devices into integrated optical systems in which light is guided within fibre-optic or semiconductor waveguides. Devices currently used to perform filtering within such integrated optical systems include Bragg gratings, Fabry-Perot and Mach-Zehnder interferometers, array waveguide gratings (AWGs) and acousto-optic filters. Such devices are complex and therefore require a substantial amount of processing during their fabrication, as a result of which integrated optical systems incorporating them are expensive and time-consuming to produce. These devices are described, for example, in the book “Optical Networks—A Practical Perspective” by R. Ramaswami and K. N. Sivarajan (Morgan Kaufmann Publishers 1998, ISBN1-55860-445-6).
Optical filters based on the effect of self-imaging in a multimode waveguide are also known in the prior art: for example U.S. Pat. No. 5,862,288 discloses (in FIG. 1 thereof) a filter based on the principle of 1-to-1 imaging of an input optical field distribution over a distance L=w2/mλ0 within a multimode waveguide, where w is the width of the multimode waveguide and mλ0 is the wavelength of guided plane wave radiation, which wavelength is passed by the filter in preference to radiation of other wavelengths. m is a positive integer. Such filters are easily fabricated and integrated with other optical and optoelectronic devices.
A problem associated with a filter of the latter type is that the filter's transmission function contains a significant amount of structure between transmission peaks associated with wavelengths mλ0 and (m+1)λ0, that is, the transmission of such a filter is non-zero at wavelengths between those which are required to be extracted from a plurality of spectral components. Such structure degrades filtering performance and in some filtering applications is unacceptable.
It is an object of the present invention to overcome or at least ameliorate this problem with filters based on the effect of self-imaging in a multimode waveguide.
According to a first aspect of the present invention, this object is achieved by an optical filter comprising
The length of the multimode waveguide may be pw22/λ, where p is a positive integer and w2 is the width of the multimode waveguide. The full width at half maximum (FWHM) of transmission peaks of the transmission function of a filter of the invention are reduced if the length of the multimode waveguide is increased. In addition, this provides (p−1) transmission peaks in the transmission function of the filter between those peaks associated with wavelengths mλ0 and (m+1)λ0.
Preferably, the width w1 of the coupling waveguides and the width w2 are such that w2/w1>8. This provides a reduced FWHM of transmission peaks of the filter's transmission function.
According to a second aspect of the invention, there is provided a laser oscillator characterised by a filter according to the first aspect of the invention. Such a laser oscillator has an output with spectral characteristics fixed by filter's transmission function.
According to a third aspect of the invention, there is provided an optical device comprising a radiation source and characterised by a filter according to the first aspect of the invention. Such a device outputs radiation having a narrower spectral width than that of the radiation source alone.
Embodiments of the invention will now be described, by way of example only, with reference to the accompanying drawings in which:
Referring to
The device 10 has a ridge structure 20 (formed by etching) which incorporates layers 16, 18, 19 and a portion of layer 14. The ridge structure 20 has end regions 22, 24 of width w1=2 μm corresponding respectively to end regions 32, 34 of the device 10, and a central region 26 of width w2=4 μm corresponding to a central region 36 of the device 10. The width w1 of the end regions 22, 24 of the ridge structure 20 is such that optical radiation guided within those regions and having a wavelength within the device 10 in the region of 1 μm is single-moded in both the x- and y-directions, i.e. the end regions 32, 34 of the device 10 are single-mode waveguides. The width w2 of the central region 26 of the ridge structure 20 is such that radiation guided within the device 10 and having a wavelength within the device 10 in the region of 1 μm is in general multi-moded in the y-direction, i.e. the central region 36 of the device 10 is a multimode waveguide having ends 17, 19.
The end regions 22, 24 of the ridge structure 20 are located centrally of the transverse cross-section of the ridge structure's central region 26 and on its central longitudinal axis 13. The central region 26 of the ridge structure 20 has a length L=w22/λ0=16 μm. The central region 26 of the ridge structure 20 meets the end regions 22, 24 at xy planes 33 and 35 respectively. The filter 10 has an entry xy plane 37 at which optical radiation is introduced into the filter 10, and an exit xy plane 39 at which optical radiation exits the filter 10. The lengths of the end regions 22, 24 in the z-direction may take any convenient value: the filter 10 may be integrated on a single integrated-optical chip with other components and devices, for example amplifiers, modulators and the like.
The filter 10 operates as follows. Input optical radiation is introduced into the layer 16 substantially in the z-direction and at the entry xy plane 37 as indicated by an arrow 40 in
A spectral component of the input optical radiation having a wavelengths λi within the filter 10 has a wavelength λi′=λin in free space, where n is the refractive index for a plane wave within the layer 16. For example the spectral component of the input optical radiation having a wavelength λ0=1 μm within the filter 10 has a wavelength λ0′=λ0n=3.5 μm in free space.
As a result of modal dispersion and inter-modal interference within the central region 36, the intensity distribution in the y-direction of the spectral component of wavelength λ0 varies with distance in the z-direction along the central region 36 of the device 10 as shown in
Referring now to
Another wavelength filter of the prior art has a construction like to that of the filter 10, except that end regions 22, 24 of the ridge structure 20 are multi-mode waveguides in the y-direction rather than single-mode waveguides in the y-direction. In operation of the alternative device, input optical radiation is introduced at the xy plane 37 such that only the lowest order transverse mode is excited in the end region 32 of the device.
Referring now to
Referring now to
Referring now to
The transmission curves 55, 60, 65 have side-lobes such as 57, 62, 67. Such side-lobes are unacceptable in some filtering applications.
From
The number of wavelengths passed by the filter with substantially 100% efficiency may be increased by increasing the length of the filter's central region: a filter having a central region of length pw22/λ0 will pass spectral components of the input radiation having wavelengths mλ0/p with substantially 100% efficiency, where m and p are integers. Increasing the length of the central region also reduces the FWHM of transmission peaks of the transmission function of a filter of the invention.
Referring now to
Referring again to
The sets of apertures 315A, 315B, 315C cause suppression of side-lobes (such as 57, 62, 67 in
Wavelength filters of the invention may modified to produce to produce laser oscillators. For example the device 10 may be modified to provide an optical gain element within any or all of the regions 22, 24, 26 of the ridge structure 20, and optical feedback means (e.g. mirrors formed by cleaving) at ends of the regions 22, 24 meeting xy planes 37, 39 respectively. Such a laser oscillator has a spectral output determined by the wavelength filter device which forms its resonator.
A filter of the invention may be combined with a radiation source to produce an optical device which outputs radiation having a narrower spectral width than that of the radiation source alone.
Number | Date | Country | Kind |
---|---|---|---|
0125265 | Oct 2001 | GB | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/GB02/04551 | 10/8/2002 | WO | 00 | 4/15/2004 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO03/036352 | 5/1/2003 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
4693544 | Yamasaki et al. | Sep 1987 | A |
5410625 | Jenkins et al. | Apr 1995 | A |
5640474 | Tayag | Jun 1997 | A |
5862288 | Tayag et al. | Jan 1999 | A |
Number | Date | Country |
---|---|---|
58-068713 | Apr 1983 | JP |
Number | Date | Country | |
---|---|---|---|
20040240775 A1 | Dec 2004 | US |