The present invention relates to an optical glass, and an optical element and an optical device that use the optical glass. The present invention claims the priority of Japanese Patent Application No. 2015-233763 filed on Nov. 30, 2015, the content of which is incorporated by reference herein as to designated states that accept incorporation by reference to literatures.
For example, Patent Literature 1 discloses an optical glass that has a refractive index of 1.70 to 1.82 and an Abbe number of 40 to 55. It is possible to use such an optical glass as a lens of an optical device such as a camera or a microscope.
Now, in optical systems in optical devices such as a camera or a microscope, in order to correct the chromatic aberrations of lens in the visible range, ordinary optical glass is used in combination with optical glass that differs in partial dispersion ratio from the ordinary optical glass (has anomalous dispersibility). On the other hand, in recent years, microscopic observations with the use of light in the near-infrared range, including multiphoton microscope (multiphoton microscope), and the like have been also being made, and there is an increasing need for optical glass capable of correcting chromatic aberrations at wavelengths not only in the visible range but also in the near-infrared range.
Patent Literature 1: JP 2006-306648 A
The present invention has been made in view of the circumstances mentioned above, and an object of the invention is to provide an optical glass which has a unique combination of anomalous dispersibility in a visible range with that in a near-infrared range.
A first aspect of the present invention for solving the problems mentioned above is
an optical glass containing respective components of
SiO2 from 14 to 26% by mass,
B2O3 from 9 to 16% by mass, and
La2O3 from 10 to 42% by mass as essential components, and
containing respective components of ZnO, Y2O3, ZrO2, Ta2O5, Li2O, and Na2O as optional components, and
satisfying respective relationships of
SiO2+B2O3 from 28 to 36% by mass,
ZrO2+Ta2O5 from 6 to 16% by mass,
La2O3+Y2O3+ZnO from 43 to 59% by mass, and
Li2O+Na2O from 2 to 14% by mass.
A second aspect of the present invention is an optical element including the optical glass according to the first aspect.
A third aspect of the present invention is an optical device including the optical element according to the second aspect.
Embodiments of the present invention (hereinafter, referred to as “the present embodiment”) will be described below. The following embodiments are considered by way of example for explaining the present invention, and not intended to limit the present invention to the following description. The present invention can be modified and carried out appropriately within the scope of the invention.
In addition, in the present specification, unless otherwise specified, the contents of respective components are all considered on a % by mass basis with respect to the total glass mass of the composition in terms of oxide. The composition in terms of oxide herein refers to assuming that all the oxides, complex salts, and the like used as raw materials for glass constituents according to the present embodiment are all decomposed into oxides upon melting, a composition where each component contained in the glass is represented with the total oxide mass regarded as 100% by mass.
The optical glass according to the present embodiment is an optical glass of SiO2—B2O3—La2O3 type. Specifically, the optical glass is adapted to contain respective components of SiO2: 14 to 26%, B2O3: 9 to 16%, La2O3: 10 to 42% as essential components, and contains respective components of ZnO, Y2O3, ZrO2, Ta2O5, Li2O, and Na2O as an optional component. Further, the optical glass is adapted to contain the respective relationships of SiO2+B2O3: 28 to 36%, ZrO2+Ta2O5: 6 to 16%, La2O3+Y2O3+ZnO: 43 to 59%, and Li2O+Na2O: 2 to 14%. As long as these relationships are satisfied, the content of any of the optional components may be 0% by mass. The optical glass according to the present embodiment can be adapted to be an optical glass which has a unique combination of anomalous dispersibility in the visible range with that in the near-infrared .range, thereby making it possible to broaden the degree of freedom for optical design than ever before.
Regarding ordinary optical glass, it is known that a substantially linear relationship is established when the Abbe number and the partial dispersion ratio are respectively indicated on the horizontal axis and the vertical axis (normal partial dispersion), and the anomalous dispersibility is expressed by the degree of deviation from the foregoing straight line. The value (ΔPg,F) indicating the anomalous dispersibility in the visible range can be obtained from the Abbe number (νd) and the partial dispersion ratio (Pg,F) in the visible range, based on the method mentioned in Examples as described later. Similarly, the value (ΔPc,t) indicating the anomalous dispersibility in the near-infrared range can be obtained from the Abbe number (νd) and the partial dispersion ratio (Pc,t) in the near-infrared range, based on the method mentioned in Examples as described later. In general, as one of the value (ΔPg,F) indicating the anomalous dispersibility in the visible range and the value (ΔPc,t) indicating the anomalous dispersibility in the near-infrared range is larger, the other is smaller. However, in the optical glass according to the present embodiment, the value (ΔPg,F) indicating the anomalous dispersibility in the visible range and the value (ΔPc,t) indicating the anomalous dispersibility in the near-infrared range can be both small values. Such optical glass can be suitably used as a lens for correcting the chromatic aberration between the visible range and the near-infrared range in the optical system of the optical device. It is to be noted that in this specification, the fact that the value (ΔPg,F) indicating the anomalous dispersibility in the visible range and the value (ΔPc,t) indicating the anomalous dispersibility in the near-infrared range are both small values is described as a unique combination of anomalous dispersibility in the visible range with that in a near-infrared range.
Details of compositions and properties will be described for each component of the optical glass according to the present embodiment.
SiO2 is an essential component as a glass-forming oxide, which is effective for lowering the refractive index. However, the addition thereof in large amounts will increase ΔPg,F. From the foregoing viewpoint, the content of SiO2 is 14 to 26%, preferably 14 to 24%, more preferably 14 to 22%.
B2O3 is an essential component as a glass-forming oxide, which improves the devitrification resistance. In addition, B2O3 is effective for lowering the refractive index, ΔPg,F. From the foregoing viewpoint, the content of B2O3 is 9 to 16%, preferably 10 to 16%, more preferably 11 to 16%.
La2O3 is an essential component for achieving desired refractive index and Abbe number. However, the addition thereof in large amounts will decreases the devitrification resistance, thereby increasing ΔPg,F and increasing nd. From the foregoing viewpoint, the content of La2O3 is 10 to 42%, preferably 13 to 39%, more preferably 16 to 36%.
ZnO is an optional component which is effective for achieving desired refractive index and Abbe number. However, the addition thereof in large amounts will decreases the devitrification resistance, thereby increasing ΔPg,F and slightly increasing nd. From the foregoing viewpoint, the content of ZnO is preferably 0 to 45%, more preferably 3 to 40%, further preferably 6 to 35%.
Y2O3 is an optional component which is effective for achieving desired refractive index and Abbe number. However, the addition thereof in large amounts will decreases the devitrification resistance, thereby increasing ΔPg,F and increasing nd. From the foregoing viewpoint, the content of Y2O3 is preferably 0 to 20%, more preferably 0 to 10%, further preferably 0 to 5%.
ZrO2 is an optional component which is effective for lowering ΔPg,F. However, the addition thereof in large amounts will significantly decrease the devitrification resistance, and also greatly increase nd. From the foregoing viewpoint, the content of ZrO2 is preferably 0 to 7%, more preferably 1 to 7%, further preferably 2 to 7%.
Ta2O5 is an optional component which is effective for lowering ΔPg,F, and also enhancing the devitrification resistance. However, the addition thereof in large amounts will greatly increase nd. From the foregoing viewpoint, the content of Ta2O5 is preferably 0 to 15%, more preferably 0 to 13%, further preferably 0 to 11%.
Li2O is an optional component which is effective for lowering ΔPg,F and nd. However, the addition thereof in large amounts will significantly decrease the devitrification resistance. From the foregoing viewpoint, the content of Li2O is preferably 0 to 8%, more preferably 0 to 6%.
Na2O is an optional component which is effective for lowering ΔPg,F and nd. However, the addition thereof in large amounts will significantly decrease the devitrification resistance. From the foregoing viewpoint, the content of Na2O is preferably 0 to 13%, more preferably 0 to 10%.
Sb2O3 is an optional component which is effective for clarifying and homogenizing the glass. Therefore, Sb2O3 may be added as a defoaming agent. From the foregoing viewpoint, the content of Sb2O3 is preferably 0 to 1%.
As a combination of the optional components mentioned above, it is preferable to further contain respective components of ZnO: 0 to 45%, Y2O3: 0 to 20%, ZrO2: 0 to 7%, Ta2O5: 0 to 15%, Li2O: 0 to 8%, Na2O: 0 to 13%, and Sb2O3: 0 to 1%.
In order to improve the devitrification resistance of the optical glass, it is desirable to introduce sufficient amounts of B2O3 and SiO2, but when the amounts exceed a certain amount, ΔPg,F will increase, thereby failing to achieve desired anomalous dispersibility. From the foregoing viewpoint, the sum of the SiO2 and B2O3 contents (abbreviated as SiO2+B2O3, the same applies hereinafter) is 28 to 36%, preferably 28 to 35%, more preferably 28 to 34%.
In order to achieve a desired constant value/anomalous dispersibility, it is desirable to introduce ZrO2 and Ta2O5 in sufficient amounts. From the foregoing viewpoint, ZrO2+Ta2O5 is 6 to 16%, preferably 7 to 16%, more preferably 8 to 16%.
It is desirable to introduce La2O3, Y2O3, and ZnO in sufficient amounts in order to achieve a desired constant value/anomalous dispersibility, but the excessive introduction thereof will make the glass more likely to devitrify easily. From the foregoing viewpoint, La2O3+Y2O3+ZnO is 43 to 59%, preferably 43 to 58%, more preferably 43 to 56%.
When the sum of Li2O and Na2O exceeds a certain amount, the glass stability will be impaired. From the foregoing viewpoint, Li2O+Na2O is 2 to 14%, preferably 2 to 12%, more preferably 2 to 10%.
Without limiting to the components mentioned above, any other optional components may be further added within a scope that does not interfere with achieving the object of the optical glass according to the present embodiment.
Next, physical property values of the optical glass according to the present embodiment will be described.
The optical glass according to the present embodiment is preferably related to a medium refractive index/medium dispersion region. From the foregoing viewpoint, the refractive index (nd) of the optical glass according to the present embodiment is preferably 1.68 to 1.75, more preferably 1.68 to 1.745, and further preferably 1.68 to 1.74. The Abbe number (νd) of the optical glass according to the present embodiment is preferably 43 to 50, more preferably 43 to 49, and further preferably 43 to 48. It is particularly preferable for both the refractive index (nd) and the Abbe number (νd) to satisfy the ranges mentioned above.
From the viewpoint of the achromatic effect in the near-infrared range and the visible range, the value (ΔPc,t) indicating anomalous dispersibility in the near-infrared range and the value (ΔPg,F) indicating anomalous dispersibility in the visible range are each preferably small. From the foregoing viewpoint, the value (ΔPc,t) indicating anomalous dispersibility in the near-infrared range is preferably 0.0100 or less, more preferably 0.0070 or less, further preferably 0.0050 or less. The value (ΔPg,F) indicating anomalous dispersibility in the visible range is preferably −0.0075 or less, more preferably −0.0078 or less, further preferably −0.0081 or less. Furthermore, it is particularly preferable for both ΔPc,t and ΔPg,F to satisfy the ranges mentioned above.
From the viewpoint mentioned above, it is preferable for ΔPc,t and ΔPg,F to satisfy the following relational expression.
ΔPc,t≤−5·(ΔPg,F+0.0075)
Even when this relational expression is satisfied, ΔPc,t is preferably 0.0100 or less, and ΔPg,F is preferably −0.0075 or less.
As described above, the optical glass according to the present embodiment is an optical glass which has unique anomalous dispersibility in the near-infrared range and the visible range. For example, in an optical system that uses such optical glass in combination with other optical glass, it is possible to correct the chromatic aberration between the near-infrared range and the visible range, thereby making it possible to broaden the degree of freedom for optical design than ever before.
The optical glass according to the present embodiment is suitable as an optical element such as a lens of an optical device such as a camera or a microscope. As an optical device, above all, a multiphoton microscope is particularly suitable.
The pulsed laser device 101 emits ultrashort pulsed light that has a pulse width of femtoseconds (for example, 100 femtoseconds), for example, with a near-infrared wavelength (about 1000 nm). The ultrashort pulsed light immediately after being emitted from the pulsed laser device 101 is generally linearly polarized light polarized in a predetermined direction.
The pulse splitting device 102 splits the ultrashort pulsed light, and emits the ultrashort pulsed light at the increased repetition frequency thereof.
The beam adjusting unit 103 has the function of adjusting the beam diameter of the ultrashort pulsed light incident from the pulse splitting device 102 in accordance with the pupil diameter of the objective lens 106, the function of adjusting the convergence and divergence angles of ultrashort pulsed light in order to correct the axial chromatic aberration (focus difference) between the wavelength of multiphoton excitation light emitted from a sample S and the wavelength of the ultrashort pulsed light, the pre-chirping function (group velocity dispersion compensation function) of providing reverse group velocity dispersion to the ultrashort pulsed light in order to correct the increase in the pulse width of the ultrashort pulsed light due to group velocity dispersion while passing through the optical system, and the like.
The repetition frequency of the ultrashort pulsed light emitted from the pulsed laser device 101 is increased by the pulse splitting device 102, and the light is adjusted as described above by the beam adjusting unit 103. Then, the ultrashort pulsed light emitted from the beam adjusting unit 103 is reflected toward the dichroic mirror 105 by the dichroic mirror 104 to pass through the dichroic mirror 105, and focused by the objective lens 106 to irradiate the sample S. In this regard, the observation surface of the sample S may be scanned with the ultrashort pulsed light by using a scanning means (not shown).
For example, in the case of fluorescence observation of the sample S, a fluorescent dye with which the sample S is dyed is multiphoton-excited in a region of the sample S irradiated with the ultrashort pulse light and in the vicinity thereof, thereby producing fluorescence with a shorter wavelength than the ultrashort pulsed light as an infrared wavelength (hereinafter referred to as “observation light”).
The observation light emitted from the sample S in a direction toward the objective lens 106 is collimated by the objective lens 106, and depending on the wavelength, reflected by the dichroic mirror 105 or transmitted through the dichroic mirror 105.
The observation light reflected by the dichroic mirror 105 enters the fluorescence detection unit 107. The fluorescence detection unit 107 composed of, for example, a barrier filter, a PMT (photo multiplier tube), and the like, receives the observation light reflected by the dichroic mirror 105, and outputs an electric signal corresponding to the amount of light. In addition, in accordance with scanning the observation surface of the sample S with the ultrashort pulse light, the fluorescence detection unit 107 detects observation light over the observation surface of the sample S.
On the other hand, the observation light transmitted through the dichroic mirror 105 is subjected to descanning by a scanning means (not shown), transmitted through the dichroic mirror 104, condensed by the condenser lens 108, transmitted through a pinhole 109 provided at a position substantially conjugated with the focal position of the objective lens 106, and passed through the imaging lens 110 to enter the fluorescence detection unit 111. The fluorescence detection unit 111 composed of, for example, a barrier filter, PMT, and the like, receives the observation light imaged on the light-receiving surface of the fluorescence detection unit 111 by the imaging lens 110, and outputs an electric signal corresponding to the amount of light. In addition, in accordance with scanning the observation surface of the sample S with the ultrashort pulse light, the fluorescence detection unit 111 detects observation light over the observation surface of the sample S.
It is to be noted that the dichroic mirror 105 may be deviated from the optical path such that the observation light emitted from the sample S in the direction toward the objective lens 106 is all detected by the fluorescence detection unit 111.
In addition, the observation light emitted from the sample S in the direction opposite to the objective lens 106 is reflected by the dichroic mirror 112 to enter the fluorescence detection unit 113. The fluorescence detection unit 113 composed of, for example, a barrier filter, a PMT, and the like, receives the observation light reflected by the dichroic mirror 112, and outputs an electric signal corresponding to the amount of light. In addition, in accordance with scanning the observation surface of the sample S with the ultrashort pulse light, the fluorescence detection unit 113 detects observation light over the observation surface of the sample S.
The electric signals respectively output from the fluorescence detection units 107, 111, 113 are input to, for example, a computer (not shown), and the computer can generate an observation image based on the input electric signals, and display the generated observation image and store the data of the observation image.
The optical element using the optical glass according to the present embodiment can also be used for an imaging device.
The imaging device 2 is a so-called digital single-lens reflex camera, and a lens barrel 202 is detachably attached to a lens mount (not shown) of a camera body 201. Further, light passed through the lens 203 of the lens barrel 202 is imaged on a sensor chip (solid-state imaging element) 204 of a multichip module 206 disposed on the rear side of the camera body 201. This sensor chip 204 is a bare chip such as a so-called CMOS image sensor. The multichip module 206 is, for example, a COG (Chip On Glass) type module with the sensor chip 204 bare chip-mounted on a glass substrate 205.
It is to be noted that the optical device is not limited to such an imaging device, but intended to encompass a wide range of devices such as a projector. The optical element is also not limited to any lens but intended to encompass a wide range of elements such as a prism.
Next, the following examples and comparative examples will be described, but the present invention is not to be considered limited by the following examples in any way. Tables 2 to 8 show the composition, refractive index (nd), Abbe number (νd), partial dispersion ratios (Pg,F and Pc,t), values (ΔPg,F, ΔPc,t) indicating anomalous dispersibility, and value of ΔPc,t+5·(ΔPg, F+0.0075), for optical glass according to each example and each comparative example.
The optical glass according to each example and each comparative example was prepared by the following procedure. First, glass raw materials such as oxides, hydroxides, carbonates, sulfates, and nitrates were weighed so as to provide the chemical compositions (% by mass) listed in each table. Next, the weighed raw materials were mixed and put into a platinum crucible, and melted at a temperature of 1200 to 1400° C. for about 1 hour, for stirring and homogenization. Thereafter, after bubbles were removed, each sample was obtained by lowering the temperature, casting into a mold, slow cooling, and molding.
The refractive indices of the respective samples for d-line (587.562 nm), g-line (435.835 nm), F-line (486.133 nm), C-line (656.273 nm) and t-line (1013.98 nm) were measured with the use of an accurate refractive index measurement instrument (“Spectro Master HR” from TRIOPTICS). The Abbe number (νd), partial dispersion ratios (Pg,F, Pc,t) , ΔPg,F, ΔPc,t, and ΔPc,t+5×(ΔPg,F+0.0075) for the optical glass were calculated from the obtained actual measurement values. It is to be noted that the value of the refractive index used for the calculation was obtained down to seven places of decimals after the decimal point. It is to be noted that the term “denitrification” in Table 8 indicates a sample with glass partially or entirely devitrified in the manufacture of the glass. The samples were not subjected to the refractive-index measurement, because it is not possible to use the samples as optical glass.
The value (ΔPg,F) indicating anomalous dispersibility in the visible range and the value (ΔPc,t) indicating anomalous dispersibility in the near-infrared range were calculated by the following calculation method for the value (ΔPx,y) indicating anomalous dispersibility.
(1) Creation of Reference Line
First, as normal partial dispersion glass, two vitreous types of glass “NSL7” and “PBM2” (the names of vitreous types both manufactured by OHARA Co., Ltd., both) with the Abbe numbers (νd) and partial dispersion ratios shown in Table 1 were selected as reference materials. Then, for each glass, the Abbe number (νd) was indicated on the horizontal axis, the partial dispersion ratio (Px,y) was indicated on the vertical axis, and a straight line connecting two points corresponding to the two reference materials was regarded as a reference line (Creation of Reference Line). It is to be noted that the partial dispersion ratio (Px,y) refers to the ratio of (nx-ny) to the principal dispersion (nF-nC). The types of emission lines are put in x and y.
(2) Calculation of Value Indicating Anomalous Dispersibility
Next, values corresponding to the optical glass according to each example and each comparative example were plotted on the graph with the Abbe number (νd) on the horizontal axis and the partial dispersion ratio (Px,y) on the vertical axis, and the difference between the point on the reference line, corresponding to the Abbe number (νd) for the vitreous type mentioned above, and the value (Px,y) on the vertical axis thereof was calculated as a value (ΔPx,y) indicating anomalous dispersibility. It is to be noted that the partial dispersion ratio above the reference line is referred to as a value indicating positive anomalous dispersibility, and the ratio below the straight line is referred to as a value indicating a negative anomalous dispersibility.
(3) Calculation of Value Indicating Anomalous Dispersibility in Visible Range and Value Indicating Anomalous Dispersibility in Near-Infrared Range
Through the use of the above approach, ΔPg,F was calculated as an index of anomalous dispersibility in the visible range, and ΔPc,t was calculated as an index of anomalous dispersibility in the near-infrared range. The reference line equation in the visible range and the reference line equation in the near-infrared range are as follows. This anomalous dispersibility is expressed as a degree of deviation from the normal partial dispersion glass.
P
g,F=0.641462+(−0.0016178)×νd (i)
P
c,t=0.546649+0.00469253×νd (ii)
More specifically, the value (ΔPg,F) indicating anomalous dispersibility in the visible region refers to the difference between the point on the reference line, corresponding to the Abbe number (νd), and the partial dispersion ratio (Pg F), with the above-mentioned formula (i) as a reference line equation. The value (ΔPc,t) indicating anomalous dispersibility in the near-infrared range refers to the difference between the point on the reference line, corresponding to the Abbe number (νd), and the partial dispersion ratio (Pc,t), with the above-mentioned formula (ii) as a reference line equation.
It has been also determined whether the value (ΔPg,F) indicating anomalous dispersibility in the visible range and the value (ΔPc,t) indicating anomalous dispersibility in the near-infrared range satisfy the relationship represented by the inequality ΔPc,t≤−5·(ΔPg,F+0.0075) or not. More specifically, if the value of ΔPc,t+5·(ΔPg,F+0.0075) is zero or negative, the above-mentioned inequality is evaluated as being satisfied, and if the value is positive, the inequality is evaluated as being unsatisfied.
Tables 2 to 8 show therein the compositions and evaluation results for each example and each comparative example. In addition,
It has been confirmed that the optical glass according to each example has small values indicating anomalous dispersibility in the visible range and the near-infrared range. On the other hand, it was not possible to use, as optical glass, Comparative Examples 1, 2 and 5, because the obtained glass was partially or entirely devitrified. Comparative Example 3, with the large ΔPc,t, failed to satisfy the relational expression of ΔPc,t−5·(ΔPg,F+0.0075). Comparative Example 4, with the large nd and ΔPc,t, failed to satisfy the relational expression of ΔPc,t−5·(ΔPg,F+0.0075). It is to be noted that, in
1 Multiphoton microscope
101 Pulsed laser device
102 Pulse splitting device
103 Beam adjusting unit
104, 105, 112 Dichroic mirror
106 Objective lens
107, 111, 113 Fluorescence detection unit
108 Condenser lens
109 Pinhole
110 Imaging lens
S Sample
2 Imaging device
201 Camera body
202 Lens barrel
203 Lens
204 Sensor chip
205 Glass substrate
206 Multichip module
Number | Date | Country | Kind |
---|---|---|---|
2015-233763 | Nov 2015 | JP | national |
Number | Date | Country | |
---|---|---|---|
Parent | PCT/JP2016/073461 | Aug 2016 | US |
Child | 15954069 | US |