Optical head apparatus

Information

  • Patent Grant
  • 6674709
  • Patent Number
    6,674,709
  • Date Filed
    Thursday, April 20, 2000
    24 years ago
  • Date Issued
    Tuesday, January 6, 2004
    21 years ago
Abstract
To implement light quantity monitoring with high frequency responsivity and correction of astigmatic differences of a semiconductor laser with a simple configuration with fewer parts. Of the output from a semiconductor laser light source, a peripheral component is entered by a light reflection element into an anterior light monitoring photodetector formed in the vicinity of a semiconductor laser light source. Furthermore, the surface of the reflection sphere of the light reflection element is anamorphic, and thus condensed to an appropriate size on the photodetector without being focused, providing high frequency responsivity. Furthermore, the light reflection element is inclined at a predetermined angle to cancel out astigmatic differences of the optical semiconductor laser light source. In addition, the photodetector is placed so that reflected light is bent by an inclination of the light reflection element, reducing the amount of parallel displacement during adjustment of the light reflection element.
Description




BACKGROUND OF THE INVENTION




1. Field of the Invention




The present invention relates to an optical head apparatus that performs recording or reproduction of optical information recording media.




2. Description of the Prior Art




Generally, a rewritable type optical disc must monitor the quantity of incident light to the recording surface of the disc to secure the signal recording quality with high accuracy. For this reason, the accuracy of a system that monitors the light quantity using light output from the posterior end face of a laser chip used in a reproduction-only optical head is not high, and therefore it is necessary to monitor the light quantity using light radiated from the anterior end face of the laser chip (hereinafter referred to as “anterior light”).




On the other hand, while optical discs are attracting attention as large-capacity information memories, optical head apparatuses need to attend a demand for high-speed recording or reproduction of optical discs. To meet this demand, it is necessary to increase the speed of modulation of a semiconductor laser light source and at the same time improve responsivity of the above described monitoring of the anterior light.




A conventional optical pick up will be explained with reference to the attached drawings below.

FIG. 14

shows an example of an outlined configuration of a conventional optical head, apparatus. A diverging beam


802


radiated from a semiconductor laser light source


801


passes through a parallel flat plate


803


placed diagonally to the optical axis and is converted to a parallel beam


805


by a collimate lens


804


.




This collimated beam


805


is partially reflected by a polarized beam splitter


806


and enters into a photodetector


809


. A beam


810


, the major portion of the collimated beam


805


, passes through the polarized beam splitter


806


and is converted to a circularly polarized beam by a ¼ wavelength plate


811


, and then condensed into an optical disc


814


through an objective lens


813


mounted on an actuator


812


.




The beam reflected by the optical disc


814


passes through the objective lens


813


and is converted by the ¼ wavelength plate


811


to a linearly polarized beam, which is orthogonal to the polarization plane of the outgoing radiation beam of the semiconductor laser light source


801


and entered into the polarized beam splitter


806


.




Since the polarization plane of the incident beam entered into the polarized beam splitter


806


is orthogonal to the first half of the optical path, the incident beam is reflected by the polarized beam splitter


806


, diffracted by a hologram element


815


, branched into a positive 1st-order diffracted light


817


and negative 1st-order diffracted light


818


with the optical axis of the incident light as an axis of symmetry, then condensed by a detection lens


817


, entered into signal detectors


820


and


821


, respectively, to detect control signals such as focusing and tacking, and RF signals.




On the other hand, photodetector


809


that detects light reflected by the polarized beam splitter


806


acts as an output light quantity monitor of the semiconductor laser light source


801


.




Here, the reason why the parallel plate


803


is placed diagonally to the optical axis of the incident beam between the semiconductor laser light source


801


and collimate lens


804


will be explained. Generally, as for a semiconductor laser used for a light source of the optical head apparatus, from the standpoint of an optical characteristic, mode west of an oscillated beam of a semiconductor laser element


901


differs between the semiconductor composition plane (X-Z axial plane) and the plane normal thereto (Y-Z axial plane) as shown in FIG.


15


.




That is, while the mode west is a point that matches a specular surface


902


within the perpendicular (Y-Z axial plane), it is a point inside an activated layer


903


of the semiconductor laser element


901


, that is, a point at a certain depth from the specular surface


902


into the resonator within the composition plane (X-Z axial plane).




Therefore, the converging point of the oscillated beam differs between the composition plane (X-Z axial plane) and the plane normal thereto (Y-Z axial plane), and thus an “astigmatic difference”


904


in optical terms is produced.




When an astigmatic difference occurs, the beam spot is distorted into a flat, vertically or horizontally oblong spot. Therefore, the beam spot spans mutually neighboring recording tracks of an optical disc, causing a problem of deteriorating a signal characteristic.




It is for this reason that in

FIG. 14

, the parallel plate


803


is placed inclined at a predetermined angle in the reverse direction in order to correct the astigmatism of the light beam radiated from the semiconductor laser


801


.




Moreover, another method proposed to correct such astigmatism of a light beam is canceling out the astigmatism of the light spot by inserting a cylindrical lens in the same optical path of the laser beam.




BRIEF SUMMARY OF THE INVENTION




Object of the Invention




The above described conventional optical head apparatus has the following problems:




Generally, when recording a signal on a rewritable type optical disc, it is necessary to secure sufficient optical power on the disc, and therefore the light utilization efficiency of the optical head must be secured.




However, the configuration of the above described conventional example performs no beam shaping, and therefore abandons a portion of light in the outer regions for reasons related to the design of the objective lens, which means a loss of light quantity.




Furthermore, a part of the beam within the effective aperture is reflected and used by the photodetector


809


to monitor the light quantity, which increases the loss all the more. To avoid this, lowering the light quantity to be conducted to the light quantity monitor and increasing the light quantity within the effective aperture will deteriorate the S/N ratio of the monitor signal.




Moreover, increasing the speed of laser modulation requires the responsivity of the anterior light monitor itself to be improved. For this reason, it is preferable to reduce the photoreception area of the photodetector and input a condensed beam in order to improve the response frequency characteristic of optical detection.




However, exposing the photodetector to an excessively condensed beam will increase the light intensity per unit area of the detector surface, increasing the carrier density on the photoreception surface of the detector, which then becomes saturated causing the traveling speed of carriers to slow down. That is, condensing the beam on the detector excessively may cause a problem of deteriorating the response frequency characteristic of optical detection.




Furthermore, all the above described methods to correct the astigmatism of a light beam produced by an astigmatic difference among the semiconductor laser elements above must provide special parts such as a transparent parallel plate and cylindrical lens separately, causing an additional problem of unavoidably increasing the number of parts, hence cost increase.




In addition, since the photodetector for an RF signal, focusing or tracking control signals is provided apart from the photodetector for laser light quantity monitoring, which increases the number of parts and complicates the optical system, making it difficult to reduce the size of the optical head.




The present invention has been implemented taking into account these problems of the conventional optical head apparatus and it is an object of the present invention to provide an optical head apparatus with high light utilization efficiency.




It is another object of the present invention to provide a compact optical head apparatus.




It is still another object of the present invention to provide an optical head apparatus with an excellent response frequency characteristic of optical detection.




SUMMARY OF THE INVENTION




Therefore one aspect of the present invention is an optical head apparatus, comprising:




a semiconductor laser light source;




a photodetector that receives at least one part of light from said semiconductor laser light source;




a light reflection element provided with a peripheral section that reflects peripheral light of to the light from said semiconductor laser light source and condenses it into said photodetector and a central section that transmits central light of the light from said semiconductor laser light source; and




a condenser lens that condenses the light that passes through said light reflection element onto an optical disc,




wherein:




each surface of the central section of said light reflection element has a flat shape; and




at least one surface of the peripheral section of said light reflection element has a spherical or non-spherical shape.




Therefore another aspect of the present invention is an optical head apparatus, comprising:




a semiconductor laser light source;




a photodetector that receives at least one part of light from said semiconductor laser light source;




a light reflection element provided with a function of reflecting peripheral light of the light from said semiconductor laser light source and condensing it into said photodetector and a function of transmitting the central light of the light from said semiconductor laser light source; and




a condenser lens that condenses the light that passes through said light reflection element onto an optical disc,




characterized in that said semiconductor laser light source and said photodetector are formed in one package.




Therefore still another aspect of the present invention is an optical head apparatus, comprising:




a semiconductor laser light source;




a plurality of photodetectors placed adjacent to said semiconductor laser light source;




a reflection type hologram element provided with a peripheral section that reflects and diffracts peripheral light of the light from said semiconductor laser light source and condenses it into one of said plurality of photodetectors and a central section that transmits central light of the light from said semiconductor laser light source; and




a condenser lens that condenses the light that passes through the central section of said reflection type hologram element onto an optical disc,




wherein:




said photodetector that receives said reflected and diffracted light is placed closer, with respect to said semiconductor laser light source, in the direction of the major axis of an ellipse than in the direction of the minor axis of the ellipse of an elliptic far field pattern of outgoing light from said semiconductor laser light source; and




the photodetector that receives signal light from said optical disc is placed closer, with respect to said semiconductor laser light source, in the direction of the minor axis of the ellipse than in the direction of the major axis of the ellipse of an elliptic far field pattern of outgoing light from said semiconductor laser light source.











BRIEF DESCRIPTION OF THE DRAWINGS





FIG. 1

is an outlined configuration of an optical head according to an embodiment of the present invention;





FIG. 2

is a drawing showing a configuration of elements used in the above embodiment of the present invention;





FIG. 3

a schematic drawing of spot shapes of the above embodiment of the present invention;





FIG. 4

an outlined configuration of an optical head according to another embodiment of the present invention;





FIG. 5

a schematic drawing of spot shapes of the above embodiment of the present invention;





FIG. 6

an outlined configuration of an optical head according to another embodiment of the present invention;





FIG. 7

a drawing showing a configuration of elements used in the above embodiment of the present invention;





FIG. 8

a configuration diagram of an optical head apparatus of another embodiment of the present invention;





FIG. 9

a plan view of a reflection type hologram according to another embodiment of the present invention;





FIG. 10

a layout of a reflection type hologram element, laser light source and photodetector according to another embodiment of the present invention;





FIG. 11

a configuration diagram of an optical head according to another embodiment of the present invention;





FIG. 12

a layout of a reflection type hologram element, laser light source and photodetector according to another embodiment of the present invention;





FIG. 13

a layout of a reflection type hologram element and photodetector according to another embodiment of the present invention;





FIG. 14

a drawing showing a conventional optical head apparatus; and





FIG. 15

a schematic drawing showing an astigmatic difference of a semiconductor laser.















(Description of Symbols)
























 1




Laser light source






 2




Reflection type hologram element






 3




Collimate lens






 4




Objective lens






 5




Polarized hologram element






 6




Anterior light monitoring photodetector






 7




Signal detection photodetector






 8




Optical disc plane






 9




Actuator






 10




Reflection hologram






101




Semiconductor laser light source






102




Divergent light






103




Photodetector






104




Collimate lens






105




Parallel light






106




Polarized beam splitter






107




Light reflection element






108




Reflected light






109




Optical integrated module






110




Transmission light






111




¼ wavelength plate






112




Actuator






113




Objective lens






114




Optical disc






115




Hologram element






116




Detection lens






117




Positive 1st order diffracted light






118




Negative 1st order diffracted light






119




Signal detector






120




Signal detector






201




Laser optical axis






202




Transmission plane






203




Aluminum-evaporated plane






407




Light reflection element






607




Reflection type hologram element






608




Reflected/diffracted light






701




Laser optical axis






702




Transmission plane






703




Reflection hologram plane






801




Semiconductor laser light source






802




Divergent light






803




Parallel plate






804




Collimate lens






805




Parallel light






806




Polarized beam splitter






807




Reflected light






809




Optical integrated module






810




Transmission light






811




¼ wavelength plate






812




Actuator






813




Objective lens






814




Optical disc






815




Hologram element






816




Detection lens






817




Positive 1st order light






818




Negative 1st order light






819




Signal detector






820




Signal detector





















DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS




With reference now to FIG.


1


through

FIG. 7

, embodiments of the present invention will be explained below. Detailed explanations of the parts that have the same functions as those in the conventional example will be omitted.





FIG. 1

shows an outlined configuration of the optical head apparatus of an embodiment of the present invention and

FIG. 2

shows the configuration of a light reflection element, laser and photodetector that are used as components of optical head apparatus. A light reflection element


107


used in the configuration in

FIG. 1

is made of glass and provided with a flat shaped transmission plane


202


at its center section (corresponding to the central section in the present invention) with a centered laser optical axis


201


, and a non-spherically formed aluminum-evaporated plane


203


at a ring-figured area (corresponding to the peripheral section of the present invention) surrounding said transmission plane


202


as shown in FIG.


2


.




Among the light beam radiated from the semiconductor laser light source


101


in

FIG. 1

, the peripheral beam component is reflected and condensed by the light reflection element


107


and condensed into a photodetector


103


for anterior light monitoring formed in the vicinity of the semiconductor laser light source


101


. The semiconductor laser light source


101


and photodetector


103


for anterior light monitoring are integrated into an optical integrated module


109


for the purpose of reducing the size and weight.




On the other hand, the beam at the central section is collimated by a collimate lens


104


into a parallel beam, passes through a polarized beam splitter


106


, and is condensed by an objective lens


113


mounted on an actuator


112


onto the surface of an optical disc


114


.




The beam reflected by the optical disc


114


passes through the objective lens


113


and is converted by a ¼ wavelength plate


111


to linearly polarized light orthogonal to the polarization plane of the semiconductor laser outgoing radiation beam and is entered into the polarized beam splitter


106


.




Since the polarization plane of the incident beam entered into the polarized beam splitter


106


is orthogonal to that in the case of the first half of the optical path, the incident beam is reflected by the polarized beam splitter


106


and diffracted by a hologram element


115


. The diffracted beam is branched into a positive 1st-order diffracted light


117


and negative 1st-order diffracted light


118


with the optical axis of the incident light as an axis of symmetry, then is condensed by a detection lens


116


, entered into signal detectors


119


and


120


, respectively, and used for control signals such as focusing and tacking, and RF signals.




The astigmatism of the light beam radiated from the semiconductor laser


101


is compensated by inclining the light reflection element


107


at a predetermined angle.




Moreover, as shown in

FIG. 1

, due to an inclination of the light reflection element


107


, the optical axis of the reflected light


108


is inclined with respect to the optical axis of the light from the semiconductor laser light source. The photodetector


103


is placed in the direction of the reflected light


108


. Here, when manufacturing, it is necessary to adjust so that the reflected light


108


enters into the photodetector


103


. For this purpose, it is necessary to adjust the central axis of the reflection spherical plane of the light reflection element


108


through parallel displacement of the central axis in the direction indicated by an arrow in

FIG. 1

as appropriate. The above described inclination of the photodetector


103


reduces the amount of parallel displacement compared to the case without the inclination.




The ability to reduce the amount of parallel displacement for adjustment can reduce the area of the central flat section of the light reflection element


107


, form a wider light reflection surface of the peripheral section and capture more reflected light. This is because larger parallel displacement for adjustment requires the central flat section of the light reflection element


107


to be designed with more allowance beforehand.




Furthermore, since it is possible to design a smaller angle of reflection of the reflection spherical surface, the reflection plane of the light reflection element


107


becomes a spherical plane with smaller curvature, making it easier to shape the reflection plane.




Furthermore, if the peripheral section of the light reflection element


107


is formed in an anamorphic, non-spherical shape, as shown in

FIG. 2

, the focus onto which light is reflected and condensed by the light reflection element


107


differs between the x-z axial plane and the y-z axial plane normal thereto in FIG.


2


. That is, the focus of spots on the surface of the photodetector


103


has an astigmatic difference as shown in FIG.


3


. Even if defocusing occurs due to errors in mounting optical parts, etc., the astigmatic difference increases the light intensity per unit area of the surface of the photodetector, and prevents deterioration of frequency responsivity caused by concentration of carriers.





FIG. 4

shows an embodiment using a light reflection element


407


with reflected and converged light having a spherical aberration instead of the light reflection element


107


with reflected and converged light having an astigmatic difference in the embodiment of FIG.


1


. In this case, the spot focus on the surface of the photodetector


103


has a spherical aberration as shown in FIG.


5


. With this, even if defocusing occurs due to errors in mounting optical parts, etc., it is possible to maintain lower light intensity per unit area of the surface of the photodetector than spots without spherical aberration, and prevent deterioration of frequency responsivity caused by concentration of carriers.





FIG. 6

shows a schematic drawing of another embodiment of the present invention. A reflection type hologram element


607


used in the configuration in

FIG. 6

is provided with a reflection hologram plane


703


formed in a ring-figured area (corresponding to the peripheral section of the present invention) at the peripheral section for a laser optical axis


701


as a center position as shown in FIG.


7


and there is a circular light transmission area


702


(corresponding to the central section in the present invention) in the vicinity of the laser optical axis


701


.




Among the light beam radiated from the semiconductor laser light source


101


in

FIG. 6

, the peripheral beam component is reflected and diffracted by the reflection hologram


607


. The pitch and groove orientation of this reflection type hologram are different depending on the incident light and incident position of the laser beam and the reflected/diffracted beam


608


is condensed into the photodetector


103


placed in the vicinity of the semiconductor light source


101


.




Furthermore, since this reflection type hologram element


607


is formed to have an astigmatic difference as in the case of the above described light reflection element


107


, a spot beam does not form a focus but focal line. With this, even if defocusing occurs due to errors in mounting optical parts, etc., it is possible to maintain lower light intensity per unit area of the surface of the photodetector than spots without astigmatic differences, and prevent deterioration of frequency responsivity caused by concentration of carriers.




Furthermore, for manufacturing adjustment, it is necessary to enter the reflected/converged light from the reflection type hologram element


607


into the photodetector through parallel displacement of the reflection type hologram element


607


in the direction indicated by an arrow in FIG.


6


. In this case, as shown in

FIG. 6

, placing the photodetector


103


in the direction that the light is reflected by the inclined reflection type hologram element


607


can reduce the amount of parallel displacement to adjust the reflection type hologram element


607


.




This can reduce the angle of diffraction of the reflection type hologram element


607


compared to the case where the reflection type hologram element


607


is not inclined and allows the reflection type hologram element


407


to be designed with a wider pitch, securing an advantage in respect of hologram elaboration pitch limitations.




Here, in the embodiment in

FIG. 6

, it goes without saying that using a light reflection element with the reflected/diffracted light having a spherical aberration instead of the reflection hologram element


607


with the reflected/diffracted light having an astigmatic difference will also obtain effects similar to those in the embodiment in FIG.


4


.




FIG.


8


(


a


) shows an outlined configuration of the optical head apparatus according to another embodiment of the present invention and FIG.


8


(


b


) shows a layout of the reflection type hologram element, laser and photodetector used as its components.




The reflection type hologram element


2


used in the configuration in FIG.


8


(


a


) consists of a reflection type hologram


10


formed in a ring-figured area in the outer circumference for the laser optical axis


15


as a central position and a circular light transmission area


11


in the vicinity of the laser optical axis


15


as shown in FIG.


8


(


b


)




Of the light beam radiated from the semiconductor laser light source


1


in FIG.


8


(


a


), the peripheral beam component


22


is reflected and diffracted by the reflection type hologram


10


. The pitch and groove orientation of this reflection hologram are different depending on the incident light and incident position of the laser beam and the reflected/diffracted beam


23


is condensed into the photodetector


6


for anterior light monitoring placed in the vicinity of the semiconductor light source


1


.




On the other hand, among the beam radiated from the semiconductor laser light source, the inner beam component passes through the reflection type hologram element


2


with restricted aperture, polarized hologram element


5


and ¼ wavelength plate


20


, and is converted to a parallel beam by a collimate lens


3


, and then condensed into an optical disc


8


through an objective lens


4


mounted on an actuator


9


.




The beam reflected by the optical disc


8


is diffracted by the objective lens


4


, collimate lens


3


, ¼ wavelength plate


20


and polarized hologram element


5


and entered into a signal detection photodetector


7


formed around the semiconductor laser light source


1


for detection of signals such as RF signal, focusing and tracking control signals.




With such a configuration using outer circumferential light component that is originally not used for anterior light monitoring, the present embodiment can improve the light utilization efficiency of the optical head and integrate all the semiconductor laser light source


1


, signal detection detector


7


, detector


6


for anterior light monitoring in a single unit, thus reducing the number of parts of the optical head apparatus.




Furthermore, the reflection type hologram


10


having a condensing function allows light beam to be condensed into a photodetector with a small area without another condensing means such as a lens, simplifying and reducing the size of the optical head apparatus while securing high-speed responsivity of anterior light monitoring.




Here, as shown in FIG.


8


(


b


), the semiconductor laser light source


1


, anterior light monitoring photodetector


6


and signal detection photodetector


7


are configured as follows:




That is, for a laser outgoing radiation far field pattern


12


as shown by dotted line in FIG.


8


(


b


), the anterior light monitoring photodetector


6


is placed in the direction close to the direction


13


of the major axis of the ellipse and signal detection photodetector


7


to detect signals from the optical disc is placed in the direction


14


close to the direction of the minor axis of the ellipse.




That is, the anterior light monitoring photodetector


6


is placed close to the direction of the major axis of the ellipse rather than the minor axis with respect to the optical axis of the light from the semiconductor laser light source. On the other hand, the photodetector


7


for signal detection is placed close to the direction of the minor axis of the ellipse. For example, it is preferable that they be placed in the direction of the major axis and minor axis of the ellipse, respectively.




That is, such a configuration has the following effects. The reflection hologram


10


produces a beam with the order which diffracts toward the anterior light monitoring photodetector


6


, a beam with the order which diffracts in its opposite side and a 0-order diffracted beam, but since unnecessary beams other than the beam with the order which diffracts toward the anterior light monitoring photodetector


6


travel in the direction of the major axis of the ellipse of the far field pattern, these beams are not entered into the photodetector


7


to detect a signal from the optical disc as stray light.




Furthermore, since each photo detector can be placed close to the laser chip, requiring only a small angle of diffraction by the reflection hologram


10


or polarized hologram element


5


, it is possible to have a large hologram pitch and secure sufficient allowance for hologram elaboration pitch limitations.





FIG. 9

shows a plan view of the reflection type hologram element


2


according to another embodiment of the present invention which sets the spreading angle of a laser light source, the hologram area and a relative distance between the light source and hologram so that more light in the major axis of the ellipse of the outgoing radiation far field pattern


12


of the semiconductor laser light source is reflected and diffracted.




Generally, a density distribution of a semiconductor laser changes due to temperature variations more in the direction of the minor axis than in the direction of the major axis. This change affects the linearity of the light quantity of anterior light monitoring and the light quantity of light passing through the reflection hologram element


2


. Therefore, for a system requiring control of light quantity with very high accuracy as in the case of the present embodiment, it is preferable to use only light in the direction of the major axis as the light for anterior light monitoring. That is, the hologram


10


formation area of the reflection type hologram element


2


is formed more widely in the direction of the major axis of the ellipse with respect to the center of the axis of the elliptic far field pattern of the above described semiconductor laser.





FIG. 10

shows a plan view of the reflection type hologram and the location of the photodetector in another embodiment of the present invention. In the present embodiment, the area of the reflection type hologram


10


is formed asymmetric with respect to a point centered on the laser optical axis


15


. That is, if a laser beam is reflected/diffracted by the anterior light monitoring photodetector


6


, which is deviated from the laser optical axis


15


, the hologram pitch varies sequentially depending on its incidence angle and position. However, since this pitch also has elaboration limitations, the area is subject to these limitations.




However, some directions allow a large distance from the optical axis to the pitch elaboration limitations, and therefore it is possible to increase the light quantity of reflected/diffracted light for anterior light monitoring by forming the reflection type hologram


10


up to the boundary


17


of the elaboration pitch limitations indicated by the area asymmetric with respect to a point as shown in FIG.


10


.




FIG.


11


(


a


) shows an optical head apparatus in another embodiment of the present invention and FIG.


11


(


b


) shows a plan view of a reflection type hologram element used for its configuration.




As shown in FIG.


11


(


b


), the reflection type hologram element


2


has an oval or slotted-hole shaped light transmission area


11


at the center. In FIG.


11


(


a


), a polarized hologram element


5


and ¼ wavelength plate


20


to diffract the reflected light from the optical disc and lead it to the photodetector


7


for detection of signals such as focusing and tracking are mounted together with an objective lens


4


on the movable part of an objective lens actuator


9


.




Therefore, when the objective lens


4


moves in the direction orthogonal to the track in order to follow up tracking errors due to eccentricity of the optical disc, the light


25


diffracted by the polarized hologram element


5


also moves together (solid arrow


25


→ dotted line arrow


25


′).




According to the reflection type hologram element


2


in FIG.


11


(


b


), the light transmission area


11


of the reflection hologram


10


extends widely in this direction of movement, and therefore it is possible to implement a structure that prevents shading the signal detection light minimizing the reduction of light quantity of reflected/diffracted light for anterior light monitoring. FIG.


11


(


a


) and FIG.


11


(


b


) depict tracking operation directions with the vertical and horizontal directions reversed.





FIG. 12

shows a part of the optical head apparatus of another embodiment of the present invention. In

FIG. 12

, a polarized hologram element is formed with a polarized hologram layer


26


and ¼ wavelength film


19


sandwiched between two glass plates. Furthermore, a reflection type hologram


10


is formed on a glass substrate on the other side.




This allows the elements to be integrated and simplifies the configuration of the optical head and at the same time allows, when the reflected/diffracted light spot of the reflection type hologram


10


is positioned on the monitoring photodetector, the signal detection hologram to be positioned simultaneously, making it possibly to simplify adjustment in the optical head manufacturing process.





FIG. 13

shows a reflection type hologram element


2


, anterior light monitoring photodetector


6


and light beam diffracted by the reflection type hologram of the optical head apparatus according to another embodiment of the present invention.




As shown in

FIG. 13

, the condensing point of the light beams reflected and diffracted by the reflection type hologram element


2


is defocused before and after the photodetector


6


because the wavelength of the laser light source fluctuates due to temperature variations, etc.




In order to prevent the light beam from going off the edge of the anterior light monitoring photodetector


6


due to such defocusing, it is preferable to design so that the condensing point matches the plane of the photodetector at a midpoint


32


between a focus point


31


at the minimum temperature in the operating temperature range of the optical head and a focus point


30


at the maximum temperature. This reduces variations of the monitoring light quantity even with variations in the laser wavelength, allowing stable control of light quantity within the guaranteed temperature range of the product.




As described above, the optical head apparatus of the present invention can implement anterior light monitoring with high-speed responsivity by condensing a beam to a predetermined size on a photodetector, correct an astigmatic difference of a semiconductor laser using this light reflection element and integrate the semiconductor laser and photodetector in a single unit, thus making it possible to simplify and reduce the size of the optical head.




Furthermore, the configuration according to the present invention monitors the light quantity of laser radiating beams by effectively utilizing light beams outside the aperture, making it possible to reduce loss of light quantity, increase the monitoring light quantity by optimizing the area and location of the reflection/diffraction grating, thus providing a high S/N ratio of monitor signals.




Furthermore, since the reflection type hologram itself provides high-level condensing, it is possible not only to reduce the size of optical spots on the photodetector but also reduce the optical detection area, making it possible to implement anterior light monitoring with high-speed responsivity and stabilize the recording quality by the recording type optical head such as DVD-RAM.




Furthermore, the present invention can simplify and reduce the size of the optical head by integrating the anterior light monitoring photodetector, laser chip and signal detection photodetector, etc. in a single unit.



Claims
  • 1. An optical head apparatus, comprising:a semiconductor laser light source; a photodetector that receives at least one part of light from said semiconductor laser light source; a light reflection element provided with; a peripheral section that reflects peripheral light of the light from said semiconductor laser light source and condenses it into said photodetector, a condensing function of the peripheral section of said light reflection element has an astigmatic difference; and a central section that transmits central light of the light from said semiconductor laser light source; and a condenser lens that condenses the light that passes through said light reflection element onto an optical disc, wherein: each surface of the central section of said light reflection element has a flat shape; and at least one surface of the peripheral section of said light reflection element has a spherical or non-spherical curved shape.
  • 2. The optical head apparatus according to claim 1, characterized in that the condensing function of the peripheral section of said light reflection element has a spherical aberration.
  • 3. An optical head apparatus, comprising:a semiconductor laser light source; a photodetector that receives at least one part of light from said semiconductor laser light source; a light reflection element provided with a peripheral section that reflects peripheral light of the light from said semiconductor laser light source and condenses it into said photodetector and a central section that transmits central light of the light from said semiconductor laser light source; and a condenser lens that condenses the light that passes through said light reflection element onto an optical disc, wherein: each surface of the central section of said light reflection element has a flat shape; at least one surface of the peripheral section of said light reflection element has a spherical or non-spherical curved shape, the spherical or non-spherical curved shape forming a surface of rotation about the central section of the light reflecting element; both surfaces of the central section of said light reflection element are parallel and inclined at a predetermined angle with respect to a direction perpendicular normal to an optical axis of the light from said semiconductor laser light source; and the astigmatism produced by the inclined placement of the central section of said light reflection element compensates the astigmatic difference of said semiconductor light source.
  • 4. The optical head apparatus according to claim 1, wherein:both surfaces of the central section of said light reflection element are parallel and inclined at a predetermined angle with respect to a direction perpendicular to an optical axis of the light from said semiconductor laser light source; and the astigmatism produced by the inclined placement of the central section of said light reflection element compensates the astigmatic difference of said semiconductor laser light source.
  • 5. The optical head apparatus according to claim 1, characterized in that one surface of the central section of said light reflection element is not parallel to the other surface.
  • 6. The optical head apparatus according to claim 1, wherein the optical axis of the reflected light from the peripheral section of said light reflection element is inclined with respect to the optical axis of the light from said semiconductor laser light source.
  • 7. The optical head apparatus according to claim 1, wherein said semiconductor laser light source and said photodetector are formed in one package.
  • 8. The optical head apparatus according to claim 1, wherein:a first surface of the peripheral section of said light reflection element is nearer the semiconductor laser light source than a second surface of the peripheral section of said light reflection element; and the first surface has a flat shape and the second surface has the spherical or non-spherical curved shape.
  • 9. An optical head apparatus, comprising:a semiconductor laser light source; a plurality of photodetectors placed adjacent to said semiconductor laser light source; a reflection type hologram element provided with a peripheral section that reflects and diffracts peripheral light of the light from said semiconductor laser light source and condenses it into one or said plurality of photodetectors and a central section that transmits central light of the light from said semiconductor laser light source; and a condenser lens that condenses the light that passes through the central section of said reflection type hologram element onto an optical disc, wherein: said photodetector that receives said reflected and diffracted light is placed closer, with respect to said semiconductor laser light source, in the direction of the major axis of an ellipse than in the direction of the minor axis of the ellipse of an elliptic far field pattern of outgoing light from said semiconductor laser light source; and the photodetector that receives signal light from said optical disc is placed closer, with respect to said semiconductor laser light source, in the direction of the minor axis of the ellipse than in the direction of the major axis of the ellipse of an elliptic far field pattern of outgoing light from said semiconductor laser light source.
  • 10. The optical head apparatus according to claim 9, wherein said reflection type hologram element reflects and diffracts more light in the direction of the major axis of the ellipse than light in the direction of the minor axis of the ellipse of the elliptic far field pattern of outgoing light from said semiconductor laser light source.
  • 11. The optical head apparatus according to claim 9, wherein the hologram formation area of said reflection type hologram element is formed more widely in the direction of the major axis of the ellipse with respect to the center of the axis of the elliptic far field pattern of said semiconductor laser.
  • 12. The optical head apparatus according to claim 10, wherein the hologram formation area of said reflection type hologram element is formed more widely in the direction of the major axis of the ellipse with respect to the center of the axis of the elliptic far field pattern of said semiconductor laser.
  • 13. The optical head apparatus according to claim 9, wherein the condensing function of the peripheral section of said reflection type hologram element has an astigmatic difference.
  • 14. The optical head apparatus according to claim 10, wherein the condensing function of the peripheral section of said reflection type hologram element has an astigmatic difference.
  • 15. The optical head apparatus according to claim 9, wherein the condensing function of the peripheral section of said reflection type hologram element has a spherical aberration.
  • 16. The optical head apparatus according to claim 10, wherein the condensing function of the peripheral section of said reflection type hologram element has a spherical aberration.
  • 17. The optical head apparatus according to claim 9, wherein:both surfaces of the central section of said reflection type hologram element are parallel; these surfaces are inclined at a predetermined angle with respect to the direction perpendicular to the optical axis of the light from said semiconductor laser light source; and the astigmatism produced by the inclined placement of the central section of said reflection type hologram element compensates the astigmatic difference of said semiconductor laser light source.
  • 18. The optical head apparatus according to claim 10, wherein:both surfaces of the central section of said reflection type hologram element are parallel; these surfaces are inclined at a predetermined angle with respect to the direction perpendicular to the optical axis of the light from said semiconductor laser light source; and the astigmatism produced by the inclined placement of the central section of said reflection type hologram element compensates the astigmatic difference of said semiconductor laser light source.
  • 19. The optical head apparatus according to claim 9, wherein one plane of the central section of said reflection type hologram element is not parallel to the other plane.
  • 20. The optical head apparatus according to any one of claim 10, wherein one plane of the central section of said reflection type hologram element is not parallel to the other plane.
  • 21. The optical head apparatus according to claim 9, wherein the optical axis of reflected and diffracted light from the peripheral section of said reflection type hologram element is inclined with respect to the optical axis of light from said semiconductor laser light source.
  • 22. The optical head apparatus according to claim 10, wherein the optical axis of reflected and diffracted light from the peripheral section of said reflection type hologram element is inclined with respect to the optical axis of light from said semiconductor laser light source.
  • 23. The optical head apparatus according to claim 9, wherein said semiconductor laser light source and a plurality of photodetectors provided adjacent thereto are formed in one package.
  • 24. The optical head apparatus according to claim 9, further comprising a polarized hologram element that allows light from said laser light source to penetrate and the light reflected by said optical disc to diffract, wherein:said polarized hologram element is mounted on a movable part of an objective lens actuator together with an objective lens; and the light transmission area of the central section of said reflection type hologram element has a quasi-elliptic shape whose major axis lies in the direction of the tracking operation of said objective lens actuator.
  • 25. The optical head apparatus according to claim 9, further comprising a polarized hologram element that allows light from said laser light source to penetrate and the light reflected by said optical disc to diffract,wherein said polarized hologram element is integrated with said reflection type hologram element.
  • 26. The optical head apparatus according to claim 9, wherein:the light condensing point by said reflection type hologram element is apart from the plane of a photoreception element of said photodetector at a room temperature; the light condensing point moves by wavelength fluctuations due to temperature variations; and said light condensing point aligns with the plane of said photoreception element in the vicinity of a mid point of the operating temperature range of said optical head apparatus.
  • 27. The optical head apparatus according to claim 9, wherein the hologram formation area of said reflection type hologram element is formed asymmetric with respect to a point centered on the optical axis of the light from said semiconductor laser light source.
  • 28. An optical head apparatus, comprising:a semiconductor laser light source; a photodetector that receives at least one part of light from said semiconductor laser light source; a light reflection element provided with a peripheral section that reflects peripheral light of the light from said semiconductor laser light source and condenses it into said photodetector and a central section that transmits central light of the light from said semiconductor laser light source; and a condenser lens that condenses the light that passes through said light reflection element onto an optical disc, wherein: both surfaces of the central section of said light reflection element have a flat shape and are parallel; normals of both surfaces of the central section of said light reflection element are inclined at a predetermined angle with respect to a direction of an optical axis of the light from said semiconductor laser light source; and astigmatism produced by the inclined placement of the central section of said light reflection element compensates an astigmatism difference of said semiconductor laser light source.
Priority Claims (2)
Number Date Country Kind
11-115886 Apr 1999 JP
11-284357 Oct 1999 JP
US Referenced Citations (7)
Number Name Date Kind
5233595 Kawakubo Aug 1993 A
5373519 Siono et al. Dec 1994 A
5500846 Ophey Mar 1996 A
5600621 Noda et al. Feb 1997 A
5801402 Shin Sep 1998 A
6084844 Takeda Jul 2000 A
6463023 Miura Oct 2002 B1
Foreign Referenced Citations (3)
Number Date Country
1159048 Sep 1997 CN
1194434 Sep 1998 CN
06290477 Oct 1994 JP
Non-Patent Literature Citations (1)
Entry
Chinese Official Action dated Dec. 27, 2002, for Application No. 00106981.0 with English translation.