OPTICAL IMAGE CAPTURING SYSTEM

Information

  • Patent Application
  • 20180188504
  • Publication Number
    20180188504
  • Date Filed
    June 08, 2017
    7 years ago
  • Date Published
    July 05, 2018
    6 years ago
Abstract
An optical image capturing system includes, along the optical axis in order from an object side to an image side, a first lens, a second lens, a third lens, a fourth lens, and a fifth lens. At least one lens among the first to the fifth lenses has positive refractive force. The fifth lens can have negative refractive force. The lenses in the optical image capturing system which have refractive power include the first to the fifth lenses. The optical image capturing system can increase aperture value and improve the imaging quality for use in compact cameras.
Description
BACKGROUND OF THE INVENTION
1. Technical Field

The present invention relates generally to an optical system, and more particularly to a compact optical image capturing system for an electronic device.


2. Description of Related Art

In recent years, with the rise of portable electronic devices having camera functionalities, the demand for an optical image capturing system is raised gradually. The image sensing device of the ordinary photographing camera is commonly selected from charge coupled device (CCD) or complementary metal-oxide semiconductor sensor (CMOS Sensor). In addition, as advanced semiconductor manufacturing technology enables the minimization of the pixel size of the image sensing device, the development of the optical image capturing system towards the field of high pixels. Therefore, the requirement for high imaging quality is rapidly raised.


The conventional optical system of the portable electronic device usually has three or four lenses. However, the optical system is asked to take pictures in a dark environment, in other words, the optical system is asked to have a large aperture. The conventional optical system could not provide a high optical performance as required.


It is an important issue to increase the amount of light entering the lens. In addition, the modern lens is also asked to have several characters, including high image quality.


BRIEF SUMMARY OF THE INVENTION

The aspect of embodiment of the present disclosure directs to an optical image capturing system and an optical image capturing lens which use combination of refractive powers, convex and concave surfaces of five-piece optical lenses (the convex or concave surface in the disclosure denotes the geometrical shape of an image-side surface or an object-side surface of each lens on an optical axis) to increase the amount of incoming light of the optical image capturing system, and to improve imaging quality for image formation, so as to be applied to minimized electronic products.


In addition, when it comes to certain application of optical imaging, there will be a need to capture image via light sources with wavelengths in both visible and infrared ranges, an example of this kind of application is IP video surveillance camera, which is equipped with the Day & Night function. The visible spectrum for human vision has wavelengths ranging from 400 to 700 nm, but the image formed on the camera sensor includes infrared light, which is invisible to human eyes. Therefore, under certain circumstances, an IR cut filter removable (ICR) is placed before the sensor of the IP video surveillance camera, in order to ensure that only the light that is visible to human eyes is picked up by the sensor eventually, so as to enhance the “fidelity” of the image. The ICR of the IP video surveillance camera can completely filter out the infrared light under daytime mode to avoid color cast; whereas under night mode, it allows infrared light to pass through the lens to enhance the image brightness. Nevertheless, the elements of the ICR occupy a significant amount of space and are expensive, which impede to the design and manufacture of miniaturized surveillance cameras in the future.


The aspect of embodiment of the present disclosure directs to an optical image capturing system and an optical image capturing lens which utilize the combination of refractive powers, convex surfaces and concave surfaces of four lenses, as well as the selection of materials thereof, to reduce the difference between the imaging focal length of visible light and imaging focal length of infrared light, in order to achieve the near “confocal” effect without the use of ICR elements.


The term and its definition to the lens parameter in the embodiment of the present are shown as below for further reference.


The lens parameters related to the magnification of the optical image capturing system


The optical image capturing system can be designed and applied to biometrics, for example, facial recognition. When the embodiment of the present disclosure is configured to capture image for facial recognition, the infrared light can be adopted as the operation wavelength. For a face of about 15 centimeters (cm) wide at a distance of 25-30 cm, at least 30 horizontal pixels can be formed in the horizontal direction of an image sensor (pixel size of 1.4 micrometers (μm)). The linear magnification of the infrared light on the image plane is LM, and it meets the following conditions: LM≥0.0003, where LM=(30 horizontal pixels)*(1.4 μm pixel size)/(15 cm, width of the photographed object). Alternatively, the visible light can also be adopted as the operation wavelength for image recognition. When the visible light is adopted, for a face of about 15 cm wide at a distance of 25-30 cm, at least 50 horizontal pixels can be formed in the horizontal direction of an image sensor (pixel size of 1.4 micrometers (μm)).


The lens parameter related to a length or a height in the lens:


For visible spectrum, the present invention may adopt the wavelength of 555 nm as the primary reference wavelength and the basis for the measurement of focus shift; for infrared spectrum (700-1000 nm), the present invention may adopt the wavelength of 850 nm as the primary reference wavelength and the basis for the measurement of focus shift.


The optical image capturing system includes a first image plane and a second image plane. The first image plane is an image plane specifically for the visible light, and the first image plane is perpendicular to the optical axis; the through-focus modulation transfer rate (value of MTF) at the first spatial frequency has a maximum value at the central field of view of the first image plane; the second image plane is an image plane specifically for the infrared light, and second image plane is perpendicular to the optical axis; the through-focus modulation transfer rate (value of MTF) at the first spatial frequency has a maximum value in the central of field of view of the second image plane. The optical image capturing system also includes a first average image plane and a second average image plane. The first average image plane is an image plane specifically for the visible light, and the first average image plane is perpendicular to the optical axis. The first average image plane is installed at the average position of the defocusing positions, where the values of MTF of the visible light at the central field of view, 0.3 field of view, and the 0.7 field of view are at their respective maximum at the first spatial frequency. The second average image plane is an image plane specifically for the infrared light, and the second average image plane is perpendicular to the optical axis. The second average image plane is installed at the average position of the defocusing positions, where the values of MTF of the infrared light at the central field of view, 0.3 field of view, and the 0.7 field of view are at their respective maximum at the first spatial frequency.


The aforementioned first spatial frequency is set to be half of the spatial frequency (half frequency) of the image sensor (sensor) used in the present invention. For example, for an image sensor having the pixel size of 1.12 μm or less, the quarter spatial frequency, half spatial frequency (half frequency) and full spatial frequency (full frequency) in the characteristic diagram of modulation transfer function are at least 110 cycles/mm, 220 cycles/mm and 440 cycles/mm, respectively. Lights of any field of view can be further divided into sagittal ray and tangential ray.


The focus shifts where the through-focus MTF values of the visible sagittal ray at the central field of view, 0.3 field of view, and 0.7 field of view of the optical image capturing system are at their respective maxima, are denoted by VSFS0, VSFS3, and VSFS7 (unit of measurement: mm), respectively. The maximum values of the through-focus MTF of the visible sagittal ray at the central field of view, 0.3 field of view, and 0.7 field of view are denoted by VSMTF0, VSMTF3, and VSMTF7, respectively. The focus shifts where the through-focus MTF values of the visible tangential ray at the central field of view, 0.3 field of view, and 0.7 field of view of the optical image capturing system are at their respective maxima, are denoted by VTFS0, VTFS3, and VTFS7 (unit of measurement: mm), respectively. The maximum values of the through-focus MTF of the visible tangential ray at the central field of view, 0.3 field of view, and 0.7 field of view are denoted by VTMTF0, VTMTF3, and VTMTF7, respectively. The average focus shift (position) of both the aforementioned focus shifts of the visible sagittal ray at three fields of view and focus shifts of the visible tangential ray at three fields of view is denoted by AVFS (unit of measurement: mm), which equals to the absolute value |(VSFS0+VSFS3+VSFS7+VTFS0+VTFS3+VTFS7)/6|.


The focus shifts where the through-focus MTF values of the infrared sagittal ray at the central field of view, 0.3 field of view, and 0.7 field of view of the optical image capturing system are at their respective maxima, are denoted by ISFS0, ISFS3, and ISFS7 (unit of measurement: mm), respectively. The average focus shift (position) of the aforementioned focus shifts of the infrared sagittal ray at three fields of view is denoted by AISFS (unit of measurement: mm). The maximum values of the through-focus MTF of the infrared sagittal ray at the central field of view, 0.3 field of view, and 0.7 field of view are denoted by ISMTF0, ISMTF3, and ISMTF7, respectively. The focus shifts where the through-focus MTF values of the infrared tangential ray at the central field of view, 0.3 field of view, and 0.7 field of view of the optical image capturing system are at their respective maxima, are denoted by ITFS0, ITFS3, and ITFS7 (unit of measurement: mm), respectively. The average focus shift (position) of the aforementioned focus shifts of the infrared tangential ray at three fields of view is denoted by AITFS (unit of measurement: mm). The maximum values of the through-focus MTF of the infrared tangential ray at the central field of view, 0.3 field of view, and 0.7 field of view are denoted by ITMTF0, ITMTF3, and ITMTF7, respectively. The average focus shift (position) of both of the aforementioned focus shifts of the infrared sagittal ray at the three fields of view and focus shifts of the infrared tangential ray at the three fields of view is denoted by AIFS (unit of measurement: mm), which equals to the absolute value of |(ISFS0+ISFS3+ISFS7+ITFS0+ITFS3+ITFS7)/6|.


The focus shift (difference) between the focal points of the visible light and the infrared light at their central fields of view (RGB/IR) of the entire optical image capturing system (i.e. wavelength of 850 nm versus wavelength of 555 nm, unit of measurement: mm) is denoted by FS, which satisfies the absolute value |(VSFS0+VTFS0)/2−(ISFS0+ITFS0)/2|. The difference (focus shift) between the average focus shift of the visible light in the three fields of view and the average focus shift of the infrared light in the three fields of view (RGB/IR) of the entire optical image capturing system is denoted by AFS (i.e. wavelength of 850 nm versus wavelength of 555 nm, unit of measurement: mm), which equals to the absolute value of |AIFS−AVFS|.


A height for image formation of the optical image capturing system is denoted by HOI. A height of the optical image capturing system is denoted by HOS. A distance from the object-side surface of the first lens to the image-side surface of the fifth lens is denoted by InTL. A distance from the first lens to the second lens is denoted by IN12 (instance). A central thickness of the first lens of the optical image capturing system on the optical axis is denoted by TP1 (instance).


The lens parameter related to a material in the lens:


An Abbe number of the first lens in the optical image capturing system is denoted by NA1 (instance). A refractive index of the first lens is denoted by Nd1 (instance).


The lens parameter related to a view angle in the lens:


A view angle is denoted by AF. Half of the view angle is denoted by HAF. A major light angle is denoted by MRA.


The lens parameter related to exit/entrance pupil in the lens:


An entrance pupil diameter of the optical image capturing system is denoted by HEP. An exit pupil of the optical image capturing system refers to the image of the aperture stop imaged in the imaging space after passing through the lens behind the aperture stop, and the exit pupil diameter is denoted by HXP. For any surface of any lens, a maximum effective half diameter (EHD) is a perpendicular distance between an optical axis and a crossing point on the surface where the incident light with a maximum viewing angle of the system passing the very edge of the entrance pupil. For example, the maximum effective half diameter of the object-side surface of the first lens is denoted by EHD11, the maximum effective half diameter of the image-side surface of the first lens is denoted by EHD12, the maximum effective half diameter of the object-side surface of the second lens is denoted by EHD21, the maximum effective half diameter of the image-side surface of the second lens is denoted by EHD22, and so on.


The lens parameter related to an arc length of the shape of a surface and a surface profile:


For any surface of any lens, a profile curve length of the maximum effective half diameter is, by definition, measured from a start point where the optical axis of the belonging optical image capturing system passes through the surface of the lens, along a surface profile of the lens, and finally to an end point of the maximum effective half diameter thereof. In other words, the curve length between the aforementioned start and end points is the profile curve length of the maximum effective half diameter, which is denoted by ARS. For example, the profile curve length of the maximum effective half diameter of the object-side surface of the first lens is denoted by ARS11, the profile curve length of the maximum effective half diameter of the image-side surface of the first lens is denoted by ARS12, the profile curve length of the maximum effective half diameter of the object-side surface of the second lens is denoted by ARS21, the profile curve length of the maximum effective half diameter of the image-side surface of the second lens is denoted by ARS22, and so on.


For any surface of any lens, a profile curve length of a half of the entrance pupil diameter (REP) is, by definition, measured from a start point where the optical axis of the belonging optical image capturing system passes through the surface of the lens, along a surface profile of the lens, and finally to a coordinate point of a perpendicular distance where is a half of the entrance pupil diameter away from the optical axis. In other words, the curve length between the aforementioned stat point and the coordinate point is the profile curve length of a half of the entrance pupil diameter (REP), and is denoted by ARE. For example, the profile curve length of a half of the entrance pupil diameter (HEP) of the object-side surface of the first lens is denoted by ARE11, the profile curve length of a half of the entrance pupil diameter (REP) of the image-side surface of the first lens is denoted by ARE12, the profile curve length of a half of the entrance pupil diameter (HEP) of the object-side surface of the second lens is denoted by ARE21, the profile curve length of a half of the entrance pupil diameter (REP) of the image-side surface of the second lens is denoted by ARS22, and so on.


The lens parameter related to a depth of the lens shape:


A displacement from a point on the object-side surface of the fifth lens, which is passed through by the optical axis, to a point on the optical axis, where a projection of the maximum effective semi diameter of the object-side surface of the fifth lens ends, is denoted by InRS51 (the depth of the maximum effective semi diameter). A displacement from a point on the image-side surface of the fifth lens, which is passed through by the optical axis, to a point on the optical axis, where a projection of the maximum effective semi diameter of the image-side surface of the fifth lens ends, is denoted by InRS52 (the depth of the maximum effective semi diameter). The depth of the maximum effective semi diameter (sinkage) on the object-side surface or the image-side surface of any other lens is denoted in the same manner.


The lens parameter related to the lens shape:


A critical point C is a tangent point on a surface of a specific lens, and the tangent point is tangent to a plane perpendicular to the optical axis and the tangent point cannot be a crossover point on the optical axis. By the definition, a distance perpendicular to the optical axis between a critical point C41 on the object-side surface of the fourth lens and the optical axis is HVT41 (instance), and a distance perpendicular to the optical axis between a critical point C42 on the image-side surface of the fourth lens and the optical axis is HVT42 (instance). A distance perpendicular to the optical axis between a critical point C51 on the object-side surface of the fifth lens and the optical axis is HVT51 (instance), and a distance perpendicular to the optical axis between a critical point C52 on the image-side surface of the fifth lens and the optical axis is HVT52 (instance). A distance perpendicular to the optical axis between a critical point on the object-side or image-side surface of other lenses the optical axis is denoted in the same manner.


The object-side surface of the fifth lens has one inflection point IF511 which is nearest to the optical axis, and the sinkage value of the inflection point IF511 is denoted by SGI511 (instance). A distance perpendicular to the optical axis between the inflection point IF511 and the optical axis is HIF511 (instance). The image-side surface of the fifth lens has one inflection point IF521 which is nearest to the optical axis, and the sinkage value of the inflection point IF521 is denoted by SGI521 (instance). A distance perpendicular to the optical axis between the inflection point IF521 and the optical axis is HIF521 (instance).


The object-side surface of the fifth lens has one inflection point IF512 which is the second nearest to the optical axis, and the sinkage value of the inflection point IF512 is denoted by SGI512 (instance). A distance perpendicular to the optical axis between the inflection point IF512 and the optical axis is HIF512 (instance). The image-side surface of the fifth lens has one inflection point IF522 which is the second nearest to the optical axis, and the sinkage value of the inflection point IF522 is denoted by SGI522 (instance). A distance perpendicular to the optical axis between the inflection point IF522 and the optical axis is HIF522 (instance).


The object-side surface of the fifth lens has one inflection point IF513 which is the third nearest to the optical axis, and the sinkage value of the inflection point IF513 is denoted by SGI513 (instance). A distance perpendicular to the optical axis between the inflection point IF513 and the optical axis is HIF513 (instance). The image-side surface of the fifth lens has one inflection point IF523 which is the third nearest to the optical axis, and the sinkage value of the inflection point IF523 is denoted by SGI523 (instance). A distance perpendicular to the optical axis between the inflection point IF523 and the optical axis is HIF523 (instance).


The object-side surface of the fifth lens has one inflection point IF514 which is the fourth nearest to the optical axis, and the sinkage value of the inflection point IF514 is denoted by SGI514 (instance). A distance perpendicular to the optical axis between the inflection point IF514 and the optical axis is HIF514 (instance). The image-side surface of the fifth lens has one inflection point IF524 which is the fourth nearest to the optical axis, and the sinkage value of the inflection point IF524 is denoted by SGI524 (instance). A distance perpendicular to the optical axis between the inflection point IF524 and the optical axis is HIF524 (instance).


An inflection point, a distance perpendicular to the optical axis between the inflection point and the optical axis, and a sinkage value thereof on the object-side surface or image-side surface of other lenses is denoted in the same manner.


The lens parameter related to an aberration:


Optical distortion for image formation in the optical image capturing system is denoted by ODT. TV distortion for image formation in the optical image capturing system is denoted by TDT. Further, the range of the aberration offset for the view of image formation may be limited to 50%-100% field. An offset of the spherical aberration is denoted by DFS. An offset of the coma aberration is denoted by DFC.


Transverse aberration on an edge of an aperture is denoted by STA, which stands for STOP transverse aberration, and is used to evaluate the performance of one specific optical image capturing system. The transverse aberration of light in any field of view can be calculated with a tangential fan or a sagittal fan. More specifically, the transverse aberration caused when the longest operation wavelength (e.g., 650 nm or 656 nm) and the shortest operation wavelength (e.g., 470 nm or 486 nm) pass through the edge of the aperture can be used as the reference for evaluating performance. The coordinate directions of the aforementioned tangential fan can be further divided into a positive direction (upper light) and a negative direction (lower light). The longest operation wavelength which passes through the edge of the aperture has an imaging position on the image plane in a particular field of view, and the reference wavelength of the mail light (e.g., 555 nm or 587.5 nm) has another imaging position on the image plane in the same field of view. The transverse aberration caused when the longest operation wavelength passes through the edge of the aperture is defined as a distance between these two imaging positions. Similarly, the shortest operation wavelength which passes through the edge of the aperture has an imaging position on the image plane in a particular field of view, and the transverse aberration caused when the shortest operation wavelength passes through the edge of the aperture is defined as a distance between the imaging position of the shortest operation wavelength and the imaging position of the reference wavelength. The performance of the optical image capturing system can be considered excellent if the transverse aberrations of the shortest and the longest operation wavelength which pass through the edge of the aperture and image on the image plane in 0.7 field of view (i.e., 0.7 times the height for image formation HOI) are both less than 20 μm or 20 pixels. Furthermore, for a stricter evaluation, the performance cannot be considered excellent unless the transverse aberrations of the shortest and the longest operation wavelength which pass through the edge of the aperture and image on the image plane in 0.7 field of view are both less than 10 μm or 10 pixels.


The optical image capturing system has a maximum image height HOT on the image plane vertical to the optical axis. A transverse aberration at 0.7 HOI in the positive direction of the tangential fan after the longest operation wavelength passing through the edge of the aperture is denoted by PLTA; a transverse aberration at 0.7 HOI in the positive direction of the tangential fan after the shortest operation wavelength passing through the edge of the aperture is denoted by PSTA; a transverse aberration at 0.7 HOI in the negative direction of the tangential fan after the longest operation wavelength passing through the edge of the aperture is denoted by NLTA; a transverse aberration at 0.7 HOI in the negative direction of the tangential fan after the shortest operation wavelength passing through the edge of the aperture is denoted by NSTA; a transverse aberration at 0.7 HOI of the sagittal fan after the longest operation wavelength passing through the edge of the aperture is denoted by SLTA; a transverse aberration at 0.7 HOI of the sagittal fan after the shortest operation wavelength passing through the edge of the aperture is denoted by SSTA.


The present invention provides an optical image capturing system, in which the fifth lens is provided with an inflection point at the object-side surface or at the image-side surface to adjust the incident angle of each view field and modify the ODT and the TDT. In addition, the surfaces of the fifth lens are capable of modifying the optical path to improve the imagining quality.


The optical image capturing system of the present invention includes a first lens, a second lens, a third lens, a fourth lens, a fifth lens, a first image plane, and a second image plane. The first image plane is an image plane specifically for the visible light, and the first image plane is perpendicular to the optical axis; the through-focus modulation transfer rate (value of MTF) at the first spatial frequency has a maximum value at the central field of view of the first image plane; the second image plane is an image plane specifically for the infrared light, and second image plane is perpendicular to the optical axis; the through-focus modulation transfer rate (value of MTF) at the first spatial frequency has a maximum value at the central of field of view of the second image plane. All lenses among the first lens to the fifth lens have refractive power. At least one lens among the first lens to the fifth lens is made of plastic. The first lens has refractive power. Both the object-side surface and the image-side surface of the fifth lens are aspheric surfaces. The optical image capturing system satisfies:





1≤f/HEP≤10; 0 deg<HAF≤150 deg; and |FS|≤60 μm;


where f1, f2, f3, f4, and f5 are the focal lengths of the first, the second, the third, the fourth, the fifth lenses, respectively; f is a focal length of the optical image capturing system; HEP is an entrance pupil diameter of the optical image capturing system; HOS is a distance between the object-side surface of the first lens and the first image plane on the optical axis; HAF is a half of a maximum view angle of the optical image capturing system; HOI is the maximum image height on the first image plane perpendicular to the optical axis of the optical image capturing system; FS is the distance on the optical axis between the first image plane and the second image plane.


The present invention further provides an optical image capturing system, including a first lens, a second lens, a third lens, a fourth lens, a fifth lens, a first image plane, and a second image plane. The first image plane is an image plane specifically for the visible light, and the first image plane is perpendicular to the optical axis; the through-focus modulation transfer rate (value of MTF) at the first spatial frequency has a maximum value at the central field of view of the first image plane; the second image plane is an image plane specifically for the infrared light, and second image plane is perpendicular to the optical axis; the through-focus modulation transfer rate (value of MTF) at the first spatial frequency has a maximum value at the central of field of view of the second image plane. The first lens has refractive power, and the object-side surface thereof can be convex near the optical axis. The second lens has refractive power. The third lens has refractive power. The fourth lens has refractive power. The fifth lens has refractive power. At least two lenses among the first lens to the fifth lens are made of plastic. At least one lens among the first lens to the fifth lens has positive refractive power. The optical image capturing system satisfies:





1≤f/HEP≤10; 0 deg<HAF≤150 deg; 0.9≤2(ARE/HEP)≤2.0; and |FS|≤60 μm;


where f1, f2, f3, f4, and f5 are the focal lengths of the first, the second, the third, the fourth, the fifth lenses, respectively; f is a focal length of the optical image capturing system; HEP is an entrance pupil diameter of the optical image capturing system; HOS is a distance between the object-side surface of the first lens and the first image plane on the optical axis; HAF is a half of a maximum view angle of the optical image capturing system; HOI is the maximum image height on the first image plane perpendicular to the optical axis of the optical image capturing system; FS is the distance on the optical axis between the first image plane and the second image plane; ARE is a profile curve length measured from a start point where the optical axis of the belonging optical image capturing system passes through the surface of the lens, along a surface profile of the lens, and finally to a coordinate point of a perpendicular distance where is a half of the entrance pupil diameter away from the optical axis.


The present invention further provides an optical image capturing system, including a first lens, a second lens, a third lens, a fourth lens, a fifth lens, a first average image plane, and a second average image plane. The first average image plane is an image plane specifically for the visible light, and the first average image plane is perpendicular to the optical axis. The first average image plane is installed at the average position of the defocusing positions, where the values of MTF of the visible light at the central field of view, 0.3 field of view, and the 0.7 field of view are at their respective maximum at the first spatial frequency. The second average image plane is an image plane specifically for the infrared light, and the second average image plane is perpendicular to the optical axis. The second average image plane is installed at the average position of the defocusing positions, where the values of MTF of the infrared light at the central field of view, 0.3 field of view, and the 0.7 field of view are at their respective maximum at the first spatial frequency. The number of the lenses having refractive power in the optical image capturing system is five. The first lens has refractive power. The second lens has refractive power. The third lens has refractive power. The fourth lens has refractive power. The fifth lens has refractive power. At least one lens among the first lens to the fifth lens is made of plastic. The optical image capturing system satisfies:





1≤f/HEP≤10; 0 deg<HAF≤150 deg; 0.9≤2(ARE/HEP)≤2.0; and |AFS|≤60 μm;


where f1, f2, f3, f4, and f5 are the focal lengths of the first, the second, the third, the fourth, the fifth lenses, respectively; f is a focal length of the optical image capturing system; HEP is an entrance pupil diameter of the optical image capturing system; HOS is a distance between the object-side surface of the first lens and the first average image plane on the optical axis; HAF is a half of a maximum view angle of the optical image capturing system; HOI is the maximum image height on the first average image plane perpendicular to the optical axis of the optical image capturing system; ARE is a profile curve length measured from a start point where the optical axis of the belonging optical image capturing system passes through the surface of the lens, along a surface profile of the lens, and finally to a coordinate point of a perpendicular distance where is a half of the entrance pupil diameter away from the optical axis; AFS is the distance between the first average image plane and the second average image plane; FS is the distance on the optical axis between the first average image plane and the second average image plane.


For any surface of any lens, the profile curve length within the effective half diameter affects the ability of the surface to correct aberration and differences between optical paths of light in different fields of view. With longer profile curve length, the ability to correct aberration is better. However, the difficulty of manufacturing increases as well. Therefore, the profile curve length within the effective half diameter of any surface of any lens has to be controlled. The ratio between the profile curve length (ARS) within the effective half diameter of one surface and the thickness (TP) of the lens, which the surface belonged to, on the optical axis (i.e., ARS/TP) has to be particularly controlled. For example, the profile curve length of the maximum effective half diameter of the object-side surface of the first lens is denoted by ARS11, the thickness of the first lens on the optical axis is TP1, and the ratio between these two parameters is ARS11/TP1; the profile curve length of the maximum effective half diameter of the image-side surface of the first lens is denoted by ARS12, and the ratio between ARS12 and TP1 is ARS12/TP1. The profile curve length of the maximum effective half diameter of the object-side surface of the second lens is denoted by ARS21, the thickness of the second lens on the optical axis is TP2, and the ratio between these two parameters is ARS21/TP2; the profile curve length of the maximum effective half diameter of the image-side surface of the second lens is denoted by ARS22, and the ratio between ARS22 and TP2 is ARS22/TP2. For any surface of other lenses in the optical image capturing system, the ratio between the profile curve length of the maximum effective half diameter thereof and the thickness of the lens which the surface belonged to is denoted in the same manner.


For any surface of any lens, the profile curve length within a half of the entrance pupil diameter (HEP) affects the ability of the surface to correct aberration and differences between optical paths of light in different fields of view. With longer profile curve length, the ability to correct aberration is better. However, the difficulty of manufacturing increases as well. Therefore, the profile curve length within a half of the entrance pupil diameter (HEP) of any surface of any lens has to be controlled. The ratio between the profile curve length (ARE) within a half of the entrance pupil diameter (HEP) of one surface and the thickness (TP) of the lens, which the surface belonged to, on the optical axis (i.e., ARE/TP) has to be particularly controlled. For example, the profile curve length of a half of the entrance pupil diameter (REP) of the object-side surface of the first lens is denoted by ARE11, the thickness of the first lens on the optical axis is TP1, and the ratio between these two parameters is ARE11/TP1; the profile curve length of a half of the entrance pupil diameter (REP) of the image-side surface of the first lens is denoted by ARE12, and the ratio between ARE12 and TP1 is ARE12/TP1. The profile curve length of a half of the entrance pupil diameter (HEP) of the object-side surface of the second lens is denoted by ARE21, the thickness of the second lens on the optical axis is TP2, and the ratio between these two parameters is ARE21/TP2; the profile curve length of a half of the entrance pupil diameter (REP) of the image-side surface of the second lens is denoted by ARE22, and the ratio between ARE22 and TP2 is ARE22/TP2. For any surface of other lenses in the optical image capturing system, the ratio between the profile curve length of a half of the entrance pupil diameter (REP) thereof and the thickness of the lens which the surface belonged to is denoted in the same manner.


In an embodiment, a height of the optical image capturing system (HOS) can be reduced while |f1|>f5.


In an embodiment, when |f2|+|f3|+|f4| and |f1|+|f5| of the lenses satisfy the aforementioned conditions, at least one lens among the second to the fourth lenses could have weak positive refractive power or weak negative refractive power. Herein the weak refractive power means the absolute value of the focal length of one specific lens is greater than 10. When at least one lens among the second to the fourth lenses has weak positive refractive power, it may share the positive refractive power of the first lens, and on the contrary, when at least one lens among the second to the fourth lenses has weak negative refractive power, it may fine turn and correct the aberration of the system.


In an embodiment, the fifth lens could have negative refractive power, and an image-side surface thereof is concave, it may reduce back focal length and size. Besides, the fifth lens can have at least an inflection point on at least a surface thereof, which may reduce an incident angle of the light of an off-axis field of view and correct the aberration of the off-axis field of view.





BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWINGS

The present invention will be best understood by referring to the following detailed description of some illustrative embodiments in conjunction with the accompanying drawings, in which



FIG. 1A is a schematic diagram of a first embodiment of the present invention;



FIG. 1B shows curve diagrams of longitudinal spherical aberration, astigmatic field, and optical distortion of the optical image capturing system in the order from left to right of the first embodiment of the present application;



FIG. 1C shows a tangential fan and a sagittal fan of the optical image capturing system of the first embodiment of the present application, and a transverse aberration diagram at 0.7 field of view when a longest operation wavelength and a shortest operation wavelength pass through an edge of an aperture;



FIG. 1D is a diagram showing the through-focus MTF values of the visible light spectrum at the central field of view, 0.3 field of view, and 0.7 field of view of the first embodiment of the present invention;



FIG. 1E is a diagram showing the through-focus MTF values of the infrared light spectrum at the central field of view, 0.3 field of view, and 0.7 field of view of the first embodiment of the present disclosure;



FIG. 2A is a schematic diagram of a second embodiment of the present invention;



FIG. 2B shows curve diagrams of longitudinal spherical aberration, astigmatic field, and optical distortion of the optical image capturing system in the order from left to right of the second embodiment of the present application;



FIG. 2C shows a tangential fan and a sagittal fan of the optical image capturing system of the second embodiment of the present application, and a transverse aberration diagram at 0.7 field of view when a longest operation wavelength and a shortest operation wavelength pass through an edge of an aperture;



FIG. 2D is a diagram showing the through-focus MTF values of the visible light spectrum at the central field of view, 0.3 field of view, and 0.7 field of view of the second embodiment of the present invention;



FIG. 2E is a diagram showing the through-focus MTF values of the infrared light spectrum at the central field of view, 0.3 field of view, and 0.7 field of view of the second embodiment of the present disclosure;



FIG. 3A is a schematic diagram of a third embodiment of the present invention;



FIG. 3B shows curve diagrams of longitudinal spherical aberration, astigmatic field, and optical distortion of the optical image capturing system in the order from left to right of the third embodiment of the present application;



FIG. 3C shows a tangential fan and a sagittal fan of the optical image capturing system of the third embodiment of the present application, and a transverse aberration diagram at 0.7 field of view when a longest operation wavelength and a shortest operation wavelength pass through an edge of an aperture;



FIG. 3D is a diagram showing the through-focus MTF values of the visible light spectrum at the central field of view, 0.3 field of view, and 0.7 field of view of the third embodiment of the present invention;



FIG. 3E is a diagram showing the through-focus MTF values of the infrared light spectrum at the central field of view, 0.3 field of view, and 0.7 field of view of the third embodiment of the present disclosure;



FIG. 4A is a schematic diagram of a fourth embodiment of the present invention;



FIG. 4B shows curve diagrams of longitudinal spherical aberration, astigmatic field, and optical distortion of the optical image capturing system in the order from left to right of the fourth embodiment of the present application;



FIG. 4C shows a tangential fan and a sagittal fan of the optical image capturing system of the fourth embodiment of the present application, and a transverse aberration diagram at 0.7 field of view when a longest operation wavelength and a shortest operation wavelength pass through an edge of an aperture;



FIG. 4D is a diagram showing the through-focus MTF values of the visible light spectrum at the central field of view, 0.3 field of view, and 0.7 field of view of the fourth embodiment of the present invention;



FIG. 4E is a diagram showing the through-focus MTF values of the infrared light spectrum at the central field of view, 0.3 field of view, and 0.7 field of view of the fourth embodiment of the present disclosure;



FIG. 5A is a schematic diagram of a fifth embodiment of the present invention;



FIG. 5B shows curve diagrams of longitudinal spherical aberration, astigmatic field, and optical distortion of the optical image capturing system in the order from left to right of the fifth embodiment of the present application;



FIG. 5C shows a tangential fan and a sagittal fan of the optical image capturing system of the fifth embodiment of the present application, and a transverse aberration diagram at 0.7 field of view when a longest operation wavelength and a shortest operation wavelength pass through an edge of an aperture;



FIG. 5D is a diagram showing the through-focus MTF values of the visible light spectrum at the central field of view, 0.3 field of view, and 0.7 field of view of the fifth embodiment of the present invention;



FIG. 5E is a diagram showing the through-focus MTF values of the infrared light spectrum at the central field of view, 0.3 field of view, and 0.7 field of view of the fifth embodiment of the present disclosure;



FIG. 6A is a schematic diagram of a sixth embodiment of the present invention;



FIG. 6B shows curve diagrams of longitudinal spherical aberration, astigmatic field, and optical distortion of the optical image capturing system in the order from left to right of the sixth embodiment of the present application;



FIG. 6C shows a tangential fan and a sagittal fan of the optical image capturing system of the sixth embodiment of the present application, and a transverse aberration diagram at 0.7 field of view when a longest operation wavelength and a shortest operation wavelength pass through an edge of an aperture;



FIG. 6D is a diagram showing the through-focus MTF values of the visible light spectrum at the central field of view, 0.3 field of view, and 0.7 field of view of the sixth embodiment of the present invention; and



FIG. 6E is a diagram showing the through-focus MTF values of the infrared light spectrum at the central field of view, 0.3 field of view, and 0.7 field of view of the sixth embodiment of the present disclosure.





DETAILED DESCRIPTION OF THE INVENTION

An optical image capturing system of the present invention includes a first lens, a second lens, a third lens, a fourth lens, a fifth lens, and an image plane from an object side to an image side. The optical image capturing system further is provided with an image sensor at an image plane.


The optical image capturing system can work in three wavelengths, including 486.1 nm, 587.5 nm, and 656.2 nm, wherein 587.5 nm is the main reference wavelength and is the reference wavelength for obtaining the technical characters. The optical image capturing system can also work in five wavelengths, including 470 nm, 510 nm, 555 nm, 610 nm, and 650 nm wherein 555 nm is the main reference wavelength, and is the reference wavelength for obtaining the technical characters.


The optical image capturing system of the present invention satisfies 0.5≤ΣPPR/|ΣNPR|≤3.0, and a preferable range is 1≤ΣPPR/|ΣNPR|≤2.5, where PPR is a ratio of the focal length fp of the optical image capturing system to a focal length fp of each of lenses with positive refractive power; NPR is a ratio of the focal length fn of the optical image capturing system to a focal length fn of each of lenses with negative refractive power; ΣPPR is a sum of the PPRs of each positive lens; and ΣNPR is a sum of the NPRs of each negative lens. It is helpful for control of an entire refractive power and an entire length of the optical image capturing system.


The image sensor is provided on the image plane. The optical image capturing system of the present invention satisfies HOS/HOI≤25 and 0.5≤HOS/f≤25, and a preferable range is 1≤HOS/HOI≤20 and 1≤HOS/f≤20, where HOI is a half of a diagonal of an effective sensing area of the image sensor, i.e., the maximum image height, and HOS is a height of the optical image capturing system, i.e. a distance on the optical axis between the object-side surface of the first lens and the image plane. It is helpful for reduction of the size of the system for used in compact cameras.


The optical image capturing system of the present invention further is provided with an aperture to increase image quality.


In the optical image capturing system of the present invention, the aperture could be a front aperture or a middle aperture, wherein the front aperture is provided between the object and the first lens, and the middle is provided between the first lens and the image plane. The front aperture provides a long distance between an exit pupil of the system and the image plane, which allows more elements to be installed. The middle could enlarge a view angle of view of the system and increase the efficiency of the image sensor. The optical image capturing system satisfies 0.2≤InS/HOS≤1.1, where InS is a distance between the aperture and the image plane. It is helpful for size reduction and wide angle.


The optical image capturing system of the present invention satisfies 0.1≤ΣTP/InTL≤0.9, where InTL is a distance between the object-side surface of the first lens and the image-side surface of the fifth lens, and ΣTP is a sum of central thicknesses of the lenses on the optical axis. It is helpful for the contrast of image and yield rate of manufacture and provides a suitable back focal length for installation of other elements.


The optical image capturing system of the present invention satisfies 0.01<|R1/R2|<100, and a preferable range is 0.05<|R1/R2|<80, where R1 is a radius of curvature of the object-side surface of the first lens, and R2 is a radius of curvature of the image-side surface of the first lens. It provides the first lens with a suitable positive refractive power to reduce the increase rate of the spherical aberration.


The optical image capturing system of the present invention satisfies −50<(R9−R10)/(R9+R10)<50, where R9 is a radius of curvature of the object-side surface of the fifth lens, and R10 is a radius of curvature of the image-side surface of the fifth lens. It may modify the astigmatic field curvature.


The optical image capturing system of the present invention satisfies IN12/f≤5.0, where IN12 is a distance on the optical axis between the first lens and the second lens. It may correct chromatic aberration and improve the performance.


The optical image capturing system of the present invention satisfies IN45/f≤5.0, where IN45 is a distance on the optical axis between the fourth lens and the fifth lens. It may correct chromatic aberration and improve the performance.


The optical image capturing system of the present invention satisfies 0.1≤(TP1+IN12)/TP2≤50.0, where TP1 is a central thickness of the first lens on the optical axis, and TP2 is a central thickness of the second lens on the optical axis. It may control the sensitivity of manufacture of the system and improve the performance.


The optical image capturing system of the present invention satisfies 0.1≤(TP5+IN45)/TP4≤50.0, where TP4 is a central thickness of the fourth lens on the optical axis, TP5 is a central thickness of the fifth lens on the optical axis, and IN45 is a distance between the fourth lens and the fifth lens. It may control the sensitivity of manufacture of the system and improve the performance.


The optical image capturing system of the present invention satisfies 0.1≤TP3/(IN23+TP3+IN34)<1, where TP2 is a central thickness of the second lens on the optical axis, TP3 is a central thickness of the third lens on the optical axis, TP4 is a central thickness of the fourth lens on the optical axis, IN23 is a distance on the optical axis between the second lens and the third lens, IN34 is a distance on the optical axis between the third lens and the fourth lens, and InTL is a distance between the object-side surface of the first lens and the image-side surface of the fifth lens. It may fine tune and correct the aberration of the incident rays layer by layer, and reduce the height of the system.


The optical image capturing system satisfies 0 mm≤HVT51≤3 mm; 0 mm<HVT52≤6 mm; 0≤HVT51/HVT52; 0 mm≤|SGC51|≤0.5 mm; 0 mm<|SGC52|≤2 mm; and 0<|SGC52|/(|SGC52|+TP5)≤0.9, where HVT51 a distance perpendicular to the optical axis between the critical point C51 on the object-side surface of the fifth lens and the optical axis; HVT52 a distance perpendicular to the optical axis between the critical point C52 on the image-side surface of the fifth lens and the optical axis; SGC51 is a distance on the optical axis between a point on the object-side surface of the fifth lens where the optical axis passes through and a point where the critical point C51 projects on the optical axis; SGC52 is a distance on the optical axis between a point on the image-side surface of the fifth lens where the optical axis passes through and a point where the critical point C52 projects on the optical axis. It is helpful to correct the off-axis view field aberration.


The optical image capturing system satisfies 0.2≤HVT52/HOI≤0.9, and preferably satisfies 0.3≤HVT52/HOI≤0.8. It may help to correct the peripheral aberration.


The optical image capturing system satisfies 0≤HVT52/HOS≤0.5, and preferably satisfies 0.2≤HVT52/HOS≤0.45. It may help to correct the peripheral aberration.


The optical image capturing system of the present invention satisfies 0<SGI511/(SGI511+TP5)≤0.9; 0<SGI521/(SGI521+TP5)≤0.9, and it is preferable to satisfy 0.1≤SGI511/(SGI511+TP5)≤0.6; 0.1≤SGI521/(SGI521+TP5)≤0.6, where SGI511 is a displacement on the optical axis from a point on the object-side surface of the fifth lens, through which the optical axis passes, to a point where the inflection point on the object-side surface, which is the closest to the optical axis, projects on the optical axis, and SGI521 is a displacement on the optical axis from a point on the image-side surface of the fifth lens, through which the optical axis passes, to a point where the inflection point on the image-side surface, which is the closest to the optical axis, projects on the optical axis.


The optical image capturing system of the present invention satisfies 0<SGI512/(SGI512+TP5)≤0.9; 0<SGI522/(SGI522+TP5)≤0.9, and it is preferable to satisfy 0.1≤SGI512/(SGI512+TP5)≤0.6; 0.1≤SGI522/(SGI522+TP5)≤0.6, where SGI512 is a displacement on the optical axis from a point on the object-side surface of the fifth lens, through which the optical axis passes, to a point where the inflection point on the object-side surface, which is the second closest to the optical axis, projects on the optical axis, and SGI522 is a displacement on the optical axis from a point on the image-side surface of the fifth lens, through which the optical axis passes, to a point where the inflection point on the image-side surface, which is the second closest to the optical axis, projects on the optical axis.


The optical image capturing system of the present invention satisfies 0.001 mm≤|HIF511|≤5 mm; 0.001 mm≤|HIF521|≤5 mm, and it is preferable to satisfy 0.1 mm≤|HIF511|≤3.5 mm; 1.5 mm≤|HIF521|≤3.5 mm, where HIF511 is a distance perpendicular to the optical axis between the inflection point on the object-side surface of the fifth lens, which is the closest to the optical axis, and the optical axis; HIF521 is a distance perpendicular to the optical axis between the inflection point on the image-side surface of the fifth lens, which is the closest to the optical axis, and the optical axis.


The optical image capturing system of the present invention satisfies 0.001 mm≤|HIF512|≤5 mm; 0.001 mm≤|HIF522|≤5 mm, and it is preferable to satisfy 0.1 mm≤|HIF522|≤3.5 mm; 0.1 mm≤|HIF512|≤3.5 mm, where HIF512 is a distance perpendicular to the optical axis between the inflection point on the object-side surface of the fifth lens, which is the second closest to the optical axis, and the optical axis; HIF522 is a distance perpendicular to the optical axis between the inflection point on the image-side surface of the fifth lens, which is the second closest to the optical axis, and the optical axis.


The optical image capturing system of the present invention satisfies 0.001 mm≤|HIF513|≤5 mm; 0.001 mm≤|HIF523|≤5 mm, and it is preferable to satisfy 0.1 mm≤|HIF523|≤3.5 mm; 0.1 mm≤|HIF513|≤3.5 mm, where HIF513 is a distance perpendicular to the optical axis between the inflection point on the object-side surface of the fifth lens, which is the third closest to the optical axis, and the optical axis; HIF523 is a distance perpendicular to the optical axis between the inflection point on the image-side surface of the fifth lens, which is the third closest to the optical axis, and the optical axis.


The optical image capturing system of the present invention satisfies 0.001 mm≤|HIF514|≤5 mm; 0.001 mm≤|HIF524|≤5 mm, and it is preferable to satisfy 0.1 mm≤|HIF524|≤3.5 mm; 0.1 mm≤|HIF514|≤3.5 mm, where HIF514 is a distance perpendicular to the optical axis between the inflection point on the object-side surface of the fifth lens, which is the fourth closest to the optical axis, and the optical axis; HIF524 is a distance perpendicular to the optical axis between the inflection point on the image-side surface of the fifth lens, which is the fourth closest to the optical axis, and the optical axis.


In an embodiment, the lenses of high Abbe number and the lenses of low Abbe number are arranged in an interlaced arrangement that could be helpful for correction of aberration of the system.


An equation of aspheric surface is






z=ch
2/[1+[1(k+1)c2h2]0.5]+A4h4+A6h6+A8h8+A10h10+A12h12+A14h14+A16h16+A18h18+A20h20+ . . .  (1)


where z is a depression of the aspheric surface; k is conic constant; c is reciprocal of the radius of curvature; and A4, A6, A8, A10, A12, A14, A16, A18, and A20 are high-order aspheric coefficients.


In the optical image capturing system, the lenses could be made of plastic or glass. The plastic lenses may reduce the weight and lower the cost of the system, and the glass lenses may control the thermal effect and enlarge the space for arrangement of the refractive power of the system. In addition, the opposite surfaces (object-side surface and image-side surface) of the first to the fifth lenses could be aspheric that can obtain more control parameters to reduce aberration. The number of aspheric glass lenses could be less than the conventional spherical glass lenses, which is helpful for reduction of the height of the system.


When the lens has a convex surface, which means that the surface is convex around a position, through which the optical axis passes, and when the lens has a concave surface, which means that the surface is concave around a position, through which the optical axis passes.


The optical image capturing system of the present invention could be applied in a dynamic focusing optical system. It is superior in the correction of aberration and high imaging quality so that it could be allied in lots of fields.


The optical image capturing system of the present invention could further include a driving module to meet different demands, wherein the driving module can be coupled with the lenses to move the lenses. The driving module can be a voice coil motor (VCM), which is used to move the lens for focusing, or can be an optical image stabilization (OIS) component, which is used to lower the possibility of having the problem of image blurring which is caused by subtle movements of the lens while shooting.


To meet different requirements, at least one lens among the first lens to the fifth lens of the optical image capturing system of the present invention can be a light filter, which filters out light of wavelength shorter than 500 nm. Such effect can be achieved by coating on at least one surface of the lens, or by using materials capable of filtering out short waves to make the lens.


To meet different requirements, the image plane of the optical image capturing system in the present invention can be either flat or curved. If the image plane is curved (e.g., a sphere with a radius of curvature), the incidence angle required for focusing light on the image plane can be decreased, which is not only helpful to shorten the length of the system (TTL), but also helpful to increase the relative illuminance.


We provide several embodiments in conjunction with the accompanying drawings for the best understanding, which are:


First Embodiment

As shown in FIG. 1A and FIG. 1B, an optical image capturing system 10 of the first embodiment of the present invention includes, along an optical axis from an object side to an image side, a first lens 110, an aperture 100, a second lens 120, a third lens 130, a fourth lens 140, a fifth lens 150, an infrared rays filter 170, an image plane 180, and an image sensor 190. FIG. 1C shows a tangential fan and a sagittal fan of the optical image capturing system 10 of the first embodiment of the present application, and a transverse aberration diagram at 0.7 field of view when a longest operation wavelength and a shortest operation wavelength pass through an edge of the aperture 100. FIG. 1D is a diagram showing the through-focus MTF values of the visible light spectrum at the central field of view, 0.3 field of view, and 0.7 field of view of the first embodiment of the present invention. FIG. 1E is a diagram showing the through-focus MTF values of the infrared light spectrum at the central field of view, 0.3 field of view, and 0.7 field of view of the first embodiment of the present disclosure.


The first lens 110 has negative refractive power and is made of plastic. An object-side surface 112 thereof, which faces the object side, is a convex aspheric surface, and an image-side surface 114 thereof, which faces the image side, is a concave aspheric surface. The object-side surface 112 has an inflection point thereon. A profile curve length of the maximum effective half diameter of an object-side surface of the first lens 110 is denoted by ARS11, and a profile curve length of the maximum effective half diameter of the image-side surface of the first lens 110 is denoted by ARS12. A profile curve length of a half of an entrance pupil diameter (HEP) of the object-side surface of the first lens 110 is denoted by ARE11, and a profile curve length of a half of the entrance pupil diameter (HEP) of the image-side surface of the first lens 110 is denoted by ARE12. A thickness of the first lens 110 on the optical axis is TP1.


The first lens satisfies SGI111=1.96546 mm; |SGI111|/(|SGI111|+TP1)=0.72369, where SGI111 is a displacement on the optical axis from a point on the object-side surface of the first lens, through which the optical axis passes, to a point where the inflection point on the object-side surface, which is the closest to the optical axis, projects on the optical axis, and SGI121 is a displacement on the optical axis from a point on the image-side surface of the first lens, through which the optical axis passes, to a point where the inflection point on the image-side surface, which is the closest to the optical axis, projects on the optical axis.


The first lens satisfies HIF111=3.38542 mm; HIF111/HOI=0.90519, where HIF111 is a displacement perpendicular to the optical axis from a point on the object-side surface of the first lens, through which the optical axis passes, to the inflection point, which is the closest to the optical axis; HIF121 is a displacement perpendicular to the optical axis from a point on the image-side surface of the first lens, through which the optical axis passes, to the inflection point, which is the closest to the optical axis.


The second lens 120 has positive refractive power and is made of plastic. An object-side surface 122 thereof, which faces the object side, is a convex aspheric surface, and an image-side surface 124 thereof, which faces the image side, is a concave aspheric surface. A profile curve length of the maximum effective half diameter of an object-side surface of the second lens 120 is denoted by ARS21, and a profile curve length of the maximum effective half diameter of the image-side surface of the second lens 120 is denoted by ARS22. A profile curve length of a half of an entrance pupil diameter (HEP) of the object-side surface of the second lens 120 is denoted by ARE21, and a profile curve length of a half of the entrance pupil diameter (HEP) of the image-side surface of the second lens 120 is denoted by ARE22. A thickness of the second lens 120 on the optical axis is TP2.


For the second lens, a displacement on the optical axis from a point on the object-side surface of the second lens, through which the optical axis passes, to a point where the inflection point on the image-side surface, which is the closest to the optical axis, projects on the optical axis, is denoted by SGI211, and a displacement on the optical axis from a point on the image-side surface of the second lens, through which the optical axis passes, to a point where the inflection point on the image-side surface, which is the closest to the optical axis, projects on the optical axis is denoted by SGI221.


For the second lens, a displacement perpendicular to the optical axis from a point on the object-side surface of the second lens, through which the optical axis passes, to the inflection point, which is the closest to the optical axis is denoted by HIF211, and a displacement perpendicular to the optical axis from a point on the image-side surface of the second lens, through which the optical axis passes, to the inflection point, which is the closest to the optical axis is denoted by HIF221.


The third lens 130 has positive refractive power and is made of plastic. An object-side surface 132, which faces the object side, is a convex aspheric surface, and an image-side surface 134, which faces the image side, is a convex aspheric surface. The object-side surface 132 has an inflection point. A profile curve length of the maximum effective half diameter of an object-side surface of the third lens 130 is denoted by ARS31, and a profile curve length of the maximum effective half diameter of the image-side surface of the third lens 130 is denoted by ARS32. A profile curve length of a half of an entrance pupil diameter (HEP) of the object-side surface of the third lens 130 is denoted by ARE31, and a profile curve length of a half of the entrance pupil diameter (HEP) of the image-side surface of the third lens 130 is denoted by ARS32. A thickness of the third lens 130 on the optical axis is TP3.


The third lens 130 satisfies SGI311=0.00388 mm; |SGI311|/(|SGI311|+TP3)=0.00414, where SGI311 is a displacement on the optical axis from a point on the object-side surface of the third lens, through which the optical axis passes, to a point where the inflection point on the object-side surface, which is the closest to the optical axis, projects on the optical axis, and SGI321 is a displacement on the optical axis from a point on the image-side surface of the third lens, through which the optical axis passes, to a point where the inflection point on the image-side surface, which is the closest to the optical axis, projects on the optical axis.


For the third lens 130, SGI312 is a displacement on the optical axis from a point on the object-side surface of the third lens, through which the optical axis passes, to a point where the inflection point on the object-side surface, which is the second closest to the optical axis, projects on the optical axis, and SGI322 is a displacement on the optical axis from a point on the image-side surface of the third lens, through which the optical axis passes, to a point where the inflection point on the object-side surface, which is the second closest to the optical axis, projects on the optical axis.


The third lens 130 further satisfies HIF311=0.38898 mm; HIF311/HOI=0.10400, where HIF311 is a distance perpendicular to the optical axis between the inflection point on the object-side surface of the third lens, which is the closest to the optical axis, and the optical axis; HIF321 is a distance perpendicular to the optical axis between the inflection point on the image-side surface of the third lens, which is the closest to the optical axis, and the optical axis.


For the third lens 130, HIF312 is a distance perpendicular to the optical axis between the inflection point on the object-side surface of the third lens, which is the second closest to the optical axis, and the optical axis; HIF322 is a distance perpendicular to the optical axis between the inflection point on the image-side surface of the third lens, which is the second closest to the optical axis, and the optical axis.


The fourth lens 140 has positive refractive power and is made of plastic. An object-side surface 142, which faces the object side, is a convex aspheric surface, and an image-side surface 144, which faces the image side, is a convex aspheric surface. The object-side surface 142 has an inflection point. A profile curve length of the maximum effective half diameter of an object-side surface of the fourth lens 140 is denoted by ARS41, and a profile curve length of the maximum effective half diameter of the image-side surface of the fourth lens 140 is denoted by ARS42. A profile curve length of a half of an entrance pupil diameter (HEP) of the object-side surface of the fourth lens 140 is denoted by ARE41, and a profile curve length of a half of the entrance pupil diameter (HEP) of the image-side surface of the fourth lens 140 is denoted by ARE42. A thickness of the fourth lens 140 on the optical axis is TP4.


The fourth lens 140 satisfies SGI421=0.06508 mm; |SGI421|/(|SGI421|+TP4)=0.03459, where SGI411 is a displacement on the optical axis from a point on the object-side surface of the fourth lens, through which the optical axis passes, to a point where the inflection point on the object-side surface, which is the closest to the optical axis, projects on the optical axis, and SGI421 is a displacement on the optical axis from a point on the image-side surface of the fourth lens, through which the optical axis passes, to a point where the inflection point on the image-side surface, which is the closest to the optical axis, projects on the optical axis.


For the fourth lens 140, SGI412 is a displacement on the optical axis from a point on the object-side surface of the fourth lens, through which the optical axis passes, to a point where the inflection point on the object-side surface, which is the second closest to the optical axis, projects on the optical axis, and SGI422 is a displacement on the optical axis from a point on the image-side surface of the fourth lens, through which the optical axis passes, to a point where the inflection point on the object-side surface, which is the second closest to the optical axis, projects on the optical axis.


The fourth lens 140 further satisfies HIF421=0.85606 mm; HIF421/HOI=0.22889, where HIF411 is a distance perpendicular to the optical axis between the inflection point on the object-side surface of the fourth lens, which is the closest to the optical axis, and the optical axis; HIF421 is a distance perpendicular to the optical axis between the inflection point on the image-side surface of the fourth lens, which is the closest to the optical axis, and the optical axis.


For the fourth lens 140, HIF412 is a distance perpendicular to the optical axis between the inflection point on the object-side surface of the fourth lens, which is the second closest to the optical axis, and the optical axis; HIF422 is a distance perpendicular to the optical axis between the inflection point on the image-side surface of the fourth lens, which is the second closest to the optical axis, and the optical axis.


The fifth lens 150 has negative refractive power and is made of plastic. An object-side surface 152, which faces the object side, is a concave aspheric surface, and an image-side surface 154, which faces the image side, is a concave aspheric surface. The object-side surface 152 and the image-side surface 154 both have an inflection point. A profile curve length of the maximum effective half diameter of an object-side surface of the fifth lens 150 is denoted by ARS51, and a profile curve length of the maximum effective half diameter of the image-side surface of the fifth lens 150 is denoted by ARS52. A profile curve length of a half of an entrance pupil diameter (HEP) of the object-side surface of the fifth lens 150 is denoted by ARE51, and a profile curve length of a half of the entrance pupil diameter (REP) of the image-side surface of the fifth lens 150 is denoted by ARE52. A thickness of the fifth lens 150 on the optical axis is TP5.


The fifth lens 150 satisfies SGI511=−1.51505 mm; |SGI511|/(|SGI511|+TP5)=0.70144; SGI521=0.01229 mm; |SGI521|/(|SGI521|+TP5)=0.01870, where SGI511 is a displacement on the optical axis from a point on the object-side surface of the fifth lens, through which the optical axis passes, to a point where the inflection point on the object-side surface, which is the closest to the optical axis, projects on the optical axis, and SGI521 is a displacement on the optical axis from a point on the image-side surface of the fifth lens, through which the optical axis passes, to a point where the inflection point on the image-side surface, which is the closest to the optical axis, projects on the optical axis.


For the fifth lens 150, SGI512 is a displacement on the optical axis from a point on the object-side surface of the fifth lens, through which the optical axis passes, to a point where the inflection point on the object-side surface, which is the second closest to the optical axis, projects on the optical axis, and SGI522 is a displacement on the optical axis from a point on the image-side surface of the fifth lens, through which the optical axis passes, to a point where the inflection point on the object-side surface, which is the second closest to the optical axis, projects on the optical axis.


The fifth lens 150 further satisfies HIF511=2.25435 mm; HIF511/HOI=0.60277; HIF521=0.82313 mm; HIF521/HOI=0.22009, where HIF511 is a distance perpendicular to the optical axis between the inflection point on the object-side surface of the fifth lens, which is the closest to the optical axis, and the optical axis; HIF521 is a distance perpendicular to the optical axis between the inflection point on the image-side surface of the fifth lens, which is the closest to the optical axis, and the optical axis.


For the fifth lens 150, HIF512 is a distance perpendicular to the optical axis between the inflection point on the object-side surface of the fifth lens, which is the second closest to the optical axis, and the optical axis; HIF522 is a distance perpendicular to the optical axis between the inflection point on the image-side surface of the fifth lens, which is the second closest to the optical axis, and the optical axis.


The infrared rays filter 170 is made of glass and between the fifth lens 150 and the image plane 180. The infrared rays filter 170 gives no contribution to the focal length of the system.


The optical image capturing system 10 of the first embodiment has the following parameters, which are f=3.03968 mm; f/HEP=1.6; HAF=50.001; and tan(HAF)=1.1918, where f is a focal length of the system; HAF is a half of the maximum field angle; and HEP is an entrance pupil diameter.


The parameters of the lenses of the first embodiment are f1=−9.24529 mm; |f/f1|=0.32878; f5=−2.32439; and |f1|>f5, where f1 is a focal length of the first lens 110; and f5 is a focal length of the fifth lens 150.


The first embodiment further satisfies |f2|+|f3|+|f4|=17.3009 mm; |f1|+|f5|=11.5697 mm and |f2|+|f3|+|f4|+|f5|, where f2 is a focal length of the second lens 120, f3 is a focal length of the third lens 130, f4 is a focal length of the fourth lens 140, and f5 is a focal length of the fifth lens 150.


The optical image capturing system 10 of the first embodiment further satisfies ΣPPR=f/f2+f/f3+f/f4=1.86768; ΣNPR=f/f1+f/f5=−1.63651; ΣPPR/ΣNPR|=1.14125; |f/f2|=0.47958; |f/f3|=0.38289; |f/f4|=1.00521; |f/f5|=1.30773, where PPR is a ratio of a focal length fp of the optical image capturing system to a focal length fp of each of the lenses with positive refractive power; and NPR is a ratio of a focal length fn of the optical image capturing system to a focal length fn of each of lenses with negative refractive power.


The optical image capturing system 10 of the first embodiment further satisfies InTL+BFL=HOS; HOS=10.56320 mm; HOI=3.7400 mm; HOS/HOI=2.8244; HOS/f=3.4751; InS=6.21073 mm; and InS/HOS=0.5880, where InTL is a distance between the object-side surface 112 of the first lens 110 and the image-side surface 154 of the fifth lens 150; HOS is a height of the image capturing system, i.e. a distance between the object-side surface 112 of the first lens 110 and the image plane 180; InS is a distance between the aperture 100 and the image plane 180; HOT is a half of a diagonal of an effective sensing area of the image sensor 190, i.e., the maximum image height; and BFL is a distance between the image-side surface 154 of the fifth lens 150 and the image plane 180.


The optical image capturing system 10 of the first embodiment further satisfies ΣTP=5.0393 mm; InTL=9.8514 mm and ΣTP/InTL=0.5115, where ΣTP is a sum of the thicknesses of the lenses 110-150 with refractive power. It is helpful for the contrast of image and yield rate of manufacture and provides a suitable back focal length for installation of other elements.


The optical image capturing system 10 of the first embodiment further satisfies |R1/R2|=1.9672, where R1 is a radius of curvature of the object-side surface 112 of the first lens 110, and R2 is a radius of curvature of the image-side surface 114 of the first lens 110. It provides the first lens with a suitable positive refractive power to reduce the increase rate of the spherical aberration.


The optical image capturing system 10 of the first embodiment further satisfies (R9−R10)/(R9+R10)=−1.1505, where R9 is a radius of curvature of the object-side surface 152 of the fifth lens 150, and R10 is a radius of curvature of the image-side surface 154 of the fifth lens 150. It may modify the astigmatic field curvature.


The optical image capturing system 10 of the first embodiment further satisfies ΣPP=f2+f3+f4=17.30090 mm; and f2/(f2+f3+f4)=0.36635, where ΣPP is a sum of the focal length fp of each lens with positive refractive power. It is helpful to share the positive refractive power of the second lens 120 to other positive lenses to avoid the significant aberration caused by the incident rays.


The optical image capturing system 10 of the first embodiment further satisfies ΣNP=f1+f5=−11.56968 mm; and f5/(f1+f5)=0.20090, where ΣNP is a sum of the focal length fn of each lens with negative refractive power. It is helpful to share the negative refractive power of the fifth lens 150 to the other negative lens, which avoids the significant aberration caused by the incident rays.


The optical image capturing system 10 of the first embodiment further satisfies IN12=3.19016 mm; IN12/f=1.04951, where IN12 is a distance on the optical axis between the first lens 110 and the second lens 120. It may correct chromatic aberration and improve the performance.


The optical image capturing system 10 of the first embodiment further satisfies IN45=0.40470 mm; IN45/f=0.13314, where IN45 is a distance on the optical axis between the fourth lens 140 and the fifth lens 150. It may correct chromatic aberration and improve the performance.


The optical image capturing system 10 of the first embodiment further satisfies TP1=0.75043 mm; TP2=0.89543 mm; TP3=0.93225 mm; and (TP1+IN12)/TP2=4.40078, where TP1 is a central thickness of the first lens 110 on the optical axis, TP2 is a central thickness of the second lens 120 on the optical axis, and TP3 is a central thickness of the third lens 130 on the optical axis. It may control the sensitivity of manufacture of the system and improve the performance.


The optical image capturing system 10 of the first embodiment further satisfies TP4=1.81634 mm; TP5=0.64488 mm; and (TP5+IN45)/TP4=0.57785, where TP4 is a central thickness of the fourth lens 140 on the optical axis, TP5 is a central thickness of the fifth lens 150 on the optical axis, and IN45 is a distance on the optical axis between the fourth lens 140 and the fifth lens 150. It may control the sensitivity of manufacture of the system and lower the total height of the system.


The optical image capturing system 10 of the first embodiment further satisfies TP2/TP3=0.96051; TP3/TP4=0.51325; TP4/TP5=2.81657; and TP3/(IN23+TP3+IN34)=0.43372, where IN34 is a distance on the optical axis between the third lens 130 and the fourth lens 140. It may control the sensitivity of manufacture of the system and lower the total height of the system.


The optical image capturing system 10 of the first embodiment further satisfies InRS41=−0.09737 mm; InRS42=−1.31040 mm; |InRS41|/TP4=0.05361 and |InRS42|/TP4=0.72145, where InRS41 is a displacement from a point on the object-side surface 142 of the fourth lens 140 passed through by the optical axis to a point on the optical axis where a projection of the maximum effective semi diameter of the object-side surface 142 of the fourth lens 140 ends; InRS42 is a displacement from a point on the image-side surface 144 of the fourth lens 140 passed through by the optical axis to a point on the optical axis where a projection of the maximum effective semi diameter of the image-side surface 144 of the fourth lens 140 ends; and TP4 is a central thickness of the fourth lens 140 on the optical axis. It is helpful for manufacturing and shaping of the lenses and is helpful to reduce the size.


The optical image capturing system 10 of the first embodiment further satisfies HVT41=1.41740 mm; HVT42=0, where HVT41 is a distance perpendicular to the optical axis between the critical point on the object-side surface 142 of the fourth lens and the optical axis; and HVT42 is a distance perpendicular to the optical axis between the critical point on the image-side surface 144 of the fourth lens and the optical axis.


The optical image capturing system 10 of the first embodiment further satisfies InRS51=−1.63543 mm; InRS52=−0.34495 mm; |InRS51|/TP5=2.53604 and |InRS52|/TP5=0.53491, where InRS51 is a displacement from a point on the object-side surface 152 of the fifth lens 150 passed through by the optical axis to a point on the optical axis where a projection of the maximum effective semi diameter of the object-side surface 152 of the fifth lens 150 ends; InRS52 is a displacement from a point on the image-side surface 154 of the fifth lens 150 passed through by the optical axis to a point on the optical axis where a projection of the maximum effective semi diameter of the image-side surface 154 of the fifth lens 150 ends; and TP5 is a central thickness of the fifth lens 150 on the optical axis. It is helpful for manufacturing and shaping of the lenses and is helpful to reduce the size.


The optical image capturing system 10 of the first embodiment satisfies HVT51=0; HVT52=1.35891 mm; and HVT51/HVT52=0, where HVT51 a distance perpendicular to the optical axis between the critical point on the object-side surface 152 of the fifth lens and the optical axis; and HVT52 a distance perpendicular to the optical axis between the critical point on the image-side surface 154 of the fifth lens and the optical axis.


The optical image capturing system 10 of the first embodiment satisfies HVT52/HOI=0.36334. It is helpful for correction of the aberration of the peripheral view field of the optical image capturing system.


The optical image capturing system 10 of the first embodiment satisfies HVT52/HOS=0.12865. It is helpful for correction of the aberration of the peripheral view field of the optical image capturing system.


The third lens 130 and the fifth lens 150 have negative refractive power. The optical image capturing system 10 of the first embodiment further satisfies NA5/NA3=0.368966, where NA3 is an Abbe number of the third lens 130; and NA5 is an Abbe number of the fifth lens 150. It may correct the aberration of the optical image capturing system.


The optical image capturing system 10 of the first embodiment further satisfies |TDT|=0.63350%; |ODT|=2.06135%, where TDT is TV distortion; and ODT is optical distortion.


In the present embodiment, the lights of any field of view can be further divided into sagittal ray and tangential ray, and the spatial frequency of 220 cycles/mm serves as the benchmark for assessing the focus shifts and the values of MTF. The focus shifts where the through-focus MTF values of the visible sagittal ray at the central field of view, 0.3 field of view, and 0.7 field of view of the optical image capturing system are at their respective maxima are denoted by VSFS0, VSFS3, and VSFS7 (unit of measurement: mm), respectively. The values of VSFS0, VSFS3, and VSFS7 equal to 0.000 mm, 0.000 mm, and −0.020 mm, respectively. The maximum values of the through-focus MTF of the visible sagittal ray at the central field of view, 0.3 field of view, and 0.7 field of view are denoted by VSMTF0, VSMTF3, and VSMTF7, respectively. The values of VSMTF0, VSMTF3, and VSMTF7 equal to 0.383, 0.352, and 0.304, respectively. The focus shifts where the through-focus MTF values of the visible tangential ray at the central field of view, 0.3 field of view, and 0.7 field of view of the optical image capturing system are at their respective maxima, are denoted by VTFS0, VTFS3, and VTFS7 (unit of measurement: mm), respectively. The values of VTFS0, VTFS3, and VTFS7 equal to 0.000 mm, 0.030 mm, and 0.010 mm, respectively. The maximum values of the through-focus MTF of the visible tangential ray at the central field of view, 0.3 field of view, and 0.7 field of view are denoted by VTMTF0, VTMTF3, and VTMTF7, respectively. The values of VTMTF0, VTMTF3, and VTMTF7 equal to 0.383, 0.311, and 0.179, respectively. The average focus shift (position) of both the aforementioned focus shifts of the visible sagittal ray at three fields of view and focus shifts of the visible tangential ray at three fields of view is denoted by AVFS (unit of measurement: mm), which satisfies the absolute value |(VSFS0+VSFS3+VSFS7+VTFS0+VTFS3+VTFS7)/6|=|0.003 mm|.


The focus shifts where the through-focus MTF values of the infrared sagittal ray at the central field of view, 0.3 field of view, and 0.7 field of view of the optical image capturing system are at their respective maxima, are denoted by ISFS0, ISFS3, and ISFS7 (unit of measurement: mm), respectively. The values of ISFS0, ISFS3, and ISFS7 equal to 0.060 mm, 0.060 mm, and 0.030 mm, respectively. The average focus shift (position) of the aforementioned focus shifts of the infrared sagittal ray at three fields of view is denoted by AISFS (unit of measurement: mm). The maximum values of the through-focus MTF of the infrared sagittal ray at the central field of view, 0.3 field of view, and 0.7 field of view are denoted by ISMTF0, ISMTF3, and ISMTF7, respectively. The values of ISMTF0, ISMTF3, and ISMTF7 equal to 0.642, 0.653, and 0.254, respectively. The focus shifts where the through-focus MTF values of the infrared tangential ray at the central field of view, 0.3 field of view, and 0.7 field of view of the optical image capturing system are at their respective maxima, are denoted by ITFS0, ITFS3, and ITFS7 (unit of measurement: mm), respectively. The values of ITFS0, ITFS3, and ITFS7 equal to 0.060, 0.070, and 0.030, respectively. The average focus shift (position) of the aforementioned focus shifts of the infrared tangential ray at three fields of view is denoted by AITFS (unit of measurement: mm). The maximum values of the through-focus MTF of the infrared tangential ray at the central field of view, 0.3 field of view, and 0.7 field of view are denoted by ITMTF0, ITMTF3, and ITMTF7, respectively. The values of ITMTF0, ITMTF3, and ITMTF7 equal to 0.642, 0.446, and 0.239, respectively. The average focus shift (position) of both of the aforementioned focus shifts of the infrared sagittal ray at the three fields of view and focus shifts of the infrared tangential ray at the three fields of view is denoted by AIFS (unit of measurement: mm), which equals to the absolute value of |(ISFS0+ISFS3+ISFS7+ITFS0+ITFS3+ITFS7)/6|=|0.052 mm|.


The focus shift (difference) between the focal points of the visible light and the infrared light at their central fields of view (RGB/IR) of the entire optical image capturing system (i.e. wavelength of 850 nm versus wavelength of 555 nm, unit of measurement: mm) is denoted by FS (the distance between the first and second image planes on the optical axis), which satisfies the absolute value |(VSFS0+VTFS0)/2−(ISFS0+ITFS0)/2|=|0.060 mm|. The difference (focus shift) between the average focus shift of the visible light in the three fields of view and the average focus shift of the infrared light in the three fields of view (RGB/IR) of the entire optical image capturing system is denoted by AFS (i.e. wavelength of 850 nm versus wavelength of 555 nm, unit of measurement: mm), for which the absolute value of |AIFS−AVFS|=|0.048 mm| is satisfied.


For the fifth lens 150 of the optical image capturing system 10 in the first embodiment, a transverse aberration at 0.7 field of view in the positive direction of the tangential fan after the longest operation wavelength passing through the edge of the aperture 100 is denoted by PLTA, and is −0.042 mm; a transverse aberration at 0.7 field of view in the positive direction of the tangential fan after the shortest operation wavelength passing through the edge of the aperture 100 is denoted by PSTA, and is 0.056 mm; a transverse aberration at 0.7 field of view in the negative direction of the tangential fan after the longest operation wavelength passing through the edge of the aperture 100 is denoted by NLTA, and is −0.011 mm; a transverse aberration at 0.7 field of view in the negative direction of the tangential fan after the shortest operation wavelength passing through the edge of the aperture 100 is denoted by NSTA, and is −0.024 mm; a transverse aberration at 0.7 field of view of the sagittal fan after the longest operation wavelength passing through the edge of the aperture 100 is denoted by SLTA, and is −0.013 mm; a transverse aberration at 0.7 field of view of the sagittal fan after the shortest operation wavelength passing through the edge of the aperture 100 is denoted by SSTA, and is 0.018 mm.


The parameters of the lenses of the first embodiment are listed in Table 1 and Table 2.









TABLE 1







f = 3.03968 mm; f/HEP = 1.6; HAF = 50.0010 deg



















Focal



Radius of curvature
Thickness

Refractive
Abbe
length


Surface
(mm)
(mm)
Material
index
number
(mm)

















0
Object
plane
infinity






1
1st lens
4.01438621
0.750
plastic
1.514
56.80
−9.24529


2

2.040696375
3.602


3
Aperture
plane
−0.412


4
2nd lens
2.45222384
0.895
plastic
1.565
58.00
6.33819


5

6.705898264
0.561


6
3rd lens
16.39663088
0.932
plastic
1.565
58.00
7.93877


7

−6.073735083
0.656


8
4th lens
4.421363446
1.816
plastic
1.565
58.00
3.02394


9

−2.382933539
0.405


10
5th lens
−1.646639396
0.645
plastic
1.650
21.40
−2.32439


11

23.53222697
0.100


12
Infrared
plane
0.200
BK7_SCH
1.517
64.20



rays



filter


13

plane
0.412


14
Image
plane



plane





Reference wavelength: 555 nm.













TABLE 2





Coefficients of the aspheric surfaces






















Surface
1
2
4
5
6
7
8





k
−1.882119E−01 
−1.927558E+00 
−6.483417E+00 
1.766123E+01
−5.000000E+01
−3.544648E+01 
−3.167522E+01


A4
7.686381E−04
3.070422E−02
5.439775E−02
7.241691E−03
−2.985209E−02
−6.315366E−02 
−1.903506E−03


A6
4.630306E−04
−3.565153E−03 
−7.980567E−03 
−8.359563E−03 
−7.175713E−03
6.038040E−03
−1.806837E−03


A8
3.178966E−05
2.062259E−03
−3.537039E−04 
1.303430E−02
 4.284107E−03
4.674156E−03
−1.670351E−03


A10
−1.773597E−05 
−1.571117E−04 
2.844845E−03
−6.951350E−03 
−5.492349E−03
−8.031117E−03 
 4.791024E−04


A12
1.620619E−06
−4.694004E−05 
−1.025049E−03 
1.366262E−03
 1.232072E−03
3.319791E−03
−5.594125E−05


A14
−4.916041E−08 
7.399980E−06
1.913679E−04
3.588298E−04
−4.107269E−04
−5.356799E−04 
 3.704401E−07


A16
0.000000E+00
0.000000E+00
0.000000E+00
0.000000E+00
 0.000000E+00
0.000000E+00
 0.000000E+00


A18
0.000000E+00
0.000000E+00
0.000000E+00
0.000000E+00
 0.000000E+00
0.000000E+00
 0.000000E+00


A20
0.000000E+00
0.000000E+00
0.000000E+00
0.000000E+00
 0.000000E+00
0.000000E+00
 0.000000E+00















Surface
8
9
10







k
−2.470764E+00 
−1.570351E+00
4.928899E+01



A4
−2.346908E−04 
−4.250059E−04
−4.625703E−03 



A6
2.481207E−03
−1.591781E−04
−7.108872E−04 



A8
−5.862277E−04 
−3.752177E−05
3.429244E−05



A10
−1.955029E−04 
−9.210114E−05
2.887298E−06



A12
1.880941E−05
−1.101797E−05
3.684628E−07



A14
1.132586E−06
 3.536320E−06
−4.741322E−08 



A16
0.000000E+00
 0.000000E+00
0.000000E+00



A18
0.000000E+00
 0.000000E+00
0.000000E+00



A20
0.000000E+00
 0.000000E+00
0.000000E+00










The figures related to the profile curve lengths obtained based on Table 1 and Table 2 are listed in the following table:












First embodiment (Reference wavelength: 555 nm)





















ARE
½(HEP)
ARE value
ARE − ½(HEP)
2(ARE/HEP) %
TP
ARE/TP (%)





11
0.950
0.958
0.008
100.87%
0.750
127.69%


12
0.950
0.987
0.037
103.91%
0.750
131.53%


21
0.950
0.976
0.026
102.74%
0.895
108.99%


22
0.950
0.954
0.004
100.42%
0.895
106.52%


31
0.950
0.949
−0.001
99.94%
0.932
101.83%


32
0.950
0.959
0.009
100.93%
0.932
102.84%


41
0.950
0.953
0.003
100.29%
1.816
52.45%


42
0.950
0.970
0.020
102.15%
1.816
53.42%


51
0.950
0.995
0.045
104.71%
0.645
154.24%


52
0.950
0.949
−0.001
99.92%
0.645
147.18%





ARS
EHD
ARS value
ARS − EHD
(ARS/EHD) %
TP
ARS/TP (%)





11
3.459
4.210
0.751
121.71%
0.750
561.03%


12
2.319
3.483
1.165
150.24%
0.750
464.19%


21
1.301
1.384
0.084
106.43%
0.895
154.61%


22
1.293
1.317
0.024
101.87%
0.895
147.09%


31
1.400
1.447
0.047
103.39%
0.932
155.22%


32
1.677
1.962
0.285
116.97%
0.932
210.45%


41
2.040
2.097
0.057
102.82%
1.816
115.48%


42
2.338
2.821
0.483
120.67%
1.816
155.32%


51
2.331
2.971
0.639
127.43%
0.645
460.64%


52
3.219
3.267
0.049
101.51%
0.645
506.66%









The detail parameters of the first embodiment are listed in Table 1, in which the unit of the radius of curvature, thickness, and focal length are millimeter, and surface 0-10 indicates the surfaces of all elements in the system in sequence from the object side to the image side. Table 2 is the list of coefficients of the aspheric surfaces, in which A1-A20 indicate the coefficients of aspheric surfaces from the first order to the twentieth order of each aspheric surface. The following embodiments have the similar diagrams and tables, which are the same as those of the first embodiment, so we do not describe it again.


Second Embodiment

As shown in FIG. 2A and FIG. 2B, an optical image capturing system 20 of the second embodiment of the present invention includes, along an optical axis from an object side to an image side, a first lens 210, a second lens 220, an aperture 200, a third lens 230, a fourth lens 240, a fifth lens 250, an infrared rays filter 270, an image plane 280, and an image sensor 290. FIG. 2C shows a tangential fan and a sagittal fan of the optical image capturing system of the second embodiment of the present application, and a transverse aberration diagram at 0.7 field of view when a longest operation wavelength and a shortest operation wavelength pass through an edge of the aperture. FIG. 2D is a diagram showing the through-focus MTF values of the visible light spectrum at the central field of view, 0.3 field of view, and 0.7 field of view of the second embodiment of the present invention. FIG. 2E is a diagram showing the through-focus MTF values of the infrared light spectrum at the central field of view, 0.3 field of view, and 0.7 field of view of the second embodiment of the present disclosure.


The first lens 210 has negative refractive power and is made of glass. An object-side surface 212 thereof, which faces the object side, is a convex aspheric surface, and an image-side surface 214 thereof, which faces the image side, is a concave aspheric surface.


The second lens 220 has negative refractive power and is made of plastic. An object-side surface 222 thereof, which faces the object side, is a convex aspheric surface, and an image-side surface 224 thereof, which faces the image side, is a concave aspheric surface. The object-side surface 222 has an inflection point.


The third lens 230 has positive refractive power and is made of plastic. An object-side surface 232, which faces the object side, is a convex aspheric surface, and an image-side surface 234, which faces the image side, is a convex aspheric surface.


The fourth lens 240 has negative refractive power and is made of plastic. An object-side surface 242, which faces the object side, is a concave aspheric surface, and an image-side surface 244, which faces the image side, is a convex aspheric surface. The object-side surface 242 has an inflection point.


The fifth lens 250 has positive refractive power and is made of plastic. An object-side surface 252, which faces the object side, is a convex aspheric surface, and an image-side surface 254, which faces the image side, is a concave aspheric surface. The object-side surface 252 has an inflection point. It may help to shorten the back focal length to keep small in size. In addition, it may reduce an incident angle of the light of an off-axis field of view and correct the aberration of the off-axis field of view.


The infrared rays filter 270 is made of glass and between the fifth lens 250 and the image plane 280. The infrared rays filter 270 gives no contribution to the focal length of the system.


The parameters of the lenses of the second embodiment are listed in Table 3 and Table 4.









TABLE 3







f = 2.6843 mm; f/HEP = 1.8; HAF = 101 deg



















Focal



Radius of curvature
Thickness

Refractive
Abbe
length


Surface
(mm)
(mm)
Material
index
number
(mm)

















0
Object
1E+18
1E+18






1
1st lens
118.6419
1.640543
glass
1.497
81.61
−19.7449


2

9.0406
5.60559


3
2nd lens
84.78939
2.568564
plastic
1.565
58
−16.7306


4

8.43529
20.89735


5
Aperture
1E+18
−0.43003


6
3rd lens
6.70194
10.41382
plastic
1.565
58
7.12038


7

−4.4421
0.072316


8
4th lens
−4.02971
0.773408
plastic
1.661
20.4
−7.47762


9

−22.6222
0.05


10
5th lens
6.12158
4.775198
plastic
1.565
58
16.6723


11

12.47695
1.2


12
Infrared
1E+18
0.5
NBK7
1.517
64.135



rays



filter


13

1E+18
1.82488


14
Image
1E+18
0.008073



plane





Reference wavelength: 555 nm.













TABLE 4





Coefficients of the aspheric surfaces






















Surface
1
2
3
4
6
7
8





k
−15.637523
−0.500385
−50
−0.101522
0.053678
−0.805822
−1.698678


A4
1.45343E−06
−2.39729E−04
−8.24045E−06
 2.04935E−04
−3.12166E−04
−6.49937E−04
−3.23464E−04


A6
1.79211E−09
 2.87357E−07
−4.44674E−08
−7.60209E−07
 3.97547E−06
 8.11380E−05
−9.48985E−06


A8
9.10588E−12
 7.91687E−11
−1.23227E−10
−3.79592E−08
−8.66200E−07
−3.50676E−07
 1.96166E−06


A10
8.10980E−15
−1.32966E−13
−8.77475E−12
−1.91463E−11
 2.51779E−08
−4.68379E−08
−9.87021E−08


A12
0.000000E+00 
0.000000E+00
0.000000E+00
0.000000E+00
0.000000E+00
0.000000E+00
0.000000E+00















Surface
9
10
11







k
−49.277927
0.056295
6.058707



A4
 1.69029E−03
−7.55252E−05
 2.07082E−03



A6
−4.20379E−05
 2.27413E−06
−1.75075E−04



A8
 3.33282E−06
 2.38304E−08
 5.04362E−06



A10
−1.13933E−07
−8.53622E−09
−1.13321E−08



A12
0.000000E+00
0.000000E+00
0.000000E+00










An equation of the aspheric surfaces of the second embodiment is the same as that of the first embodiment, and the definitions are the same as well.


The exact parameters of the second embodiment based on Table 3 and Table 4 are listed in the following table:












Second embodiment (Reference wavelength: 555 nm)




















|f/f1|
|f/f2|
|f/f3|
|f/f4|
|f/f5|
|f1/f2|


0.13595
0.16044
0.37699
0.35898
0.16100
1.18017


ΣPPR
ΣNPR
ΣPPR/|ΣNPR|
IN12/f
IN45/f
|f2/f3|


0.5194 
0.6739 
0.7707 
2.0883 
0.0186 
2.3497 









TP3/(IN23 + TP3 + IN34)
(TP1 + IN12)/TP2
(TP5 + IN45)/TP4


0.36813
0.33643
2.82109












HOS
InTL
HOS/HOI
InS/HOS
ODT %
TDT %


49.89970 
46.36680 
12.47493 
0.38453
−126.286   
114.258  


HVT41
HVT42
HVT51
HVT52
HVT52/HOI
HVT52/HOS


0.00000
2.43591
0.00000
0.00000
0.00000
0.00000


TP2/TP3
TP3/TP4
InRS51
InRS52
|InRS51|/TP5
|InRS52|/TP5


0.24665
13.46482 
2.54356
1.02802
0.53266
0.21528


PSTA
PLTA
NSTA
NLTA
SSTA
SLTA


−0.004 mm
0.005 mm
−0.016 mm
0.012 mm
0.020 mm
−0.004 mm


VSFS0
VSFS3
VSFS7
VTFS0
VTFS3
VTFS7


−0.000  
−0.000  
−0.010  
−0.000  
−0.005  
−0.005  


VSMTF0
VSMTF3
VSMTF7
VTMTF0
VTMTF3
VTMTF7


0.464 
0.503 
0.427 
0.464 
0.392 
0.214 


ISFS0
ISFS3
ISFS7
ITFS0
ITFS3
ITFS7


−0.015  
−0.015  
−0.010  
−0.015  
−0.010  
0.035 


ISMTF0
ISMTF3
ISMTF7
ITMTF0
ITMTF3
ITMTF7


0.627 
0.692 
0.447 
0.627 
0.630 
0.460 


FS
AIFS
AVFS
AFS


0.015 
−0.005  
−0.003  
0.002 









The figures related to the profile curve lengths obtained based on Table 3 and Table 4 are listed in the following table:












Second embodiment (Reference wavelength: 555 nm)





















ARE
½(HEP)
ARE value
ARE − ½(HEP)
2(ARE/HEP) %
TP
ARE/TP (%)





11
0.746
0.745
−0.00063
99.91%
1.641
45.41%


12
0.746
0.746
0.00020
100.03%
1.641
45.46%


21
0.746
0.745
−0.00063
99.92%
2.569
29.00%


22
0.746
0.746
0.00034
100.05%
2.569
29.04%


31
0.746
0.747
0.00090
100.12%
10.414
7.17%


32
0.746
0.749
0.00287
100.39%
10.414
7.19%


41
0.746
0.749
0.00354
100.47%
0.773
96.87%


42
0.746
0.745
−0.00052
99.93%
0.773
96.34%


51
0.746
0.747
0.00121
100.16%
4.775
15.64%


52
0.746
0.745
−0.00016
99.98%
4.775
15.61%





ARS
EHD
ARS value
ARS − EHD
(ARS/EHD) %
TP
ARS/TP (%)





11
21.046
21.320
0.273
101.30%
1.641
1299.56%


12
10.913
12.679
1.766
116.18%
1.641
772.85%


21
10.785
10.797
0.012
100.11%
2.569
420.34%


22
7.189
8.570
1.382
119.22%
2.569
333.66%


31
3.310
3.446
0.137
104.13%
10.414
33.09%


32
3.804
4.222
0.418
110.98%
10.414
40.54%


41
3.775
4.192
0.417
111.04%
0.773
542.07%


42
4.091
4.104
0.013
100.31%
0.773
530.62%


51
5.037
5.891
0.854
116.96%
4.775
123.36%


52
4.117
4.318
0.201
104.88%
4.775
90.43%









The results of the equations of the second embodiment based on Table 3 and Table 4 are listed in the following table:












Values related to the inflection points of the second


embodiment (Reference wavelength: 555 nm)






















HIF211
6.2710
HIF211/HOI
1.5677
SGI211
0.2016
|SGI211|/(|SGI211| + TP2)
0.0728


HIF421
1.3678
HIF421/HOI
0.3420
SGI421
−0.0340
|SGI421|/(|SGI421| + TP4)
0.0421









Third Embodiment

As shown in FIG. 3A and FIG. 3B, an optical image capturing system of the third embodiment of the present invention includes, along an optical axis from an object side to an image side, a first lens 310, a second lens 320, an aperture 300, a third lens 330, a fourth lens 340, a fifth lens 350, an infrared rays filter 370, an image plane 380, and an image sensor 390. FIG. 3C shows a tangential fan and a sagittal fan of the optical image capturing system of the third embodiment of the present application, and a transverse aberration diagram at 0.7 field of view when a longest operation wavelength and a shortest operation wavelength pass through an edge of the aperture. FIG. 3D is a diagram showing the through-focus MTF values of the visible light spectrum at the central field of view, 0.3 field of view, and 0.7 field of view of the third embodiment of the present invention. FIG. 3E is a diagram showing the through-focus MTF values of the infrared light spectrum at the central field of view, 0.3 field of view, and 0.7 field of view of the third embodiment of the present disclosure.


The first lens 310 has negative refractive power and is made of glass. An object-side surface 312 thereof, which faces the object side, is a convex aspheric surface, and an image-side surface 314 thereof, which faces the image side, is a concave aspheric surface. The image-side surface 314 has two inflection points.


The second lens 320 has positive refractive power and is made of plastic. An object-side surface 322 thereof, which faces the object side, is a concave aspheric surface, and an image-side surface 324 thereof, which faces the image side, is a convex aspheric surface. The object-side surface 322 has two inflection points.


The third lens 330 has negative refractive power and is made of plastic. An object-side surface 332 thereof, which faces the object side, is a concave aspheric surface, and an image-side surface 334 thereof, which faces the image side, is a convex aspheric surface.


The fourth lens 340 has positive refractive power and is made of plastic. An object-side surface 342, which faces the object side, is a convex aspheric surface, and an image-side surface 344, which faces the image side, is a convex aspheric surface.


The fifth lens 350 has negative refractive power and is made of plastic. An object-side surface 352, which faces the object side, is a concave aspheric surface, and an image-side surface 354, which faces the image side, is a convex aspheric surface. The object-side surface 352 has two inflection points, and the image-side surface 354 has an inflection point. It may help to shorten the back focal length to keep small in size.


The infrared rays filter 370 is made of glass and between the fifth lens 350 and the image plane 380. The infrared rays filter 370 gives no contribution to the focal length of the system.


The parameters of the lenses of the third embodiment are listed in Table 5 and Table 6.









TABLE 5







f = 2.4527 mm; f/HEP = 1.8; HAF = 70 deg



















Focal



Radius of curvature
Thickness

Refractive
Abbe
length


Surface
(mm)
(mm)
Material
index
number
(mm)

















0
Object
1E+18
1E+18






1
1st lens
59.44872
3.92335
glass
1.497
81.61
−15.7956


2

6.79595
3.991149


3
2nd lens
−9.8785
10.3436
plastic
1.565
54.5
13.7199


4

−6.00006
1.073014


5
Aperture
1E+18
1.382663
plastic


6
3rd lens
−3.04631
1.602108

1.565
58
−27.1729


7

−4.5199
0.05


8
4th lens
3.21095
3.569226
plastic
1.565
58
2.6877


9

−1.7329
0.148318


10
5th lens
−1.32821
2.074854
plastic
1.661
20.4
−5.77355


11

−3.29509
0.6


12
Infrared
1E+18
0.5
BK_7
1.517
64.13



rays



filter


13

1E+18
1.534179


14
Image
1E+18
−0.00225



plane





Reference wavelength: 555 nm.













TABLE 6





Coefficients of the aspheric surfaces






















Surface
1
2
4
5
6
7
8





k
0.000000E+00
0.000000E+00
−0.14059
−0.503093
−0.336781
−0.21503
−4.347694


A4
0.000000E+00
0.000000E+00
 8.16022E−04
 3.36495E−03
 2.17572E−02
−2.95934E−03
 2.10982E−03


A6
0.000000E+00
0.000000E+00
−2.63233E−05
−2.89995E−04
−6.58233E−03
−4.06160E−04
−1.50372E−04


A8
0.000000E+00
0.000000E+00
 6.93978E−07
 3.01939E−05
 1.60687E−03
 1.68552E−04
 2.57506E−05


A10
0.000000E+00
0.000000E+00
−7.03013E−09
−1.49131E−06
−2.50194E−04
−2.49452E−05
−1.20003E−06


A12
0.000000E+00
0.000000E+00
0.000000E+00
0.000000E+00
0.000000E+00
0.000000E+00
0.000000E+00















Surface
9
10
11







k
−4.739077
−3.277503
−4.987879



A4
9.62893E−04
 8.19874E−03
1.55909E−02



A6
−1.94375E−04 
−1.90116E−04
3.27132E−05



A8
3.29821E−06
−9.11982E−05
1.51635E−05



A10
1.36358E−07
 5.18949E−06
−2.26448E−06 



A12
0.000000E+00 
0.000000E+00
0.000000E+00 










An equation of the aspheric surfaces of the third embodiment is the same as that of the first embodiment, and the definitions are the same as well.


The exact parameters of the third embodiment based on Table 5 and Table 6 are listed in the following table:












Third embodiment (Reference wavelength: 555 nm)




















|f/f1|
|f/f2|
|f/f3|
|f/f4|
|f/f5|
|f1/f2|


0.15528
0.17877
0.09026
0.91258
0.42482
1.15129


ΣPPR
ΣNPR
ΣPPR/|ΣNPR|
IN12/f
IN45/f
|f2/f3|


1.5162 
0.2455 
6.1748 
1.6272 
0.0605 
0.5049 









TP3/(IN23 + TP3 + IN34)
(TP1 + IN12)/TP2
(TP5 + IN45)/TP4


0.39002
0.76516
0.62287












HOS
InTL
HOS/HOI
InS/HOS
ODT %
TDT %


30.79020 
28.15830 
7.69755
0.37217
−40.6326  
27.0179 


HVT41
HVT42
HVT51
HVT52
HVT52/HOI
HVT52/HOS


0.00000
0.00000
0.00000
1.79776
0.00000
0.00000


TP2/TP3
TP3/TP4
InRS51
InRS52
|InRS51|/TP5
|InRS52|/TP5


6.45624
0.44887
−1.18769 
 0.0575993
0.57242
0.02776


PSTA
PLTA
NSTA
NLTA
SSTA
SLTA


−0.010 mm
0.010 mm
−0.009 mm
−0.006 mm
0.010 mm
0.003 mm


VSFS0
VSFS3
VSFS7
VTFS0
VTFS3
VTFS7


−0.000  
−0.000  
−0.010  
−0.000  
0.005 
−0.000  


VSMTF0
VSMTF3
VSMTF7
VTMTF0
VTMTF3
VTMTF7


0.716 
0.753 
0.541 
0.716 
0.672 
0.381 


ISFS0
ISFS3
ISFS7
ITFS0
ITFS3
ITFS7


0.005 
−0.000  
−0.005  
0.005 
0.010 
0.035 


ISMTF0
ISMTF3
ISMTF7
ITMTF0
ITMTF3
ITMTF7


0.733 
0.734 
0.514 
0.733 
0.697 
0.414 


FS
AIFS
AVFS
AFS


0.005 
0.008 
−0.001  
0.009 









The figures related to the profile curve lengths obtained based on Table 5 and Table 6 are listed in the following table:












Third embodiment (Reference wavelength: 555 nm)





















ARE
½(HEP)
ARE value
ARE − ½(HEP)
2(ARE/HEP) %
TP
ARE/TP (%)





11
0.681
0.681
−0.00030
99.96%
3.923
17.36%


12
0.681
0.682
0.00083
100.12%
3.923
17.39%


21
0.681
0.682
0.00021
100.03%
10.344
6.59%


22
0.681
0.682
0.00109
100.16%
10.344
6.60%


31
0.681
0.686
0.00473
100.69%
1.602
42.82%


32
0.681
0.684
0.00236
100.35%
1.602
42.67%


41
0.681
0.686
0.00441
100.65%
3.569
19.21%


42
0.681
0.694
0.01263
101.85%
3.569
19.44%


51
0.681
0.702
0.02083
103.06%
2.075
33.84%


52
0.681
0.685
0.00356
100.52%
2.075
33.01%





ARS
EHD
ARS value
ARS − EHD
(ARS/EHD) %
TP
ARS/TP (%)





11
11.351
11.420
0.069
100.61%
3.923
291.08%


12
5.466
6.349
0.884
116.17%
3.923
161.83%


21
5.438
5.601
0.162
102.99%
10.344
54.15%


22
2.579
2.631
0.051
101.99%
10.344
25.43%


31
1.839
1.925
0.087
104.70%
1.602
120.17%


32
2.496
2.737
0.242
109.69%
1.602
170.86%


41
3.158
3.432
0.274
108.69%
3.569
96.15%


42
3.052
3.313
0.261
108.55%
3.569
92.82%


51
2.945
3.207
0.262
108.88%
2.075
154.57%


52
2.730
2.828
0.097
103.57%
2.075
136.28%









The results of the equations of the third embodiment based on Table 5 and Table 6 are listed in the following table:












Values related to the inflection points of the


third embodiment (Reference wavelength: 555 nm)






















HIF511
1.3109
HIF511/HOI
0.3277
SGI511
−0.4405
|SGI511|/(|SGI511| + TP5)
0.1751


HIF512
2.1521
HIF512/HOI
0.5380
SGI512
−0.8314
|SGI512|/(|SGI512| + TP5)
0.2861


HIF521
1.0021
HIF521/HOI
0.2505
SGI521
−0.1247
|SGI521|/(|SGI521| + TP5)
0.0567









Fourth Embodiment

As shown in FIG. 4A and FIG. 4B, an optical image capturing system 40 of the fourth embodiment of the present invention includes, along an optical axis from an object side to an image side, a first lens 410, a second lens 420, a third lens 430, an aperture 400, a fourth lens 440, a fifth lens 450, an infrared rays filter 470, an image plane 480, and an image sensor 490. FIG. 4C shows a tangential fan and a sagittal fan of the optical image capturing system of the fourth embodiment of the present application, and a transverse aberration diagram at 0.7 field of view when a longest operation wavelength and a shortest operation wavelength pass through an edge of the aperture. FIG. 4D is a diagram showing the through-focus MTF values of the visible light spectrum at the central field of view, 0.3 field of view, and 0.7 field of view of the fourth embodiment of the present invention. FIG. 4E is a diagram showing the through-focus MTF values of the infrared light spectrum at the central field of view, 0.3 field of view, and 0.7 field of view of the fourth embodiment of the present disclosure.


The first lens 410 has negative refractive power and is made of glass. An object-side surface 412 thereof, which faces the object side, is a convex spheric surface, and an image-side surface 414 thereof, which faces the image side, is a concave spheric surface.


The second lens 420 has negative refractive power and is made of plastic. An object-side surface 422 thereof, which faces the object side, is a concave aspheric surface, and an image-side surface 424 thereof, which faces the image side, is a concave aspheric surface. The object-side surface 422 has an inflection point.


The third lens 430 has positive refractive power and is made of plastic. An object-side surface 432 thereof, which faces the object side, is a convex aspheric surface, and an image-side surface 434 thereof, which faces the image side, is a convex aspheric surface. The object-side surface 432 has an inflection point.


The fourth lens 440 has positive refractive power and is made of plastic. An object-side surface 442, which faces the object side, is a convex aspheric surface, and an image-side surface 444, which faces the image side, is a convex aspheric surface. The object-side surface 442 has an inflection point.


The fifth lens 450 has negative refractive power and is made of plastic. An object-side surface 452, which faces the object side, is a concave aspheric surface, and an image-side surface 454, which faces the image side, is a concave aspheric surface. The object-side surface 452 has two inflection points. It may help to shorten the back focal length to keep small in size.


The infrared rays filter 470 is made of glass and between the fifth lens 450 and the image plane 480. The infrared rays filter 470 gives no contribution to the focal length of the system.


The parameters of the lenses of the fourth embodiment are listed in Table 7 and Table 8.









TABLE 7







f = 2.7883 mm; f/HEP = 1.8; HAF = 101 deg



















Focal



Radius of curvature
Thickness

Refractive
Abbe
length


Surface
(mm)
(mm)
Material
index
number
(mm)

















0
Object
1E+18
1E+18






1
1st lens
76.84219
6.117399
glass
1.497
81.61
−31.322


2

12.62555
5.924382


3
2nd lens
−37.0327
3.429817
plastic
1.565
54.5
−8.70843


4

5.88556
5.305191


5
3rd lens
17.99395
14.79391


6

−5.76903
−0.4855
plastic
1.565
58
9.94787


7
Aperture
1E+18
0.535498


8
4th lens
8.19404
4.011739
plastic
1.565
58
5.24898


9

−3.84363
0.050366


10
5th lens
−4.34991
2.088275
plastic
1.661
20.4
−4.97515


11

16.6609
0.6


12
Infrared
1E+18
0.5
BK_7
1.517
64.13



rays



filter


13

1E+18
3.254927


14
Image
1E+18
−0.00013



plane





Reference wavelength: 555 nm.













TABLE 8





Coefficients of the aspheric surfaces






















Surface
1
2
3
4
5
6
8





k
0.000000E+00
0.000000E+00
0.131249
−0.069541
−0.324555
0.009216
−0.292346


A4
0.000000E+00
0.000000E+00
3.99823E−05
−8.55712E−04
−9.07093E−04
8.80963E−04
−1.02138E−03


A6
0.000000E+00
0.000000E+00
9.03636E−08
−1.96175E−06
−1.02465E−05
3.14497E−05
−1.18559E−04


A8
0.000000E+00
0.000000E+00
1.91025E−09
−1.39344E−08
−8.18157E−08
−3.15863E−06 
 1.34404E−05


A10
0.000000E+00
0.000000E+00
−1.18567E−11 
−4.17090E−09
−2.42621E−09
1.44613E−07
−2.80681E−06


A12
0.000000E+00
0.000000E+00
0.000000E+00 
0.000000E+00
0.000000E+00
0.000000E+00 
0.000000E+00















Surface
9
10
11







k
−0.18604
−6.17195
27.541383



A4
4.33629E−03
 1.58379E−03
 7.56932E−03



A6
−2.91588E−04 
−1.81549E−04
−7.83858E−04



A8
9.11419E−06
−1.18213E−05
 4.79120E−05



A10
1.28365E−07
 1.92716E−06
−1.73591E−06



A12
0.000000E+00 
0.000000E+00
0.000000E+00










An equation of the aspheric surfaces of the fourth embodiment is the same as that of the first embodiment, and the definitions are the same as well.


The exact parameters of the fourth embodiment based on Table 7 and Table 8 are listed in the following table:












Fourth embodiment (Reference wavelength: 555 nm)




















|f/f1|
|f/f2|
|f/f3|
|f/f4|
|f/f5|
|f1/f2|


0.08902
0.32019
0.28029
0.53121
0.56045
3.59674


ΣPPR
ΣNPR
ΣPPR/|ΣNPR|
IN12/f
IN45/f
|f2/f3|


1.4118 
0.3693 
3.8229 
2.1247 
0.0181 
0.8754 









TP3/(IN23 + TP3 + IN34)
(TP1 + IN12)/TP2
(TP5 + IN45)/TP4


0.73422
3.51091
0.53309












HOS
InTL
HOS/HOI
InS/HOS
ODT %
TDT %


46.12590 
41.77110 
11.53148 
0.23936
−125.266   
99.1671 


HVT41
HVT42
HVT51
HVT52
HVT52/HOI
HVT52/HOS


0.00000
0.00000
0.00000
0.00000
0.00000
0.00000


TP2/TP3
TP3/TP4
InRS51
InRS52
|InRS51|/TP5
|InRS52|/TP5


0.23184
3.68765
−0.679265
0.5369 
0.32528
0.25710


PSTA
PLTA
NSTA
NLTA
SSTA
SLTA


−0.011 mm
0.005 mm
−0.010 mm
−0.003 mm
0.005 mm
−0.00026 mm


VSFS0
VSFS3
VSFS7
VTFS0
VTFS3
VTFS7


−0.000  
−0.000  
−0.005  
−0.000  
−0.000  
−0.000  


VSMTF0
VSMTF3
VSMTF7
VTMTF0
VTMTF3
VTMTF7


0.631 
0.624 
0.626 
0.631 
0.602 
0.562 


ISFS0
ISFS3
ISFS7
ITFS0
ITFS3
ITFS7


−0.005  
−0.005  
−0.000  
−0.005  
−0.000  
0.015 


ISMTF0
ISMTF3
ISMTF7
ITMTF0
ITMTF3
ITMTF7


0.769 
0.745 
0.701 
0.769 
0.741 
0.687 


FS
AIFS
AVFS
AFS


0.005 
−0.000  
−0.001  
0.001 









The figures related to the profile curve lengths obtained based on Table 7 and Table 8 are listed in the following table:












Fourth embodiment (Reference wavelength: 555 nm)





















ARE
½(HEP)
ARE value
ARE − ½(HEP)
2(ARE/HEP) %
TP
ARE/TP (%)





11
0.775
0.774
−0.00052
99.93%
6.117
12.65%


12
0.775
0.774
−0.00005
99.99%
6.117
12.66%


21
0.775
0.774
−0.00048
99.94%
3.430
22.57%


22
0.775
0.776
0.00168
100.22%
3.430
22.63%


31
0.775
0.774
−0.00031
99.96%
14.794
5.23%


32
0.775
0.776
0.00177
100.23%
14.794
5.25%


41
0.775
0.775
0.00059
100.08%
4.012
19.32%


42
0.775
0.779
0.00453
100.59%
4.012
19.42%


51
0.775
0.778
0.00311
100.40%
2.088
37.24%


52
0.775
0.774
−0.00014
99.98%
2.088
37.08%





ARS
EHD
ARS value
ARS − EHD
(ARS/EHD) %
TP
ARS/TP (%)





11
23.038
23.397
0.359
101.56%
6.117
382.46%


12
10.140
11.772
1.632
116.10%
6.117
192.44%


21
10.138
10.178
0.039
100.39%
3.430
296.74%


22
5.537
6.337
0.800
114.44%
3.430
184.76%


31
4.490
4.502
0.012
100.27%
14.794
30.43%


32
2.544
2.620
0.076
102.97%
14.794
17.71%


41
2.735
2.759
0.024
100.89%
4.012
68.77%


42
3.123
3.449
0.326
110.43%
4.012
85.97%


51
2.934
3.023
0.089
103.04%
2.088
144.74%


52
2.799
2.883
0.084
103.00%
2.088
138.08%









The results of the equations of the fourth embodiment based on Table 7 and Table 8 are listed in the following table:












Values related to the inflection points of the fourth


embodiment (Reference wavelength: 555 nm)






















HIF211
6.3902
HIF211/HOI
1.5976
SGI211
−0.4793
|SGI211|/(|SGI211| + TP2)
0.1226


HIF311
2.1324
HIF311/HOI
0.5331
SGI311
0.1069
|SGI311|/(|SGI311| + TP3)
0.0072


HIF411
2.0278
HIF411/HOI
0.5070
SGI411
0.2287
|SGI411|/(|SGI411| + TP4)
0.0539


HIF511
2.6253
HIF511/HOI
0.6563
SGI511
−0.5681
|SGI511|/(|SGI511| + TP5)
0.2139


HIF512
2.1521
HIF512/HOI
0.5380
SGI512
−0.8314
|SGI512|/(|SGI512| + TP5)
0.2848









Fifth Embodiment

As shown in FIG. 5A and FIG. 5B, an optical image capturing system of the fifth embodiment of the present invention includes, along an optical axis from an object side to an image side, a first lens 510, a second lens 520, an aperture 500, a third lens 530, a fourth lens 540, a fifth lens 550, an infrared rays filter 570, an image plane 580, and an image sensor 590. FIG. 5C shows a tangential fan and a sagittal fan of the optical image capturing system of the fifth embodiment of the present application, and a transverse aberration diagram at 0.7 field of view when a longest operation wavelength and a shortest operation wavelength pass through an edge of the aperture. FIG. 5D is a diagram showing the through-focus MTF values of the visible light spectrum at the central field of view, 0.3 field of view, and 0.7 field of view of the fifth embodiment of the present invention. FIG. 5E is a diagram showing the through-focus MTF values of the infrared light spectrum at the central field of view, 0.3 field of view, and 0.7 field of view of the fifth embodiment of the present disclosure.


The first lens 510 has negative refractive power and is made of glass. An object-side surface 512, which faces the object side, is a convex spheric surface, and an image-side surface 514, which faces the image side, is a concave spheric surface.


The second lens 520 has negative refractive power and is made of plastic. An object-side surface 522 thereof, which faces the object side, is a concave aspheric surface, and an image-side surface 524 thereof, which faces the image side, is a concave aspheric surface. The object-side surface 522 has an inflection point.


The third lens 530 has positive refractive power and is made of plastic. An object-side surface 532, which faces the object side, is a convex aspheric surface, and an image-side surface 534, which faces the image side, is a convex aspheric surface. The object-side surface 532 has an inflection point.


The fourth lens 540 has positive refractive power and is made of glass. An object-side surface 542, which faces the object side, is a convex spheric surface, and an image-side surface 544, which faces the image side, is a convex spheric surface.


The fifth lens 550 has negative refractive power and is made of plastic. An object-side surface 552, which faces the object side, is a concave aspheric surface, and an image-side surface 554, which faces the image side, is a concave aspheric surface.


The infrared rays filter 570 is made of glass and between the fifth lens 550 and the image plane 580. The infrared rays filter 570 gives no contribution to the focal length of the system.


The parameters of the lenses of the fifth embodiment are listed in Table 9 and Table 10.









TABLE 9







f = 2.6634 mm; f/HEP = 1.8; HAF = 101 deg



















Focal



Radius of curvature
Thickness

Refractive
Abbe
length


Surface
(mm)
(mm)
Material
index
number
(mm)

















0
Object
1E+18
1E+18






1
1st lens
74.59396
1.98034
glass
1.497
81.61
−48.2849


2

18.02678
8.273348


3
2nd lens
−67.163
5.649136
plastic
1.565
58
−13.8377


4

9.1501
19.89789


5
Aperture
1E+18
−0.13601


6
3rd lens
10.13112
6.273696
plastic
1.565
58
6.8879


7

−4.92857
0.05


8
4th lens
7.4102
2.224382
glass
1.497
81.61
8.31184


9

−8.44607
0.054853


10
5th lens
−7.39173
0.753327
plastic
1.661
20.4
−4.76338


11

5.79645
1


12
Infrared
1E+18
0.5
BK_7
1.517
64.13



rays



filter


13

1E+18
3.501774


14
Image
1E+18
−0.02279



plane





Reference wavelength: 555 nm.













TABLE 10





Coefficients of the aspheric surfaces






















Surface
1
2
3
4
6
7
8





k
0.000000E+00
0.000000E+00
−0.210311
−0.004822
−0.218979
−0.069172
0.000000E+00


A4
0.000000E+00
0.000000E+00
 2.65222E−05
−3.42690E−05
−1.56345E−03
 9.05791E−04
0.000000E+00


A6
0.000000E+00
0.000000E+00
−1.00812E−07
 2.58474E−06
−5.66988E−05
−1.12718E−05
0.000000E+00


A8
0.000000E+00
0.000000E+00
 2.32433E−10
−3.53602E−08
−1.65827E−06
−1.02671E−06
0.000000E+00


A10
0.000000E+00
0.000000E+00
−1.76296E−13
−1.03008E−10
−3.46561E−07
 7.71923E−08
0.000000E+00


A12
0.000000E+00
0.000000E+00
0.000000E+00
0.000000E+00
0.000000E+00
0.000000E+00
0.000000E+00















Surface
9
10
11







k
0.000000E+00
−18.800912
1.808031



A4
0.000000E+00
−1.14981E−03
 4.49810E−03



A6
0.000000E+00
−1.23798E−04
−6.73493E−04



A8
0.000000E+00
 1.24021E−05
 6.60667E−05



A10
0.000000E+00
−3.47985E−07
−2.66441E−06



A12
0.000000E+00
0.000000E+00
0.000000E+00










An equation of the aspheric surfaces of the fifth embodiment is the same as that of the first embodiment, and the definitions are the same as well.


The exact parameters of the fifth embodiment based on Table 9 and Table 10 are listed in the following table:












Fifth embodiment (Reference wavelength: 555 nm)




















|f/f1|
|f/f2|
|f/f3|
|f/f4|
|f/f5|
|f1/f2|


0.05516
0.19247
0.38667
0.32043
0.55913
3.48937


ΣPPR
ΣNPR
ΣPPR/|ΣNPR|
IN12/f
IN45/f
|f2/f3|


1.0720 
0.4418 
2.4263 
3.1064 
0.0206 
2.0090 









TP3/(IN23 + TP3 + IN34)
(TP1 + IN12)/TP2
(TP5 + IN45)/TP4


0.24050
1.81509
0.36333












HOS
InTL
HOS/HOI
InS/HOS
ODT %
TDT %


49.99990 
45.02100 
12.49998 
0.28398
−126.53   
95.4003 


HVT41
HVT42
HVT51
HVT52
HVT52/HOI
HVT52/HOS


0.00000
0.00000
0.00000
0.00000
0.00000
0.00000


TP2/TP3
TP3/TP4
InRS51
InRS52
|InRS51|/TP5
|InRS52|/TP5


0.90045
2.82043
−0.600179
 0.926558
0.79670
1.22995


PSTA
PLTA
NSTA
NLTA
SSTA
SLTA


−0.006 mm
0.004 mm
−0.008 mm
0.001 mm
0.002 mm
0.004 mm


VSFS0
VSFS3
VSFS7
VTFS0
VTFS3
VTFS7


0.010 
0.005 
−0.000  
0.010 
−0.005  
0.010 


VSMTF0
VSMTF3
VSMTF7
VTMTF0
VTMTF3
VTMTF7


0.715 
0.672 
0.562 
0.715 
0.637 
0.508 


ISFS0
ISFS3
ISFS7
ITFS0
ITFS3
ITFS7


0.020 
0.015 
0.005 
0.020 
0.005 
0.025 


ISMTF0
ISMTF3
ISMTF7
ITMTF0
ITMTF3
ITMTF7


0.763 
0.672 
0.489 
0.763 
0.635 
0.563 


FS
AIFS
AVFS
AFS


0.010 
0.015 
0.005 
0.010 









The figures related to the profile curve lengths obtained based on Table 9 and Table 10 are listed in the following table:












Fifth embodiment (Reference wavelength: 555 nm)





















ARE
½(HEP)
ARE value
ARE − ½(HEP)
2(ARE/HEP) %
TP
ARE/TP (%)





11
0.740
0.739
−0.00081
99.89%
1.980
37.32%


12
0.740
0.739
−0.00062
99.92%
1.980
37.33%


21
0.740
0.739
−0.00081
99.89%
5.649
13.08%


22
0.740
0.740
−0.00002
100.00%
5.649
13.10%


31
0.740
0.740
−0.00017
99.98%
6.274
11.79%


32
0.740
0.742
0.00197
100.27%
6.274
11.82%


41
0.740
0.740
0.00040
100.05%
2.224
33.28%


42
0.740
0.740
0.00012
100.02%
2.224
33.27%


51
0.740
0.740
0.00041
100.06%
0.753
98.26%


52
0.740
0.741
0.00119
100.16%
0.753
98.37%





ARS
EHD
ARS value
ARS − EHD
(ARS/EHD) %
TP
ARS/TP (%)





11
23.868
24.295
0.427
101.79%
1.980
1226.82%


12
14.482
16.817
2.335
116.13%
1.980
849.22%


21
14.433
14.546
0.113
100.78%
5.649
257.50%


22
7.736
9.218
1.482
119.15%
5.649
163.17%


31
2.616
2.646
0.030
101.14%
6.274
42.18%


32
3.753
4.266
0.513
113.67%
6.274
68.00%


41
3.498
3.643
0.145
104.14%
2.224
163.77%


42
3.342
3.436
0.094
102.81%
2.224
154.47%


51
3.241
3.354
0.113
103.49%
0.753
445.21%


52
2.794
2.915
0.121
104.33%
0.753
387.00%









The results of the equations of the fifth embodiment based on Table 9 and Table 10 are listed in the following table:












Values related to the inflection points of the


fifth embodiment (Reference wavelength: 555 nm)






















HIF211
12.1924
HIF211/HOI
3.0481
SGI211
−0.7583
|SGI211|/(|SGI211| + TP2)
0.1184


HIF311
1.9221
HIF311/HOI
0.4805
SGI311
0.1589
|SGI311|/(|SGI311| + TP3)
0.0247









Sixth Embodiment

As shown in FIG. 6A and FIG. 6B, an optical image capturing system of the sixth embodiment of the present invention includes, along an optical axis from an object side to an image side, a first lens 610, a second lens 620, an aperture 600, a third lens 630, a fourth lens 640, a fifth lens 650, an infrared rays filter 670, an image plane 680, and an image sensor 690. FIG. 6C shows a tangential fan and a sagittal fan of the optical image capturing system of the sixth embodiment of the present application, and a transverse aberration diagram at 0.7 field of view when a longest operation wavelength and a shortest operation wavelength pass through an edge of the aperture. FIG. 6D is a diagram showing the through-focus MTF values of the visible light spectrum at the central field of view, 0.3 field of view, and 0.7 field of view of the sixth embodiment of the present invention. FIG. 6E is a diagram showing the through-focus MTF values of the infrared light spectrum at the central field of view, 0.3 field of view, and 0.7 field of view of the sixth embodiment of the present disclosure.


The first lens 610 has negative refractive power and is made of glass. An object-side surface 612, which faces the object side, is a convex spheric surface, and an image-side surface 614, which faces the image side, is a concave spheric surface.


The second lens 620 has negative refractive power and is made of plastic. An object-side surface 622 thereof, which faces the object side, is a concave aspheric surface, and an image-side surface 624 thereof, which faces the image side, is a convex aspheric surface.


The third lens 630 has positive refractive power and is made of plastic. An object-side surface 632, which faces the object side, is a concave aspheric surface, and an image-side surface 634, which faces the image side, is a convex aspheric surface. The object-side surface 632 has an inflection point.


The fourth lens 640 has positive refractive power and is made of glass. An object-side surface 642, which faces the object side, is a convex spherical surface, and an image-side surface 644, which faces the image side, is a convex spherical surface.


The fifth lens 650 has negative refractive power and is made of glass. An object-side surface 652, which faces the object side, is a concave surface, and an image-side surface 654, which faces the image side, is a concave surface. It may help to shorten the back focal length to keep small in size. In addition, it may reduce an incident angle of the light of an off-axis field of view and correct the aberration of the off-axis field of view.


The infrared rays filter 670 is made of glass and between the fifth lens 650 and the image plane 680. The infrared rays filter 670 gives no contribution to the focal length of the system.


The parameters of the lenses of the sixth embodiment are listed in Table 11 and Table 12.









TABLE 11







f = 2.4662 mm; f/HEP = 2.8; HAF = 69.9998 deg



















Focal



Radius of curvature
Thickness

Refractive
Abbe
length


Surface
(mm)
(mm)
Material
index
number
(mm)

















0
Object
1E+18
1E+18






1
1st lens
41.82463066
1.352
glass
1.733
45.72
−10.136


2

6.244265567
8.317


3
2nd lens
−6.494956969
6.396
plastic
1.530
55.80
−1289.610


4

−8.79853783
7.915


5
3rd lens
30.91564115
8.255
plastic
1.530
55.80
17.456


6

−12.03506309
0.049


7
4th lens
9.844365285
3.633
glass
1.620
60.32
18.072


8
Aperture
−5.208586797
0.001


9
5th lens
−5.208586797
1.700
glass
1.755
27.58
−19.881


10

1181.818228
3.025


11
Infrared
1E+18
1.700



rays



filter


12

1E+18
4.250
SBSL7_OHARA
1.517
64.13


13
Image
1E+18
0.000



plane





Reference wavelength: 555 nm; the position of blocking light: the effective half diameter of the clear aperture of the third surface is 3.8 mm; the effective diameter of the clear aperture of the seventh surface is 3.848 mm.













TABLE 12





Coefficients of the aspheric surfaces






















Surface
1
2
3
4
5
6
7





k
0.000000E+00
0.000000E+00
0.000000E+00
0.000000E+00
0.000000E+00
 0.000000E+00
0.000000E+00


A4
0.000000E+00
0.000000E+00
4.864524E−04
3.424610E−04
6.566561E−05
−1.120547E−04
0.000000E+00


A6
0.000000E+00
0.000000E+00
2.267855E−06
−6.100128E−07 
−1.226989E−05 
−9.392578E−06
0.000000E+00


A8
0.000000E+00
0.000000E+00
2.517993E−08
1.566616E−08
3.521987E−07
−1.874747E−07
0.000000E+00


A10
0.000000E+00
0.000000E+00
5.244414E−10
−1.881834E−10 
−1.329061E−08 
 8.312726E−09
0.000000E+00


A12
0.000000E+00
0.000000E+00
0.000000E+00
0.000000E+00
0.000000E+00
 0.000000E+00
0.000000E+00















Surface
8
9
10







k
0.000000E+00
0.000000E+00
0.000000E+00



A4
0.000000E+00
0.000000E+00
0.000000E+00



A6
0.000000E+00
0.000000E+00
0.000000E+00



A8
0.000000E+00
0.000000E+00
0.000000E+00



A10
0.000000E+00
0.000000E+00
0.000000E+00



A12
0.000000E+00
0.000000E+00
0.000000E+00










An equation of the aspheric surfaces of the sixth embodiment is the same as that of the first embodiment, and the definitions are the same as well.


The exact parameters of the sixth embodiment based on Table 11 and Table 12 are listed in the following table:












Sixth embodiment (Reference wavelength: 555 nm)




















|f/f1|
|f/f2|
|f/f3|
|f/f4|
|f/f5|
|f1/f2|


0.35208
0.38759
0.86906
0.82281
0.68280
1.10087


ΣPPR
ΣNPR
ΣPPR/|ΣNPR|
IN12/f
IN45/f
|f2/f3|


1.9394 
1.1749 
1.6507 
0.7288 
0.0229 
2.2422 









TP3/(IN23 + TP3 + IN34)
(TP1 + IN12)/TP2
(TP5 + IN45)/TP4


0.30302
1.94472
4.28205












HOS
InTL
HOS/HOI
InS/HOS
ODT %
TDT %


13.94420 
10.07960 
3.48605
0.60172
−40.9728  
35.4111 


HVT41
HVT42
HVT51
HVT52
HVT52/HOI
HVT52/HOS


0.00000
0.00000
0.00000
0.00000
0.00000
0.00000


TP2/TP3
TP3/TP4
InRS51
InRS52
|InRS51|/TP5
|InRS52|/TP5


0.74938
4.35816
 0.119121
−0.824456
0.08404
0.58164


PLTA
PSTA
NLTA
NSTA
SLTA
SSTA


0.079 mm
0.042 mm
−0.002 mm
0.047 mm
0.037 mm
−0.008 mm


VSFS0
VSFS3
VSFS7
VTFS0
VTFS3
VTFS7


0.010 
0.005 
−0.000  
0.010 
−0.005  
0.010 


VSMTF0
VSMTF3
VSMTF7
VTMTF0
VTMTF3
VTMTF7


0.715 
0.672 
0.562 
0.715 
0.637 
0.508 


ISFS0
ISFS3
ISFS7
ITFS0
ITFS3
ITFS7


0.020 
0.015 
0.005 
0.020 
0.005 
0.025 


ISMTF0
ISMTF3
ISMTF7
ITMTF0
ITMTF3
ITMTF7


0.763 
0.672 
0.489 
0.763 
0.635 
0.563 


FS
AIFS
AVFS
AFS


0.010 
0.015 
0.005 
0.010 









The figures related to the profile curve lengths obtained based on Table 11 and Table 12 are listed in the following table:












Sixth embodiment (Reference wavelength: 555 nm)





















ARE
½(HEP)
ARE value
ARE − ½(HEP)
2(ARE/HEP) %
TP
ARE/TP (%)





11
0.937
0.937
−0.00040
99.96%
1.352
69.30%


12
0.937
0.941
0.00308
100.33%
1.352
69.55%


21
0.937
0.940
0.00276
100.29%
6.396
14.70%


22
0.937
0.939
0.00128
100.14%
6.396
14.68%


31
0.937
0.937
−0.00033
99.96%
8.255
11.35%


32
0.937
0.938
0.00048
100.05%
8.255
11.36%


41
0.937
0.938
0.00095
100.10%
3.633
25.83%


42
0.937
0.942
0.00465
100.50%
3.633
25.93%


51
0.937
0.942
0.00465
100.50%
1.700
55.42%


52
0.937
0.937
−0.00047
99.95%
1.700
55.12%





ARS
EHD
ARS value
ARS − EHD
(ARS/EHD) %
TP
ARS/TP (%)





11
11.598
11.751
0.153
101.32%
1.352
869.00%


12
6.060
8.284
2.224
136.70%
1.352
612.58%


21
5.976
7.019
1.043
117.46%
6.396
109.75%


22
6.199
6.625
0.427
106.88%
6.396
103.59%


31
4.417
4.427
0.010
100.22%
8.255
53.62%


32
3.442
3.498
0.056
101.63%
8.255
42.37%


41
3.848
3.952
0.105
102.72%
3.633
108.78%


42
3.602
3.977
0.375
110.41%
3.633
109.47%


51
3.602
3.977
0.375
110.41%
1.700
233.99%


52
3.689
3.688
−0.001
99.98%
1.700
216.96%









The results of the equations of the sixth embodiment based on Table 11 and Table 12 are listed in the following table:












Values related to the inflection points of the


sixth embodiment (Reference wavelength: 555 nm)






















HIF211
1.5336
HIF211/HOI
0.3834
SGI211
−0.0680
|SGI211|/(|SGI211| + TP2)
0.0570


HIF311
1.0872
HIF311/HOI
0.2718
SGI311
0.1921
|SGI311|/(|SGI311| + TP3)
0.1135


HIF421
0.8138
HIF421/HOI
0.2034
SGI421
0.0349
|SGI421|/(|SGI421| + TP4)
0.0922


HIF422
1.3282
HIF422/HOI
0.3320
SGI422
0.0664
|SGI422|/(|SGI422| + TP4)
0.1618


HIF423
1.7375
HIF423/HOI
0.4344
SGI423
0.0922
|SGI423|/(|SGI423| + TP4)
0.2113


HIF511
1.7740
HIF511/HOI
0.4435
SGI511
0.1006
|SGI511|/(|SGI511| + TP5)
0.0663


HIF521
1.7091
HIF521/HOI
0.4273
SGI521
−0.5795
|SGI521|/(|SGI521| + TP5)
0.2902









It must be pointed out that the embodiments described above are only some embodiments of the present invention. All equivalent structures which employ the concepts disclosed in this specification and the appended claims should fall within the scope of the present invention.

Claims
  • 1. An optical image capturing system, in order along an optical axis from an object side to an image side, comprising: a first lens having refractive power;a second lens having refractive power;a third lens having refractive power;a fourth lens having refractive power;a fifth lens having refractive power;a first image plane, which is an image plane specifically for visible light and perpendicular to the optical axis; a through-focus modulation transfer rate (value of MTF) at a first spatial frequency having a maximum value at central field of view of the first image plane; anda second image plane, which is an image plane specifically for infrared light and perpendicular to the optical axis; the through-focus modulation transfer rate (value of MTF) at the first spatial frequency having a maximum value at central of field of view of the second image plane;wherein the optical image capturing system consists of the five lenses with refractive power; at least one lens among the first lens to the fifth lens is made of glass; at least one lens among the first lens to the fifth lens has positive refractive power; each lens among the first lens to the fifth lens has an object-side surface, which faces the object side, and an image-side surface, which faces the image side;wherein the optical image capturing system satisfies: 1.0≤f/HEP≤10.0;0 deg<HAF≤150 deg; and|FS|≤60 μm;where f1, f2, f3, f4, and f5 are focal lengths of the first lens to the fifth lens, respectively; f is a focal length of the optical image capturing system; HEP is an entrance pupil diameter of the optical image capturing system; HOS is a distance between an object-side surface of the first lens and the first image plane on the optical axis; HOT is a maximum image height on the first image plane perpendicular to the optical axis; InTL is a distance on the optical axis from the object-side surface of the first lens to the image-side surface of the fifth lens; HAF is a half of a maximum view angle of the optical image capturing system; for any surface of any lens; FS is a distance on the optical axis between the first image plane and the second image plane.
  • 2. The optical image capturing system of claim 1, wherein a wavelength of the infrared light ranges from 700 nm to 1300 nm, and the first spatial frequency is denoted by SP1, which satisfies the following condition: SP1≤440 cycles/mm.
  • 3. The optical image capturing system of claim 1, wherein the optical image capturing system further satisfies: 0.9≤2(ARE/HEP)≤2.0;where ARE is a profile curve length measured from a start point where the optical axis of the belonging optical image capturing system passes through the surface of the lens, along a surface profile of the lens, and finally to a coordinate point of a perpendicular distance where is a half of the entrance pupil diameter away from the optical axis.
  • 4. The optical image capturing system of claim 1, wherein at least one lens among the first lens to the fifth lens is made of plastic, and at least one lens among the first lens to the fifth lens is made of glass.
  • 5. The optical image capturing system of claim 1, wherein half of a vertical maximum viewable angle of the optical image capturing system is denoted by VHAF, and the following condition is satisfied: VHAF≥10 deg.
  • 6. The optical image capturing system of claim 1, wherein the optical image capturing system further satisfies: HOS/HOI≥1.2.
  • 7. The optical image capturing system of claim 1, wherein the optical image capturing system further satisfies: 0.05≤ARE51/TP5≤25; and0.05≤ARE52/TP5≤25;where ARE51 is a profile curve length measured from a start point where the optical axis passes the object-side surface of the fifth lens, along a surface profile of the object-side surface of the fifth lens, and finally to a coordinate point of a perpendicular distance where is a half of the entrance pupil diameter away from the optical axis; ARE52 is a profile curve length measured from a start point where the optical axis passes the image-side surface of the fifth lens, along a surface profile of the image-side surface of the fifth lens, and finally to a coordinate point of a perpendicular distance where is a half of the entrance pupil diameter away from the optical axis; TP5 is a thickness of the fifth lens on the optical axis.
  • 8. The optical image capturing system of claim 1, wherein the optical image capturing system further satisfies: PLTA≤200 μm;PSTA≤200 μm;NLTA≤200 μm;NSTA≤200 μm;SLTA≤200 μm;SSTA≤200 μm; and|TDT|≤250%;where TDT is a TV distortion; HOI is a maximum height for image formation perpendicular to the optical axis on the image plane; PLTA is a transverse aberration at 0.7 HOI on the image plane in the positive direction of a tangential fan of the optical image capturing system after a longest operation wavelength of visible light passing through an edge of the aperture; PSTA is a transverse aberration at 0.7 HOI on the image plane in the positive direction of the tangential fan after a shortest operation wavelength of visible light passing through the edge of the aperture; NLTA is a transverse aberration at 0.7 HOI on the image plane in the negative direction of the tangential fan after the longest operation wavelength of visible light passing through the edge of the aperture; NSTA is a transverse aberration at 0.7 HOI on the image plane in the negative direction of the tangential fan after the shortest operation wavelength of visible light passing through the edge of the aperture; SLTA is a transverse aberration at 0.7 HOI on the image plane of a sagittal fan of the optical image capturing system after the longest operation wavelength of visible light passing through the edge of the aperture; SSTA is a transverse aberration at 0.7 HOI on the image plane of a sagittal fan after the shortest operation wavelength of visible light passing through the edge of the aperture.
  • 9. The optical image capturing system of claim 1, further comprising an aperture, wherein the optical image capturing system further satisfies: 0.2≤InS/HOS≤1.1;where InS is a distance between the aperture and the first image plane on the optical axis.
  • 10. An optical image capturing system, in order along an optical axis from an object side to an image side, comprising: a first lens having refractive power;a second lens having refractive power;a third lens having refractive power;a fourth lens having refractive power;a fifth lens having refractive power;a first image plane, which is an image plane specifically for visible light and perpendicular to the optical axis; a through-focus modulation transfer rate (value of MTF) at a first spatial frequency having a maximum value at central field of view of the first image plane, and the first spatial frequency being 110 cycles/mm; anda second image plane, which is an image plane specifically for infrared light and perpendicular to the optical axis; the through-focus modulation transfer rate (value of MTF) at the first spatial frequency having a maximum value at central of field of view of the second image plane, and the first spatial frequency being 110 cycles/mm;wherein the optical image capturing system consists of the five lenses with refractive power; at least one lens among the first lens to the fifth lens is made of plastic; at least one lens among the first lens to the fifth lens is made of glass; at least one lens among the first lens to the fifth lens has positive refractive power; each lens among the first lens to the fifth lens has an object-side surface, which faces the object side, and an image-side surface, which faces the image side;wherein the optical image capturing system satisfies: 1.0≤f/HEP≤10.0;0 deg<HAF≤150 deg;|FS|≤60 μm; and0.9≤2(ARE/HEP)≤2.0;where f1, f2, 13, f4, and f5 are focal lengths of the first lens to the fifth lens, respectively; f is a focal length of the optical image capturing system; HEP is an entrance pupil diameter of the optical image capturing system; HOS is a distance between the object-side surface of the first lens and the first image plane on the optical axis; InTL is a distance on the optical axis from the object-side surface of the first lens to the image-side surface of the fifth lens; HAF is a half of a maximum view angle of the optical image capturing system; for any surface of any lens; FS is a distance on the optical axis between the first image plane and the second image plane; ARE is a profile curve length measured from a start point where the optical axis passes therethrough, along a surface profile thereof, and finally to a coordinate point of a perpendicular distance where is a half of the entrance pupil diameter away from the optical axis.
  • 11. The optical image capturing system of claim 10, wherein each two neighboring lenses among the first to the fifth lenses are separated by air.
  • 12. The optical image capturing system of claim 10, wherein the optical image capturing system further satisfies: 0.9≤ARS/EHD≤2.0;where, for any surface of any lens, EHD is a maximum effective half diameter thereof, ARS is a profile curve length measured from a start point where the optical axis passes therethrough, along a surface profile thereof, and finally to an end point of the maximum effective half diameter thereof.
  • 13. The optical image capturing system of claim 10, wherein at least two lenses among the first lens to the fifth lens are made of glass.
  • 14. The optical image capturing system of claim 10, wherein half of a vertical maximum viewable angle of the optical image capturing system is denoted by VHAF, and the following condition is satisfied: VHAF≥20 deg.
  • 15. The optical image capturing system of claim 10, wherein the optical image capturing system further satisfies: HOS/HOI≥1.4.
  • 16. The optical image capturing system of claim 10, wherein at least one lens among the first lens to the fifth lens is a light filter, which is capable of filtering out light of wavelengths shorter than 500 nm.
  • 17. The optical image capturing system of claim 10, wherein the optical image capturing system further satisfies: 0.1≤(TP4+IN34)/TP3≤50;where IN34 is a distance on the optical axis between the third lens and the fourth lens; TP3 is a thickness of the third lens on the optical axis; TP4 is a thickness of the fourth lens on the optical axis.
  • 18. The optical image capturing system of claim 10, wherein the optical image capturing system further satisfies: 0.1≤(TP5+IN45)/TP4≤50;where IN45 is a distance on the optical axis between the fourth lens and the fifth lens; TP5 is a thickness of the fifth lens on the optical axis.
  • 19. The optical image capturing system of claim 10, wherein at least one surface of each of at least one lens among the first lens to the fifth lens has at least an inflection point thereon.
  • 20. An optical image capturing system, in order along an optical axis from an object side to an image side, comprising: a first lens having refractive power;a second lens having refractive power;a third lens having refractive power;a fourth lens having refractive power;a fifth lens having refractive power;a first average image plane, which is an image plane specifically for visible light and perpendicular to the optical axis; the first average image plane being installed at the average position of the defocusing positions, where through-focus modulation transfer rates (values of MTF) of the visible light at central field of view, 0.3 field of view, and 0.7 field of view are at their respective maximum at a first spatial frequency; the first spatial frequency being 110 cycles/mm; anda second average image plane, which is an image plane specifically for infrared light and perpendicular to the optical axis; the second average image plane being installed at the average position of the defocusing positions, where through-focus modulation transfer rates of the infrared light (values of MTF) at central field of view, 0.3 field of view, and 0.7 field of view are at their respective maximum at the first spatial frequency; the first spatial frequency being 110 cycles/mm;wherein the optical image capturing system consists of the five lenses having refractive power; at least one lens among the first lens to the fifth lens is made of plastic, and at least one lens among the first lens to the fifth lens is made of glass; at least one lens among the first lens to the fifth lens has positive refractive power; each lens among the first lens to the fifth lens has an object-side surface, which faces the object side, and an image-side surface, which faces the image side;wherein the optical image capturing system satisfies: 1≤f/HEP≤10;0 deg<HAF≤150 deg;|AFS|≤60 μm; and0.9≤2(ARE/HEP)≤2.0;where f1, f2, f3, f4, and f5 are focal lengths of the first lens to the fifth lens, respectively; f is a focal length of the optical image capturing system; HEP is an entrance pupil diameter of the optical image capturing system; HAF is a half of a maximum view angle of the optical image capturing system; HOS is a distance between an object-side surface of the first lens and the image plane on the optical axis; HOI is a maximum image height on the first image plane perpendicular to the optical axis; InTL is a distance on the optical axis from the object-side surface of the first lens to the image-side surface of the fifth lens; AFS is a distance on the optical axis between the first average image plane and the second average image plane; ARE is a profile curve length measured from a start point where the optical axis passes therethrough, along a surface profile thereof, and finally to a coordinate point of a perpendicular distance where is a half of the entrance pupil diameter away from the optical axis.
  • 21. The optical image capturing system of claim 20, wherein the optical image capturing system further satisfies: 0.9≤ARS/EHD≤2.0;where, for any surface of any lens, EHD is a maximum effective half diameter thereof, ARS is a profile curve length measured from a start point where the optical axis passes therethrough, along a surface profile thereof, and finally to an end point of the maximum effective half diameter thereof.
  • 22. The optical image capturing system of claim 20, wherein each two neighboring lenses among the first to the fifth lenses are separated by air.
  • 23. The optical image capturing system of claim 20, wherein the optical image capturing system further satisfies: HOS/HOI≥1.6.
  • 24. The optical image capturing system of claim 20, wherein a linear magnification of an image formed by the optical image capturing system on the second average image plane is LM, which satisfies the following condition: LM≥0.0003.
  • 25. The optical image capturing system of claim 20, further comprising an aperture and an image sensor, wherein the image sensing device is disposed on the first average image plane and comprises at least 100 thousand pixels; the optical image capturing system further satisfies: 0.2≤InS/HOS≤1.1;where InS is a distance between the aperture and the first average image plane on the optical axis.
Priority Claims (1)
Number Date Country Kind
106100218 Jan 2017 TW national