Optical image scanners, also known as document scanners, convert a visible image (e.g., on a document or photograph, an image in a transparent medium, etc.) into an electronic form suitable for copying, storing, or processing by a computer. An optical image scanner may be a separate device, or an image scanner may be a part of a copier, part of a facsimile machine, or part of a multipurpose device. Reflective image scanners typically have a controlled source of light that is reflected off the surface of a document, through an optics system, and onto an array of photosensitive devices (e.g., a charge-coupled device, complimentary metal-oxide semiconductor (CMOS), etc.). Transparency image scanners pass light through a transparent image (e.g., a photographic positive slide), through optics, and then onto an array of photosensitive devices. The optics focus at least one line, called a scanline, of the image being scanned, onto the array of photosensitive devices. The photosensitive devices convert received light intensity into an electronic signal. An analog-to-digital converter converts the electronic signal into computer-readable binary numbers, with each binary number representing an intensity value.
There are two common types of optical image scanners. In a first type, a single reduction lens system is commonly used to focus the scanline onto the photosensor array, and the length of the photosensor array is much less than the length of the scanline. In a second type, an array of many lenses is used to focus the scanline onto the photosensor array, and the length of the photosensor array is the same length as the scanline. For the second type, it is common to use Selfoc® lens arrays (SLA) (available from Nippon Sheet Glass Co.), in which an array of rod-shaped lenses is used, typically with multiple photosensors receiving light through each individual lens.
Embodiments of the present invention provide a reduced optical head profile in an optical image scanner.
One embodiment is an optical image scanner having a reduced optical head profile. Briefly described, one such optical image scanner comprises an optical head assembly having a scanline axis and a translation system for translating the optical head assembly. The translation system is positioned within a cross-sectional width of the optical head assembly along the scanline axis of the optical head assembly.
Another embodiment is a method for reducing the optical head profile of an optical image scanner. Briefly described, one such method comprises providing an optical head having a scanline axis and positioning a translation system within a cross-sectional width of the optical head along the scanline axis of the optical head.
A further embodiment is a method of translating an optical head assembly in an optical image scanner. Briefly described, one such method comprises engaging a portion of an optical head assembly within a cross-sectional width of the optical head assembly along the scanline axis of the optical head assembly.
Many aspects of the invention can be better understood with reference to the following drawings. The components in the drawings are not necessarily to scale, emphasis instead being placed upon clearly illustrating the principles of the present invention. Moreover, in the drawings, like reference numerals designate corresponding parts throughout the several views.
This disclosure relates to various embodiments of optical image scanners having a reduced optical head profile. Various embodiments will be described below with reference to
Image scanners may be manufactured to be small in size and/or user-friendly. Various embodiments of optical image scanners of the present invention are provided in which the optical head profile is reduced. The optical head profile refers to the cross-sectional height and/or width of the optical image scanner along the scanline axis.
Referring to
Lens array 306 may comprise an array of rod-shaped lenses that have a relatively short depth of focus. For example, lens array 306 may comprise a Selfoc® lens array (SLA), which is manufactured and sold by Nippon Sheet Glass Co. of Somerset, N.J. A rod-lens array may comprise at least one row of graded-index micro lenses, which may be equal in dimensions and optical properties. The lenses may be aligned between two fiberglass-reinforced plastic (FRP) plates. Because FRP has a coefficient of thermal expansion equal to glass, thermal distortion and stress effects are minimal. The FRP also increases mechanical strength of the SLA. The interstices may be filled with black silicone to prevent flare (crosstalk) between the lenses and protect each individual lens.
As a document 124 is being scanned by optical head 104, an optical signal 312 is reflected off the document 124 and towards the first reflective surface 304 to an object plane 314. The first reflective surface 304 directs the optical signal 312 through the lens array 306 to be focused. The optical signal 312 may also be reflected toward image sensor module 310 by an optional second reflective surface 304. The optical signal 312 is received by photosensor array 308 and converted into an electronic signal, which may be processed by an analog-to-digital converter, digital signal processor, etc. In this manner, the optics within optical head 104 focus a portion of an image of document 124 onto photosensor array 308.
The optical and/or electrical components employed within optical head 104 and the arrangement of these components may be provided in a number of alternative ways. For instance, in order to alter the cross-sectional profile of optical head 104, second reflective surface 304 may be removed and the image sensor module 310 may be perpendicularly oriented to the optical axis of lens array 306 to receive optical signal 312. Alternatively, the optical axis of lens array 306 may be perpendicularly oriented to platen 102 to direct light through lens array 306 and onto photosensor array 308.
Referring again to
As illustrated in
Optical head holder 106 also provides a mechanism by which the translation system may engage optical head 104. As illustrated in
As best illustrated in
Idler(s) 116 provide additional mechanical reference during translation of optical head 104. Idler(s) 116 are attached to optical head holder 106 and extend toward the base of housing 108. As best illustrated in
Referring to
Referring to
The translation system may comprise a number of alternative mechanisms for providing the force for translating optical head 104. For example, drive belt 118 may be replaced by a drive cable, wire, or other mechanical means.