The present application relates to optical microscopy and in particular to the illumination design for an optical system and methods of use thereof.
Modern microscope systems require sophisticated illumination in order to perform properly. What is desired is not only smooth and even illumination, but that the light is projected through the imaged sample at steep angles where the intensity of light at every angle through the sample also must be constant, otherwise optical artifacts can be created. Sophisticated illumination is very difficult and has historically been achieved with Koehler or critical illumination, discussed below.
Various considerations must be taken into account when developing optical systems for microscopy, such as the numerical aperture (“NA”) of an optical system, which is a dimensionless number that characterizes the range of angles over which the system can accept or emit light. In microscopy, NA is important as it indicates the resolving power of a lens. Thus, a lens with a larger NA will be able to visualize finer details than a lens with a smaller NA.
Another consideration is the Lambertian Pattern that is generated from the light source. In an ideal Lambertian Pattern, the light is scattered such that the apparent brightness of the surface to an observer is the same regardless of the observer's angle of view. It is known that the Lambertian pattern of a light emitting diode (“LED”) concentrates most of the light out the front of the LED resulting in sort of a parabolic dispersion pattern.
Another factor when developing optical systems for microscopy is the critical illumination. The configuration of the illumination in a microscope may include a source of the illumination, such as a lamp, focused by a condenser onto the specimen on a slide. This configuration can result in un-even illumination of the specimen if there are spatial variations in the lamp.
Still other factors to consider are the effects of using a diffuser through which light passes in order to uniformly illuminate the sample in the microscope and the isotropic pattern of transmitted light exhibiting properties, such as density of light transmission, with the same values when measured along axes in all directions.
Conventional optical microscope systems generally utilize a Koehler illumination system which uses a series of precise lenses and reflectors to control the redirection of light into an ideal evenly illuminated field of view with light converging on the specimen isotropically in all directions. Koehler illumination utilizes a collector lens in front of the light source that focuses the light at the condenser diaphragm, which has the effect of putting the condenser diaphragm and the filament image in conjugate planes. Thus, the filament image is no longer conjugate to the image plane, and is no longer visible. However, these systems require substantial space, expensive optics and often require a skilled technician to configure the microscope though the precise adjustment and alignment of the reflectors and lenses.
There are some public domain products like the Richardson field microscope that use crude diffused light in lieu of a condenser, but this is just ordinary diffused glass or plastic. This configuration does not carefully illuminate nor does it evenly emit light over wide dispersion angles. As such, it performs poorly as compared to a configuration using a real condenser.
The prior art techniques, such as those depicted in
Point source lights require a system to separate the light rays, normally done by a lens, so the light rays can converge again upon the specimen. Filament based lamps must overcome the projection of the filament onto the specimen through optical lens direction of the light and/or diffusion techniques. As discussed above, ideal illumination of a slide specimen may be achieved when light illuminates the specimen converging at high angles at equal brightness across all angles. A spatially isotropic light source is often created with precise lenses to control the redirection of light from the light source. However, such lighting systems are expensive and generally have a long adjustable path between lenses to control the angular pitch of the light making it difficult to achieve miniaturization of the light source. LED light sources lend themselves to lens based redirection because they are nearly point light sources.
Modern LEDs can provide very bright white light with low heat, but as identified above, are nearly point light sources. When diffused, modern LEDs generate light scattering from the center out, as shown in
Surface-emitting LEDs create a resulting pattern of light at an intensity proportional to the cosine of the emission angle relative to the normal. The area directly above the LED is the most brightly illuminated and the edge being the least illuminated with the amount of illumination changing with the cosine of the angle. This kind of light distribution, if used directly, creates a very poor illumination pattern because the light is not evenly distributed through desired angles and spatial density.
There are numerous configurations used in an attempt to provide adequate illumination of a specimen for microscopy. For example, U.S. Pat. No. 5,734,498 (“the '498 patent”) discloses the user of fluorescent spherical particles to scatter and/or re-emit light in more directions. The disclosed configuration depends on the diffuser to take a wide angle light preferably from a lamp with a wide light source surface area. The invention disclosed in the '498 patent teaches the use of a “perfect” diffuser that can take low angle light and bend it over the entire ideal range. “Perfect” diffusers that are able to take low angle light and bend it over the entire ideal range are expensive.
U.S. Pat. No. 6,963,445 (“the '445 patent”) discloses using a diffuser plate with a standard light source. The '445 patent discloses a method of creating convergent spatially isotropic light by eliminating the condenser of a Koehler lighting system with a diffusive film. However, the '445 patent discloses the use of standard light sources, which does not provide highly angular light without the use of lenses. The '445 patent does not disclose how a point light source could be used with the disclosed configuration to create ideal illumination of a specimen.
The prior art techniques for producing adequate illumination of a specimen for an optical imaging systems are very expensive. Known low cost configurations generally provide poor illumination of the specimen with limitations and disadvantages discussed above. Further, the prior art optical imaging systems do not teach the adequate illumination of a specimen using point light sources, such as LEDs. There is a need for a low cost method of illuminating a specimen to be examined on the stage of an optical microscope. Further, there is a need for a low cost configuration that provides ideal illumination of a specimen using point light sources.
In one embodiment an illumination arrangement for an optical imaging apparatus, such as a microscope, is disclosed wherein ideal illumination of a slide specimen is achieved using a light point source, such as an LED or a plurality of LEDs, in combination with diffuser film. The light point sources may be positioned in a pattern that emits divergent light at high angles and at equal brightness across all angles that effectively cancels the cosine distributed gradient effect (“Lambert's cosine law”) as shown in
An illumination device for an optical imaging apparatus, such as a microscope, illumination of a slide specimen is achieved when light illuminates the specimen converging at high angles at equal brightness across all angles by utilizing divergent light in an arrangement that helps cancels the cosine distributed gradient effect to effectively create a substantially even distribution of light. The light is then made to converge at high angles onto the specimen by using a diffractive or diffusive film located below the specimen slide. Additionally, the light can be further diffused by passing it through a column having its interior coated in order to widely scatter the light.
Referring now to
For illustrative purposes only, an implementation of the embodiment illustrated in
For instance to achieve 0.95 NA for the configuration shown in
Referring now to
The columnar diffuser 23 may be coated with a non-diffractive material adapted to widely scatter the light. An example of a plating material for the columnar diffuser 23 would be titanium dioxide which can be applied in a matte white finish that is highly diffusive. The LED array assembly 21 in the perimeter pattern such that the light combines into an evenly distributed pattern that can pass across the interior surface of a columnar diffuser coated with a light scattering finish. The light is finally passed through a light diffusing film to generate high angle light deflection even distributed onto the specimen 29. Perfect diffusers do not exist that function as ideal isotropic radiators, all will preferentially forward scatter and/or backscatter light. The light diffused at grazing angles, the high frequency component referred to in Fourier optics, is at a much lower intensity.
Light can also be generated from edge emitting LEDs that are located on a reflective surface. Light from the edge emitting LEDs pass through a light scattering columnar diffuser finally to pass through a diffusive film onto the specimen. Even the best of these films though only have 80° FWHM (Full-Width Half-Maximum) performance, meaning that 40° off of normal the intensity of the light is already decreased by half. The edge emitting LED allows for even higher angles to be generated starting at the source and permits the use of one (or more if it does not emit at all edges) LED as the light source.
The embodiments of
In one embodiment, the diffuser film is very evenly illuminated from below, such as by an ultra-bright high efficiency LED. Any small size illumination source like a bulb or LED tends to have a Lambertian pattern where the intensity varies as cosine of the angle off normal as shown in
The various embodiments described above overcome disadvantages of point source lighting nature of LEDs and at the same time take advantage of the predictable illumination pattern through use of a diffractive film and selective arrangement of the LEDs to the size and location of the diffractive film. Another advantage is that each embodiment allows for low cost manufacturing of an optical imaging apparatus, such as a high powered oil immersion microscope and the like. Another advantage is that it brings the light in at steep angles. With other systems, a deficit of high angle light results in some component of the image being high resolution but yet dimly lit, while another low resolution image is superimposed over the best image because of shallow angle light and is dominant. The system described above takes advantage of the Lambertian Emission pattern of LEDs by arranging them in a pattern that has a canceling affect on the illumination pattern and introducing high angles to otherwise direct point source light. The high angle is accentuated and the light further randomized and therefore mixed through an even wider range of angles and illumination. The resulting pattern is highly regular and provides almost ideal spatially isotropic distribution.
Although this invention has been disclosed in the context of certain embodiments and examples, it will be understood by those skilled in the art having the benefit of this disclosure that the present invention extends beyond the specifically disclosed embodiments to other alternative embodiments and/or uses of the invention and obvious modifications and equivalents thereof.