The present application claims priority from Japanese application JP 2007-048330 filed on Feb. 28, 2007, the content of which is hereby incorporated by reference into this application.
The present invention relates to a large capacity optical disc technique, more particularly to an optical information recording medium preferred to recording of mass information and an information reproducing method preferred to reproducing of information recorded on the optical information recording medium.
In recent years, progress of mass information recording techniques has been advanced on research and development of high density optical recording techniques capable of storing information as much as possible in a unit area. The optical disc technique having been applied practically to products so far focuses a laser light on an object disc through a lens to read out and/or record data from/on the disc. To realize such high density recording of data, efforts have been made to reduce the size of the focused laser spot. The spot size is proportional to λ/NA if the light source wavelength is defined as λ and the numerical aperture of the objective lens is defined as NA. In other words, the amount of information to be stored on a disc has been increased by decreasing the light source wavelength and increasing the lens NA. If a set of a light source wavelength, an objective lens NA, and a capacity of data stored in a disc of 12 cm in diameter is represented as (wavelength, NA, and capacity), (780 nm, 0.5, and 650 MB) is assumed for CDs and (650 nm, 0.6, and 4.7 GB) is assumed for DVDs. A technique that uses a blue laser light source has proposed two types of such sets; (405 nm, 0.85, and 25 GB) and (405 nm, 0.65, and 20 GB). This recording capacity makes it possible to record high definition TV image data for about 2 hours.
However, any of the above described recording capacities is insufficient for professional systems and security systems used, for example, in broadcasting stations. In those broadcasting stations, it is required to record more than 100 GB on one disc. There are image data required to be stored for a long period, for example, from several tens of years to about 100 years. Such mass data is required to be stored on one disc as much as possible because of the limit of places for having those media in the custody. The required capacity of one disc is several hundreds of GB to more than 1 TB.
Any of the above described recording methods will be difficult to cope with recording of such mass data because of the following problems. At first, realizing a short wavelength for light sources is difficult, because development of a semiconductor laser diode usable as such a light source is very difficult and even when such a semiconductor laser diode is developed successfully, the light source is of an ultraviolet light. Thus the disc substrate and the protective film come to absorb the light, thereby it is considered to be difficult to secure a favorable recording/reproducing quality. A research of increasing the objective lens NA is in progress now. For example, the Japanese Journal of Applied Physics Vol. 42, pp. 1101 to 1104 reports such a technique when the NA is assumed to be 1.8. In such a case, because a light used for recording/reproducing data is not an ordinary propagating light, but a light localized at a lens, which is referred to as a near-field light, this system is required to have a mechanism for getting the lens so close to the surface of the object disc and moving the lens above the disc while the distance between the lens and the disc surface is kept. The system is similar to a magnetic recording hard disk and the optical discs' merit, removability of discs, is sacrificed.
Under such circumstances, there has been proposed a method for improving the optical resolution effectively by providing a disc with a mechanism. Here, this method is referred to as a super-resolution technique.
The Japanese Journal of Applied Physics Vol. 32, pp. 5210 to 5213 reports such a super-resolution technique that uses a phase-change recording film. Usually, the phase-change recording film is used for the recording film of such rewritable discs as CD-ROM, DVD-RAM, DVD±RW, Blu-ray Discs. Here, this recording material is not used for a recording film, but used for a layer that improves the optical resolution effectively just like the read-out layer of the above described optical magnetic disc. The layer (film) is referred to as a super-resolution layer (film). This method deposits a phase-change recording film in a sputtering process and part of the recording film is melted upon reading out signals. If the reflectivity of the subject disc is higher enough at the melted portion, signals obtained from the melted portions become dominant over other signals. This means that phase-change film melted portions become effective readout light spots. Because the area of each melted portion is smaller than the optical spot, the readout optical spot is reduced substantially, thereby the optical resolution is improved.
The JP-A No. 2006-107588 proposes a method for obtaining such a super-resolution effect by advancing that method to form pits with a phase-change material and to melt individual pits upon reading out signals. According to this proposal, a phase-change etching method is used to form pits of the phase-change material. The phase-change etching is a technique for forming such pits by transforming a phase-change mark pattern to a pit pattern with good use of a difference of solubility between crystal portion and amorphous portion of the phase-change film with respect to an alkaline solution. According to this method, a substance that shows the super-resolution effect exists only in mark portions and the space portions are not required to absorb the light, so that the method can improve the optical transmittance of one layer and makes it possible to combine the super-resolution technique with a multi-layer technique. The Japanese Journal of Applied Physics Vol. 45, pp. 2593 to 2597 reports an example in which this method is used to realize a dual-layer super-resolution disc. This method is referred to as a pit type super-resolution technique and an example in which super-resolution films are deposited consecutively two-dimensionally as described above is referred to as a thin film super-resolution technique.
The Japanese Journal of Applied Physics Vol. 45, pp. 2593 to 2597 also reports an example that has realized a dual-layer super-resolution disc with another method. According to this method, a semiconductor is used as a super-resolution material. The band gap is in an ultraviolet light wavelength area at room temperature and in a visible light wavelength area at high temperatures. A thin film that absorbs a light is deposited around this super-resolution thin film. As a result, the temperature rises where the light spot intensity is high on the light absorbing thin film and the heat is transmitted to the super-resolution thin film, thereby the band gap of an area smaller than the light spot comes in a visible light area. Consequently, the readout light is reflected therefrom. In other words, readout signals are obtained only in areas smaller than the light spot, so that the super-resolution effect is obtained. In this example, ZnO is used as the super-resolution material.
A recording type super-resolution technique is also proposed. For example, the Japanese Journal of Applied Physics Vol. 43, pp. L8 to L10 reports a method for improving the recording density. According to the method, laser pulses are irradiated on a disc having both a platinum oxide film and a phase-change recording film using the same method as that for recording marks on an ordinary recordable optical disc, thereby recording marks, then reading out signals through a super-resolution reading-out process. This method irradiates a recording laser power on the object disc, then the platinum oxide film is expanded locally, thereby the thickness of the phase-change film is modulated according to each of the marks. Upon reading out signals, only the thin portions of the phase-change film are melted. Thus the super-resolution effect is obtained. Such way, this method realizes the write-once super-resolution optical disc.
On the other hand, the Japanese Journal of Applied Physics Vol. 37, pp. L516 to L518 reports a method for realizing a rewritable disc by adapting the method disclosed in the Japanese Journal of Applied Physics Vol. 32, pp. 5210 to 5213, which uses a phase-change film as a super-resolution film. This method reads out signals without erasing the phase-change marks recorded on the recording film while melting the super-resolution film upon reading out signals by using two types of phase-change films as a super-resolution film and a recording film respectively and adjusting the light absorptivity in each phase-change film according to the film thickness. This method selects a material so that the crystallization time of the phase-change material used for the recording film becomes slower than that of the super-resolution film. Consequently, recorded marks cannot be erased so easily upon reading out signals, thereby the required readout proof can be assured.
The JP-A No. 2001-273679 also discloses a method that provides the object medium with multiple layers and makes most use of the optical interference so as to maximize the reflectivity of the super-resolution area (aperture portion) in the light spot or minimizes the reflectivity of the non-super-resolution area (masking portion), thereby obtaining a higher super-resolution effect. This method is also aiming at increasing of the signal amplitude in the super-resolution reading-out process by paying attention only to the optical properties in the light spot.
In the case of the above described super-resolution techniques, the thermal distribution that occurs in the subject medium due to an incident light is utilized to form areas having different optical properties such as a refractive index in the light spot from each other, thereby dissolving a high frequency mark that cannot be dissolved in any conventional optical systems and improving the resolution. Among those techniques, the thin film type super-resolution technique adopts the same laminated film structure in all the data areas of the subject medium. Thus the optical change levels in those data areas are all the same. This will be described with reference to
This is why any of the conventional super-resolution techniques is difficult to obtain a satisfactory signal amplitude.
Under such circumstances, the present invention aims at solving the above conventional problems by adopting different values for the change levels of the optical properties of the space portion and the mark portion. In other words, if the reflectivity of the space portion in a super-resolution reading-out process becomes higher than that in a non-super-resolution reading-out process, the reflectivity of the mark portion is reduced.
This is achieved by adjusting the laminated film layer of the subject disc.
While a case of the recording type thin film super-resolution disc has been described so far, the case can also apply to the ROM in which pits are formed instead of the recorded marks. This case applied to the ROM will be described below with reference to
The pit type super-resolution technique described in the JP-A No. 2006-107588 can also generate the state shown in
One of the features of the pit type super-resolution technique is a combination of the super-resolution technique and the multilayer technique to realize a large capacity for recording data. In order to realize such an object, it is required to improve the optical transmittance of the space portion. However, because the super-resolution assist film 603 is required to absorb the subject light in the case of the technique shown in
To read out signals from a multilayered optical disc having such a structured recording layer, the incident light 700 is not focused in the non-readout layer, thereby the light power density on the non-readout layer is small and almost no heat is generated in the super-resolution pits. As a result, the WBG thin film is kept transparent. Consequently, the transmittance of the non-readout recording layer is kept high, so that the super-resolution multilayer optical disc as described above is realized.
As such WBG materials, it is possible to use ZnO, Ti2, SrTiO2, ZnS, CeO2, etc.
In
In the case of the super-resolution technique for reading out recorded marks smaller than the optical resolution, it is possible to reduce the data error rate by improving the signal amplitude.
At first, a case of recording type thin film super-resolution will be described with reference to
In this embodiment, two discs were manufactured. One (structure A) of the discs was designed in accordance with the guidance of the conventional techniques. The other disc (structure B) was designed in accordance with the guidance of the present invention. Each of the discs was composed as follows sequentially from a side near to the light incidence side.
Structure A: ultraviolet curable resin 100 μm/ZnS—SiO2(50 nm)/GeSbTe(20 nm)/ZnS—SiO2(20 nm)/Ga(40 nm)/ZnS—SiO2(50 nm)/Al(100 nm)/polycarbonate substrate
Structure B: ultraviolet curable resin 100 μm/ZnS—SiO2(30 nm)/GeSbTe(20 nm)/ZnS—SiO2(30 nm)/Ga(10 nm)/ZnS—SiO2(30 nm)/Al(100 nm)/polycarbonate substrate
Here, GeSbTe corresponds to the recording film 403 and Ga corresponds to the super-resolution film 406. This disc obtains the super-resolution effect by melting Ga with an incident light. In the design of the structure A, the thickness of the super-resolution film, that is, the Ga film is increased in thickness to increase the super-resolution effect. Every thin film of the disc is formed through sputtering.
The polycarbonate substrate has a tracking groove. This groove is 160 nm in width, 320 nm in pitch, and about 25 nm in depth.
This disc is driven in an optical disc drive shown in
Here, the wavelength of the semiconductor laser diode 801 is 405 nm and the numerical aperture of the objective lens is 0.85.
Table 1 shows a reflectivity of the above disc, the maximum and minimum values (readout signal levels) of the envelope of a readout signal obtained in a drive when the wavelength of the light is 405 nm.
The readout power is determined as 0.3 mW for non-super-resolution reading-out and 1.5 mW for super-resolution reading-out. The readout signal level shown in Table 1 is standardized with this readout power. As shown clearly in Table 1, the signal amplitude in a super-resolution reading-out process from the disc of the structure B of the present invention is about double that from the disc of the conventional structure B. Consequently, the signal-noise ratio (SNR) is improved by about 6 dB.
Marks were recorded on this disc and the data error rate in the reading-out process was measured. The recorded marks are 1-7 modulated random pattern data of which minimum mark length was 100 nm. The linear speed of the disc was set at 5 m/s for both recording and reading-out. The measured error rate was described in Table 1 shown above. This measurement result denotes that the present invention is surely effective to improve the quality of the readout signals.
Next, the thin film super-resolution ROM disc shown in
Similarly to the first embodiment, a conventionally structured disc (structure A) and a disc of the present invention (structure B) were manufactured.
Structure A: ultraviolet curable resin 100 μm/ZnS—SiO2(30 nm)/GeSbTe(20 nm)/ZnS—SiO2(30 nm)/polycarbonate substrate
Structure B: ultraviolet curable resin 100 μm/ZnS—SiO2(20 nm)/GeSbTe(30 nm)/ZnS—SiO2(30 nm)/Ag(42 nm)/polycarbonate substrate
Each of the polycarbonate substrates has pits 507 corresponding to data as shown in
Similarly to the first embodiment, measurements were done for the reflectivity, signal level, and data error rate of the discs. Each disc drive configuration is the same as that in the first embodiment. The disc linear speed was 5 m/s and the readout power was 0.3 mW in non-super-resolution reading-out and 2 mW in super-resolution reading-out. Table 2 shows the measurement results.
As shown in Table 2, the disc of the structure B has a signal amplitude that is about 1.5 times larger than that of the structure A. As a result, the data error rate is apparently lowered.
Next, a pit type super-resolution disc will be described with reference to
At first, how the disc shown in
Recorded pits were formed on a substrate 706 using an electron beam drawing device. Electron beam resist was coated on the Si substrate and focused electron beam pulses were irradiated on the specimen that was rotated to expose the resist. The shortest mark length of those pits was 50 nm. Thus 1-7 modulated random patterns were formed. Pits were formed in the exposed area in a development process. After that, a CF4 gas was used to form pits at a depth of 40 nm on the Si substrate in a reactive ion etching process and the residual electron beam resist was removed. The Si substrate obtained such way is referred to as a Si original disc. A Ni-plated stamper was manufactured from the original disc. The stamper having a high temperature was pressed on a disc substrate that was 1.1 mm in thickness and 120 mm in diameter to copy the stamper pit pattern onto the polycarbonate substrate, thereby manufacturing a substrate 706.
Then, Ag, ZnS—SiO2, GeSbTe, and ZnS—SiO2 were sputtered on the substrate 706 respectively. Then, the film of this specimen was polished in a chemical mechanical polishing process, thereby the film in each pit was kept as was and the GeSbTe in each space portion was removed. Consequently, the GeSbTe that is a super-resolution material was left over only in pits. The chemical mechanical polishing was done as follows: While slurry was supplied, a polishing pad is pressed against the surface of the specimen and this polishing pad was moved from the inner periphery to the outer periphery of the disc so that the whole surface of the disc was polished. After this, the use of the pH 13 slurry improved the solubility of the GeSbTe into the polishing solution, so that the whole disc surface was polished in about 15 seconds.
Films of ZnS—SiO2, etc. were sputtered again on the polished specimen to form 100 μm ultraviolet curable resin.
Similarly to the first and second embodiments, a disc of the conventional design and of structure A and a disc of the present invention and of the structure B were manufactured. The discs were structured as follows.
Structure A pit portion: ultraviolet curable resin/ZnS—SiO2(30 nm)/GeSbTe(30 nm)/ZnS—SiO2(20 nm)/Ag(10 nm)/polycarbonate substrate
Structure A space portion: ultraviolet curable resin/ZnS—SiO2(40 nm)/Ag(10 nm)/polycarbonate substrate
Structure B pit portion: ultraviolet curable resin/ZnS—SiO2(50 nm)/GeSbTe(20 nm)/ZnS—SiO2(40 nm)/ZnO(30 nm)Ag(10 nm)/polycarbonate substrate
Structure B space portion: ultraviolet curable resin/ZnS—SiO2(70 nm)/ZnO(30 nm)/Ag(10 nm)/polycarbonate substrate
The GeSbTe corresponds to super-resolution pits 707 and the ZnO corresponds to the WBG semiconductor film 703 shown in
The above two discs were driven in the drive described in the first and second embodiments respectively to read out signals therefrom. Table 3 shows the readout results.
The readout power was 0.3 mW in non-super-resolution reading-out and 3 mW in super-resolution reading-out. The signal amplitude in non-super-resolution reading-out was small in both discs of the structures A and B. This is because the non-super-resolution signal became a noise component in super-resolution reading-out and a disc structure was determined so as to reduce the non-super-resolution signal. Consequently, the structure A disc lowered the data error rate. However, the structure B disc had a data error rate lower than that of the structure A disc, thereby the effect of the present invention was confirmed.
The optical transmittance of the structure B disc measured with a spectrophotometer was 72%.
When the structure B disc's ZnO was changed to TiO2, SrTiO2, CeO2, and ZnS respectively, the data error rate was 1.2×10−6, 1.8×10−7, 8.9×10−7, and 9.3×10−7. This error rate tendency is related with the band gap of each material. The light wavelengths that are equal to the band gaps of TiO2, SrTiO3, CeO2, and ZnS at room temperature were 410 nm, 384 nm, 344 nm, and 342 nm. The TiO2 band gap was narrower than the energy of the light source, so that the TiO2 absorbed the light in non-super-resolution reading-out. This is why the reflectivity with respect to the super-resolution bits did not rise satisfactorily, thereby the error rate was raised. In the case of other materials, the error rate rose proportionally to an increase of the band gap. The possible reason was reduction of the reflectivity change in the space portion, as intended by the inventor, as a result of reduction of the change of the optical properties of the subject material with respect to the light source wavelength while the band gap became larger than the energy of the light source.
A dual-layer disc was manufactured according to the pit type super-resolution technique shown in
The discs were manufactured as follows. The polycarbonate substrate was the same as that employed in the third embodiment. Similarly to the third embodiment, a thin film was sputtered on this substrate. The thin film was polished in a chemical mechanical polishing process, then a thin film was sputtered thereon. This layer was assumed as a recording layer in the depth when viewed from the light incidence side. This layer is referred to a second layer. Then, ultraviolet curable resin was coated on this specimen and the Ni stamper used in the third embodiment was pressed against the resin so as to cure the ultraviolet curable resin, thereby copying the stamper pattern on the resin. The ultraviolet curable resin was about 20 μm in thickness. After this, a thin film was sputtered again on this specimen and the film was polished in the chemical mechanical polishing process, and a thin film was sputtered again thereon. This layer became a recording layer at the light incidence side and the layer is referred to as a first layer. Then, ultraviolet curable resin was coated on this specimen at a thickness of 100 μm and the resin was cured.
The first layer that is a laminated one was formed similarly to that in the structure B in the third embodiment. The second layer was as follows.
Second layer pit portion: ultraviolet curable resin/ZnS—SiO2(30 nm)/GeSbTe(30 nm)/ZnS—SiO2(20 nm)/ZnO(30 nm)/Ag(100 nm)/polycarbonate substrate
Second layer space portion: ultraviolet curable resin/ZnS—SiO2(40 nm)/ZnO(30 nm)/Ag(100 nm)/polycarbonate substrate
The data error rate of the first layer was 5.9×10−7, which was almost the same as that of the structure B shown in Table 3 in super-resolution reading-out. This means that the data in the second layer hardly affects the readout signals in the first layer.
The data error rate of the second layer was 6.6×10−7 and it was almost the same as the error rate of the first layer. This means that the readout light that passes through the first layer hardly affects signals. It was concluded that because the readout light spot in the first layer was large enough and the light power density was small, the ZnO temperature in the first layer did not rise, thereby the high transmittance of the first layer was kept as was. Consequently, the attenuation of the readout light in the first layer was small and the error rate improvement was suppressed.
As a result, it was confirmed that the present invention was effective for the dual-layer super-resolution disc.
Number | Date | Country | Kind |
---|---|---|---|
2007-048330 | Feb 2007 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
20010015949 | Nagase et al. | Aug 2001 | A1 |
20050041571 | Ichihara et al. | Feb 2005 | A1 |
20050208257 | Cheong et al. | Sep 2005 | A1 |
20050213487 | Yamamoto et al. | Sep 2005 | A1 |
20060072434 | Shintani et al. | Apr 2006 | A1 |
20060203696 | Mori et al. | Sep 2006 | A1 |
20060262711 | Shintani et al. | Nov 2006 | A1 |
Number | Date | Country |
---|---|---|
05-159357 | Jun 1993 | JP |
05-282674 | Oct 1993 | JP |
07-244870 | Sep 1995 | JP |
2001-273679 | Oct 2001 | JP |
2006-107588 | Apr 2006 | JP |
Number | Date | Country | |
---|---|---|---|
20080205236 A1 | Aug 2008 | US |