Optical isolator module and optical amplifier using the same

Information

  • Patent Grant
  • 6330117
  • Patent Number
    6,330,117
  • Date Filed
    Friday, September 3, 1999
    24 years ago
  • Date Issued
    Tuesday, December 11, 2001
    22 years ago
Abstract
An optical isolator module in which an optical splitter for splitting an optical signal input through an input port, an optical detector for detecting the separated light, and a compensator for compensating for polarization mode dispersion are integrated into a single component along with an isolator, and an optical amplifier employing the optical isolator module are disclosed.In the optical isolator module, a first lens focuses the incident optical signal. A first birefringent device has a tapered shape in which a first incident surface forms a first predetermined angle with a first emitting surface from which a polarized light is emitted, and the incident surface of the first birefringent device is coated for partial reflection so that the portion of the incident optical signal is reflected as an reflected light. A Faraday rotator rotates polarized light by a second predetermined angle. A second birefringent device has a tapered shape in which a second emitting surface forms a second predetermined angle with a second incident surface, and an optical axis of the second birefringent device is rotated in a direction opposite to that of the rotation of light by the Faraday rotator relative to the optical axis of the first birefringent device. An optical detector, of which light-receiving surface is perpendicular to a path of the reflected light from the first incident surface of the first birefringent devices, detects the reflected light to generate a detection signal current according to the detected light. A second lens focuses a light which is transmitted through the isolator core and emitted from the second birefringent device.
Description




TECHNICAL FIELD




The present invention relates to an optical isolator module and an optical amplifier using the same. More particularly, the present invention relates to an optical isolator module in which an optical splitter for separating an optical signal input through an input port, an optical detector for detecting the separated light, and a compensator for compensating for polarization mode dispersion are integrated into a single component along with an isolator. Additionally, the present invention relates to an optical amplifier using the optical isolator module.




BACKGROUND ART




An optical fiber which is used for optical communication shows a characteristics of a lower transmission loss in addition to its larger bandwidth compared with other transmission lines such as a copper wire, a coaxial cable, etc. Nevertheless, the transmission loss of the optical fiber can not be completely disregarded, and thus an optical signal which is transmitted should be periodically amplified in order to compensate for the attenuation of the signal. Such an amplification of the optical signal is performed by use of repeaters inserted between the fibers.




In most of optical communication systems currently being used, the repeater is constituted by a detector, an electrical amplifier and a semiconductor laser. In such a repeater, the detector transforms an attenuated optical signal into an electrical signal, the amplifier amplifies the transformed electrical signal, and the semiconductor laser is driven by the amplified signal to transmit a new optical signal to the next stage. However, the repeater has disadvantages in that it increases noise in the signal and the speed of transformations between the optical signal and the electrical signal are restricted by the bandwidth of components such as the detector and the amplifier.




Thus, a pure optical amplifier for amplifying an optical signal as itself has been developed and is being used. Furthermore, such an optical amplifier is used not only for optical communications but also for power amplification for a low-power optical source, signal splitting compensation in a cable TV network, or preamplification with respect to an optical detector.




The most dominating optical amplifier is an Erbium-doped fiber amplifier (hereinafter referred to as “EDFA”), which shows a high gain of 40 dB or above, a high output power, and a low noise figure in a band near 1.55 μm wavelength.





FIG. 1

is a block diagram of a typical EDFA, wherein

FIG. 1



a


shows a forward amplifier and

FIG. 1



b


shows a reverse amplifier.




The forward amplifier of

FIG. 1



a


includes a first lens


10


for focusing an input light emitted from a first optical fiber (not shown), an optical detector


11


for detecting the intensity of the input light, an optical splitter


12


for coupling the optical detector


11


on a transmission path, a first isolator


14


for enabling an optical signal to flow in only forward direction, a laser diode


16


for generating an optical signal for pumping, a coupler


18


for coupling the laser diode


16


on the transmission path, an Erbium-doped fiber (hereinafter referred to as “EDF”) for amplifying an input optical signal through a stimulated emission by use of photons generated by the pumping operation of the laser diode


16


, a second isolator


22


for enabling the optical signal to flow only in the forward direction, an optical detector


24


for detecting the intensity of an output light, an optical splitter


26


for coupling the optical detector


24


on the transmission path, and a second lens


28


for focusing the output light to output the focused light to a second optical fiber (not shown).




In the forward amplifier having such a configuration, the EDF


20


is formed by doping the core of an optical fiber with Erbium through a modified chemical vapor deposition (CVD) method using an source gas such as Erbium trichloride (ErCl


3


), and has an emission wavelength of 1.536 μm.




Meanwhile, the laser diode


16


generates a laser light having a wavelength of 1.48 μm or 980 nm and provides the laser light to the EDF


18


. The laser light pumps electrons of Erbium to cause a distribution inversion, so that the EDF


18


outputs a laser light having a wavelength of 1.536 μm.




Of two isolators


14


and


22


, the first isolator


14


prevents a degradation amplification efficiency which may results from the propagating of the light amplified in the EDF


20


or a spontaneously emitted light in the reverse direction. The second isolator


22


prevents the optical signal from being reflected by a connector (not shown) at an output port and so on and entering into the EDF


20


.




The reverse amplifier of

FIG. 1



b


has the same configuration as that of the forward amplifier of

FIG. 1



a


except that the pumping laser diode


17


is coupled to the rear side of the EDF


21


by the coupler


19


.




Meanwhile, U.S. Pat. No. 4,548,478 issued Oct. 22 1985 to Masakata Shirasaki and entitled “OPTICAL DEVICE” describes an optical isolator.





FIG. 2

illustrates the optical isolator disclosed by Shirasaki, which is employed in an optical amplifier. The optical amplifier, which is similar to that shown in

FIG. 1

, includes a first lens


31


for focusing an input light emitted from a first optical fiber (not shown), an optical detector


32


for detecting the intensity of the input light, an optical splitter


34


for coupling the optical detector


32


on a transmission path, an isolator


36


for enabling an optical signal to propagate only in one direction.




The optical splitter


34


, which is implemented using a prism or an optical coating, separates the optical signal received therein to output some of the optical signal to the optical detector


32


and the remaining signal to the isolator


36


.




The isolator


36


, which was disclosed by Shirasaki, consists of two tapered plates


37


and


39


which are made of birefringent materials such as rectile and calcite and a 45° Faraday Rotator


38


interposed between the tapered plates


37


and


39


.




However, the isolator


36


brings about polarization mode dispersion arising from the difference in refractive index or propagation velocity of lights. Therefore, a compensator


40


shown in

FIG. 2

is additionally included to compensate for the polarization mode dispersion, which is described in European patent application published with number of 533,398 A1 and assigned to AT&T Bell Laboratories.




Further, the conventional optical amplifier has so many components that the structure is complicated and insertion loss is large. Also, as shown in

FIG. 2

, optical fibers should be spliced in many places such as between the optical splitter


34


and the optical detector


32


, between the optical splitter


34


and the isolator


36


, between the isolator


36


and the compensator


40


, etc. Consequently, the manufacturing process is complicated whereby the unit cost of a product increases Meanwhile, since the light is incident on the optical splitter at an incident angle of 45°, a large polarization dependent loss is resulted in.




DISCLOSURE OF THE INVENTION




To solve the above-described problems, one object of the present invention is to provide an isolator module which is more reliable, reveals improved optical characteristics, and reduces the unit cost of products.




Another object of the present invention is to provide a simplified optical amplifier which employs the above isolator module so that the structure thereof and the manufacturing process are simplified.




To accomplish one of the objects above, there is provided an optical isolator module for splitting and detecting a portion of an incident optical signal while controlling light to propagate only in one direction, the isolator module comprising first focusing means for focusing the incident optical signal; an isolator core including a first birefringent device which has a tapered shape in which a first incident surface forms a first predetermined angle with a first emitting surface from which a polarized light is emitted, wherein the incident surface is coated for partial reflection sot that the portion of the incident optical signal is reflected as an reflected light, a Faraday rotator for rotating polarized light by a second predetermined angle, and a second birefringent device which has a tapered shape which a second emitting surface forms a second predetermined angle with a second incident surface, wherein an optical axis of the second birefringent device is rotated in a direction opposite to that of the rotation of light by the Faraday rotator relative to the optical axis of the first birefringent device; an optical detector of which light-receiving surface is perpendicular to a path of the reflected light from the first incident surface of the first birefringent devices, for detecting the reflected light to generate a detection signal current according to the detected light; and second focusing means for focusing a light which is transmitted through the isolator core and emitted from the second birefringent device.




To accomplish another one of the objects above, there is provided an optical amplifier comprising an isolator module for splitting and detecting a portion of an incident optical signal while controlling light to propagate only in one direction pumping means for generating photons required for amplifying the incident optical signal; a special optical fiber for amplifying the incident optical signal by stimulated emission by sue of the photons generated by the pumping means to output an amplified optical signal; and coupling means for coupling the pumping means to the special optical fiber. The isolator module comprises first focusing means for focusing the incident optical signal; an isolator core including a first birefringent device which has a tapered shape in which a first incident surface forms a first predetermined angle with a first emitting surface from which a polarized light is emitted, wherein the incident surface is coated for partial reflection so that the portion of the incident optical signal is reflected as an reflected light, a Faraday rotator for rotating polarized light by a second predetermined angle, and a second birefringent device which has a tapered shape in which a second emitting surface forms a second predetermined angle with a second incident surface, wherein an optical axis of the second birefringent device is rotated in a direction opposite to that of the rotation of light by the Faraday rotator relative to the optical axis of the first birefringent device; an optical detector of which light-receiving surface is perpendicular to a path of the reflected light from the first incident surface of the first birefringent devices, for detecting the reflected light to generate a detection signal current according to the detected light; and second focusing means for focusing a light which si transmitted through the isolator core and emitted from the second birefringent device onto the optical path.




To accomplish another one of the objects above, there is further provided an optical amplifier comprising pumping means for generating photons required for amplifying an incident optical signal; a special optical fiber for amplifying the incident light signal by stimulated emission by use of the photons generated by the pumping means to output an amplified optical signal; coupling means for coupling the pumping means to the special optical fiber; and an isolator module for splitting and detecting a portion of the amplified optical signal input through the coupling means while controlling light to propagate only in one direction. The isolate module comprises first focusing means for focusing the amplified optical signal; an isolator core including a first birefringent device which has a tapered shape in which a first incident surface forms a first predetermined angle with a first emitting surface from which a polarized light is emitted, wherein the incident surface is coated for partial reflection so that the portion of the amplified optical signal is reflected as an reflected light, a Faraday rotator for rotating polarized light by a second predetermined angle, and a second birefringent device which has a tapered shape in which a second emitting surface forms a second predetermined angle with a second incident surface, wherein an optical axis of the second birefringent device is rotated in a direction opposite to that of the rotation of light by the Faraday rotator relative to the optical axis of the first birefringent device; an optical detector of which light-receiving surface is perpendicular to a path of the reflected light from the first incident surface of the first birefringent devices, for detecting the reflected light to generate a detection signal current according to the detected light; and second focusing means for focusing a light which is transmitted through the isolator core and emitted for the second birefringent device onto the optical path.











BRIEF DESCRIPTION OF THE DRAWINGS





FIG. 1

is a block diagram of a typical Erbium-doped optical amplifier (EDFA), wherein

FIG. 1



a


shows a forward amplifier and

FIG. 1



b


shows a reverse amplifier;





FIG. 2

illustrates a conventional optical isolator employed in an optical amplifier;





FIG. 3

is a sectional view of an isolator module according to the present invention;





FIG. 4

is a perspective view of an isolator core in the isolator module according to the present invention;





FIG. 5

illustrates an optical path along which light propagates in the forward direction in the isolator core of the isolator module according to the present invention;





FIG. 6

illustrates an optical path along which light propagates in the reverse direction in the isolator core in the isolator module according to the present invention;





FIG. 7

is a perspective view of the isolator module according to the present invention; and





FIG. 8

is a block diagram of an embodiment of an Erbium-doped fiber amplifier (EDFA) according to the present invention.











DETAILED DESCRIPTION OF THE INVENTION




Referring to

FIG. 3

, an isolator module


50


includes a first lens


51


, an isolator core consisting of a first birefringent element


52


, a Faraday rotator


53


and a second birefringent element


54


, an optical detector


55


located in the direction to which a received light is reflected, a second lens


57


for focusing an output light, and a third lens


58


placed at the front of the optical detector


55


.




The first lens


51


focuses the input light which is emitted from a first optical fiber (not shown) and incident on the isolator core.




The first birefringent element


52


of the isolator core is made of an optical anisotropic material and divides the incident light into two different refracted lights. An optical axis of the crystal consisting the first birefringent element


52


is perpendicular to the x-axis. Also, the element


52


has a tapered shape in which an incident surface


52




a


forms a predetermined angle φ


1


with respect to an emitting surface


52




b


as shown in FIG.


4


. Meanwhile, the incident surface


52




a


is partial-reflection coated so that some of the light focused by the first lens


51


and incident on the isolator core is reflected from the surface


52




a.






The second birefringent element


54


has a tapered shape in which the emitting surface


54




b


forms a predetermined angle φ


2


with respect to the incident surface


54




a


. Also, the optical axis of the second birefringent element


54


is rotated by 45° in a direction opposite to that light is rotated by the Faraday rotator


53


with respect to the optical axis of the first birefringent element


52


.




The Faraday rotator


53


rotates double-refracted light which passes through the rotator


53


by an angle of 45°.




The optical detector


55


detects the light reflected by the incident surface


52




a


of the first birefringent element


52


and can be constructed by using an optical diode. Meanwhile, the third lens


58


serves to increase the detection efficiency of the optical detector


55


by focusing the light reflected by the incident surface


52




a


of the first birefringent element


52


on the light receiving surface of the optical detector


55


.




The second lens


57


focuses the light emitted from the emitting surface


54




b


of the second birefringent element


54


so that most of the reflected light is gathered upon a second fiber (not shown).




The operation of the isolator module


50


will now be described with reference to

FIGS. 5 and 6

.

FIG. 5

illustrates an optical path along which light propagates in the forward direction in the isolator core of the isolator module according to the present invention, and

FIG. 6

illustrates an optical path along which light propagates in the reverse direction in the isolator core of the isolator module according to the present invention;




First, an optical signal from a light source or an optical fiber is incident upon the incident surface


52




a


of the first birefringent element


52


at a predetermined angle through a focusing lens (not shown). The incident angle, which is preferably as small as possible to minimize the polarization dependent loss, is approximately 3-12° in the present embodiment.




Since the incident surface


52




a


of the first birefringent element


52


is partial-reflection coated, some of the light focused by the first lens


51


and incident upon the surface


52




a


is reflected from the incident surface


52




a


and detected by the optical detector


55


. On the other hand, most of the incident light signals transmits the incident surface


52




a


to propagate into the first birefringent element


52


.




As shown in FIG,


5


when light propagates in the forward direction, an ordinary ray (Ro) in the first birefringent element


52


is converted into an extra-ordinary ray (Re) in the second birefringent element


54


. Similarly, an extraordinary ray (Re) in the first birefringent element


52


is converted into an ordinary ray (Ro) in the second birefringent element


54


. The change of the ordinary and extraordinary rays Ro and Re is due to the fact that the direction in which the light is rotated by the Faraday rotator


53


is opposite to that in which the optical axis of the second birefringent element


54


changes with respect to the first birefringent element


52


, which results in an effect of rotating the light by 90°.




In

FIG. 5

, a light path I denotes a path of light which is shown as a ordinary ray (Ro) in the first birefringent element


52


and as an extraordinary ray (Re) in the second birefringent element


54


, and the path II denotes a path of light which is shown as an extraordinary ray (Re′) in the first birefringent element


52


and as an ordinary ray (Ro′) in the second birefringent element


54


.




Assuming that the light is a parallel axial ray with respect to the x-axis, the relationship among θ


i


, θ


4


and θ


4


′ is given by the following equation (1).






θ


4




=n




o


φ


1




+n




e


φ


2


−θ


i


−φ


1


−φ


2










θ′


4




=n




e


φ


1




+n




o


φ


2


−θ


i


−φ


1


−φ


2


  (1)






Where, n


o


and


e


n denote refractive indexes for the ordinary ray and the extraordinary ray, respectively.




If the values of φ


1


and φ


2


are equal to each other, the value of θ is equal to the value of θ


4


′ in the equation (1), which implies that the lights in the paths I and II are parallel to each other at the emitting surface


54




b


of the second birefringent element


54


. Also, the equation (1) is reduced to the following equation (2).






θ


i


=(


n




o




+n




e


−2)φ


1


−φ


4


  (2)






On the other hand, as shown in

FIG. 6

, when light transmits in the reverse direction, the light is rotated by the Faraday rotator so that the ordinary ray Ro in the second birefringent element


54


maintains the ordinary ray Ro in the first birefringent element


52


and the extraordinary ray Re in the second birefringent element


54


maintains the extraordinary ray Re in the first birefringent element


52


.




In

FIG. 6

, a light path III denotes a path of light which is an ordinary ray Ro in both of the first and second birefringent elements


52


and


54


. Also, a path IV denotes a path of light which is an extraordinary ray Re in both of the first and second birefringent elements


52


and


54


.




In this case, assuming that the light is a parallel axial ray with respect to the x-axis, the relationship among θ


i


, θ


i3


and θ


i3


′ is given by the following equation (3).






θ


i3




=n




o


φ


1




+n




o


φ


2


−θ


i


−φ


1


−φ


2










θ′


i3




=n




e


φ


1




+n




e


φ


2


−θ


i


−φ


1


−φ


2


  (3)






If the values of φ


1


and φ


2


are equal to each other, the equation (3) is reduced to the following equation (4).






θ


i3


=2(


n




o


−1)φ


1


−θ


i










θ′


i3


=2(


n




e


−1)φ


1


−θ


i


  (4)






From the equations (2) and (4), the difference between θ


i


and θ


i3


and that between θ


i


and θ


i3


′ are calculated as the following equation (5)






θ


i


−θ


i3


=(


n




e




−n




o











θ


i


−θ′


i3


=(


n




o




−n




e


)φ  (5)






Thus, the angle θ


i


of an incident light which transmits in the forward direction is different from the angles θ


i3


and θ


i3


′ of the emitting light in the reverse direction on the incident surface


52




a


of the first birefringent element


52


. Therefore, the light transmitting in the reverse direction cannot enter the first optical fiber while the light which emitted from the first optical fiber and transmitted in the forward direction propagates into the second optical fiber through the isolator core.




Also, when the light transmits in the forward direction, the polarization mode dispersion reduces prominently since the ordinary and extraordinary rays Ro and Re are changed in the first and second birefringent elements


52


and


54


and thus the difference in the refractive index between the first and second birefringent elements


52


and


54


which the ordinary ray Ro and the extraordinary ray Re experience is automatically compensated for. Therefore, a separate compensator is not necessary in the isolator module according to the present invention.





FIG. 7

is a perspective view of an isolator module according to the present invention. As shown in

FIG. 7

, the isolator module according to the present invention can be fabricated by being molded within a single package. The molded isolator module package includes a main body


60


in which the isolator module is encapsulated, an input port


61


for receiving an input optical signal, an output port


62


for emitting the output optical signal, and a detecting signal port


63


in which a current flows whose size varies according to the optical signal detected by the photodiode.




In the main body


60


, the isolator core, the first lens


51


, the second lens


57


, the optical detector


55


and the third lens


58


are arranged in fixed positions and sealed after calibrating the relative position therebetween, so that they cannot move relative to one another and dust or water do not permeate the isolator module.




Since the light is transmitted between the components directly rather than through optical fibers, the fibers are not needed between the isolator core and the optical detector


55


. Furthermore, the number of the splicing of fibers which were required in several places in the conventional apparatus is greatly reduced.





FIG. 8

is a block diagram of an embodiment of an Erbium-doped optical amplifier (EDFA) according to the present invention.




An optical amplifier


70


includes a first isolator module


72


for splitting and detecting a portion of an incident light while enabling an optical signal to flow only in the forward direction, a laser diode


76


for generating an optical signal for pumping, a coupler


78


for coupling the laser diode


16


on an optical path, an Erbium-doped fiber (EDF)


80


for amplifying the optical signal carried by the light via the stimulated emission by use of photons generated by the pumping operation of the laser diode


76


, and a second isolator module


82


for splitting and detecting a portion of the output light while enabling the optical signal to flow only in the forward direction.




The first and second isolator modules


72


and


82


are the same as those described with reference to

FIGS. 3 through 7

. Also, the functions and operations of the other components are the same as those in the conventional optical amplifier. Thus, the detailed description thereof will be omitted.




As shown in

FIG. 8

, the first and second isolator modules


72


and


82


detect the intensity of the light by themselves and output detection currents which are proportional to the input and output lights, respectively, while limiting the light to flow only in one direction.




In an alternative of the present embodiment, any one of the first and second isolator modules may be omitted. Also, a plurality of isolator cores can be used by being connected to each other in series in order to enhance the optical characteristics.




In a further alternative of the present embodiment, the laser diode can carry out pumping operation in the rear side of the EDF rather than in the front side thereof.




Therefore, it should be noted that the description of the embodiments were described to merely illustrate the isolator module and the optical amplifier according to the present invention and the scope of the present invention is not limited to the particular isolator module and the optical amplifier which were illustrated.




INDUSTRIAL APPLICABILITY




The optical isolator module according to the present invention can be employed for an optical amplifier and other applications in which light is desired to be propagated in one direction. Also, the optical amplifier according to the present invention is used for power amplification of low-power light source, the compensation for the signal splitting in a cable TV network, or preamplification for an optical detector, as well as optical communications.




Meanwhile, according to the isolator module and the optical amplifier of the present invention as described above, the number of components is reduced and the structure thereof is simplified since an optical splitter for splitting an optical signal and a compensator for compensating polarization mode dispersion is merged into the isolator module, and an optical detector for detecting the split light is integrated into a single package along with an isolator. Further, an insertion loss is decreased due to the reduction of the number of components.




Also, since the light is transmitted between the components directly rather than through optical fibers, the number of the splicing points of optical fibers decreases, the manufacturing process is simplified and the unit cost of product is lowered.




Furthermore, since an incident light is incident upon the optical splitter at a small incident angle, the polarization dependent loss is reduced.




Therefore, the optical characteristics of the isolator module and the optical amplifier are improved, so that reliability of the product is enhanced.



Claims
  • 1. An optical isolator module for splitting and detecting a portion of an incident optical signal while controlling light to propagate only in one direction, said optical isolator module comprising:first focusing means for focusing the incident optical signal; an isolator core including a first birefringent device which has a tapered shape in which a first incident surface forms a first predetermined angle with a first emitting surface from which a polarized light is emitted, wherein the incident surface is coated for partial reflection so that the portion of the incident optical signal is reflected as reflected light along a path different from a path of the incident optical signal, a Faraday rotator for rotating the emitted polarized light by a second predetermined angle, and a second birefringent device which has a tapered shape in which a second emitting surface forms a third predetermined angle with a second incident surface, wherein an optical axis of said second birefringent device is rotated in a direction opposite to that of the rotation of light by said Faraday rotator relative to an optical axis of said first birefringent device; an optical detector having a light-receiving surface, which is perpendicular to a path of the reflected light from said first incident surface of said first birefringent device, for detecting the reflected light to generate a detection signal current according to the detected light; and second focusing means for focusing a light which is transmitted through said isolator core and emitted from said second birefringent device.
  • 2. An optical isolator module as claimed in claim 1 wherein the second predetermined angle is 45°.
  • 3. An optical isolator module as claimed in claim 1, wherein a focused light from said fist focusing means is incident on said first incident surface of said first birefringent device at an incident angle of 3-12°.
  • 4. An optical isolator module as claimed in claim 1, wherein said first focusing means, said isolator core, said optical detector and said second focusing means are arranged in fixed positions and sealed in a package.
  • 5. An optical isolator module as claimed in claim 1, further comprising a third focusing means for focusing the reflected light onto said light-receiving surface of said optical detector.
  • 6. An optical isolator module as claimed in claim 5, wherein said first focusing means, said isolator core, said optical detector, said second focusing means and said third focusing means are arranged infixed positions and sealed in a package.
  • 7. An optical amplifier, comprising:an isolator module for splitting and detecting a portion of an incident optical signal while controlling a remainder of the incident optical signal to propagate only in one direction; pumping means for generating photons required for amplifying the remainder of the incident optical signal; a special optical fiber for amplifying the remainder of the incident optical signal by stimulated emission by use of the photons generated by said pumping means to output an amplified optical signal; and coupling means for coupling said pumping means and said isolator module to a front end of said special optical fiber; wherein said isolator module comprises: first focusing means for focusing the incident optical signal; an isolator core including a first birefringent device which has a tapered shape in which a first incident surface forms a first predetermined angle with a first emitting surface from which a polarized light is emitted, wherein the incident surface is coated for partial reflection so that the portion of the incident optical signal is reflected as reflected light along a path different from a path of the incident optical signal, a Faraday rotator for rotating the emitted polarized light by a second predetermined angle, and a second birefringent device which has a tapered shape in which a second emitting surface forms a third predetermined angle with a second incident surface, wherein an optical axis of said second birefringent device is rotated in a direction opposite to that of the rotation of light by said Faraday rotator relative to the optical axis of said first birefringent device; an optical detector having a light-receiving surface, which is perpendicular to a path of the reflected light from said first incident surface of said first birefringent device, for detecting the reflected light to generate a detection signal current according to the detected light; and second focusing means for focusing a light which is transmitted through said isolator core and emitted from said second birefringent device.
  • 8. An optical amplifier as claimed in claim 7, wherein said special optical fiber si doped with a rare earth element.
  • 9. An optical amplifier as claimed in claim 8, wherein said special optical fiber is an Erbium-doped optical fiber.
  • 10. An isolator module as claimed in claim 7, wherein the second predetermined angle is 45°.
  • 11. An isolator module as claimed in claim 7, wherein a focused light from said first focusing means is incident on said first incident surface of said first birefringent device at an incident angle of 3-12°.
  • 12. An isolator module as claimed in claim 7, wherein said first focusing means said isolator core, said optical detector and said second focusing means are arranged in fixed positions and sealed in a package.
  • 13. An isolator module as claimed in claim 7, further comprising a third focusing means for focusing the reflected light onto said light-receiving surface of said optical detector.
  • 14. An isolator module as claimed in claim 13, wherein said first focusing means, said isolator core, said optical detector, said second focusing means and said third focusing means are arranged in fixed positions and sealed in a package.
  • 15. An optical amplifier, comprising:pumping means for generating photons required for amplifying an incident optical signal; a special optical fiber for amplifying the incident optical signal by stimulated emission by use of the photons generated by said pumping means to output an amplified optical signal; coupling means for coupling said incident optical signal and said pumping means to a front end of said special optical fiber; and an isolator module for splitting the amplified optical signal input through said coupling means and reflecting a portion of the amplified optical signal input through said coupling means while controlling a remainder of the amplified optical signal to propagate only in one direction; wherein said isolator module comprises: p2 first focusing means for focusing the amplified optical signal; an isolator core including a first birefringent device which has a tapered shape in which a first incident surface forms a first predetermined angle with a first emitting surface from which a polarized light is emitted, wherein the first incident surface is coated for partial reflection so that the portion of the amplified optical signal is reflected as reflected light along a path different from a path of the incident optical signal, a Faraday rotator for rotating the emitted polarized light by a second predetermined angle, and a second birefringent device which has a tapered shape in which a second emitting surface forms a third predetermined angle with a second incident surface, wherein an optical axis of said second birefringent device is rotated in a direction opposite to that of the rotation of light by said Faraday rotator relative to the optical axis of said first birefringent device; an optical detector having a light-receiving surface, which is perpendicular to a path of the reflected light from said first incident surface of said first birefringent device, for detecting the reflected light to generate a detection signal current according to the detected light; and second focusing means for focusing a light which is transmitted through said isolator core and emitted from said second birefringent device.
  • 16. An optical amplifier as claimed in claim 15, wherein said special optical fiber is doped with rare earth element.
  • 17. An optical amplifier as claimed in claim 16, wherein said special optical fiber is an Erbium-doped optical fiber.
  • 18. An isolator module as claimed in claim 15, wherein the second predetermined angle is 45°.
  • 19. An isolator module as claimed in claim 15, wherein a focused light from said first focusing means is incident on said first incident surface of said first birefringent device at an incident angle of 3-12°.
  • 20. An isolator module as claimed in claim 15, wherein said first focusing means, said isolator core, said optical detector and said second focusing means are arranged in fixed positions and sealed in a package.
  • 21. An isolator module as claimed in claim 15, further comprising a third focusing means for focusing the reflected light onto said light-receiving surface of said optical detector.
  • 22. An isolator module as claimed in claim 15, wherein said first focusing means, said isolator core, said optical detector, said second focusing means and said third focusing means are arranged in fixed positions and sealed in a package.
Priority Claims (1)
Number Date Country Kind
97-2393 Jan 1997 KR
PCT Information
Filing Document Filing Date Country Kind 102e Date 371c Date
PCT/KR97/00147 WO 00 9/3/1999 9/3/1999
Publishing Document Publishing Date Country Kind
WO98/33080 7/30/1998 WO A
US Referenced Citations (8)
Number Name Date Kind
5283846 Toyonaka et al. Feb 1994
5315431 Masuda et al. May 1994
5448396 Fukushima Sep 1995
5557692 Pan et al. Sep 1996
5581640 Pan et al. Dec 1996
5657164 Shuman Aug 1997
5734762 Ho et al. Mar 1998
5809048 Shichijyo Sep 1998
Foreign Referenced Citations (1)
Number Date Country
0 661 579 A1 Sep 1994 EP