This application claims the benefit of Korean Patent Application No. 10-2015-0104833 filed on Jul. 24, 2015, the entire contents of which is incorporated by reference for all purposes as if fully set forth herein.
Field of the Disclosure
The present disclosure relates to an optical lens, a backlight unit including the optical lens, and a display device including the optical lens.
Discussion of the Related Art
With the development of the information society, various demands for display devices have been increasing. Various display devices, such as liquid crystal displays (LCDs), plasma display panels (PDPs), electroluminescent displays (ELDs), and vacuum fluorescent displays (VFDs), have been recently studied and used to meet various demands for the display devices.
Among the display devices, a liquid crystal display panel of the liquid crystal display includes a liquid crystal layer, and a thin film transistor (TFT) substrate and a color filter substrate which are positioned opposite each other with the liquid crystal layer interposed therebetween. The liquid crystal display panel displays an image using light provided by a backlight unit of the liquid crystal display.
Accordingly, an object of the present disclosure is to address the above-described and other problems.
Another aspect of the present disclosure is to provide an optical lens for efficiently controlling an optical path.
Another aspect of the present disclosure is to provide a backlight unit for uniformly irradiating light.
Another aspect of the present disclosure is to provide a display device having excellent image quality.
In one aspect, there is an optical lens comprising a first surface at an upper part of the optical lens, a second surface at a lower part of the optical lens, wherein a portion of the second surface is a bottom surface of the optical lens and parallel to a portion of the first surface, and a third surface connecting the first surface and the second surface, wherein an inclined portion of the second surface is at an angle from the bottom toward the third surface.
According to another aspect of the present disclosure, the inclined portion of the second surface may have a cross-sectional shape which is straight from the bottom toward the third surface.
According to another aspect of the present disclosure, the inclined portion of the second surface may have a cross-sectional shape which is curved from the bottom toward the third surface.
According to another aspect of the present disclosure, the inclined portion of the second surface may have a cross-sectional shape which is concave toward an inside of the optical lens.
According to another aspect of the present disclosure, the inclined portion of the second surface may have a cross-sectional shape which is convex toward an outside of the optical lens.
According to another aspect of the present disclosure, the inclined portion of the second surface may have a cross-sectional shape which is concave toward the inside of the optical lens and is convex toward the outside of the optical lens.
According to another aspect of the present disclosure, a height between the bottom surface and a point where the second surface and the third surface meet each other may be equal to or less than ⅓ of a height between the bottom surface and a top of the upper part.
According to another aspect of the present disclosure, the third surface may include a straight portion starting at a point where the first surface and the third surface meet each other and a curved surface starting from an end of the straight portion to the second surface.
According to another aspect of the present disclosure, the third surface is not perpendicular to the bottom surface.
According to another aspect of the present disclosure, the third surface is at an angle equal to or less than 5° with respect to the bottom surface.
According to another aspect of the present disclosure, a central area of the second surface includes a concave portion extending toward the first surface.
According to another aspect of the present disclosure, the concave portion may include a first area obliquely extending from a center point of the concave portion toward an outside of the second surface, a second area extending from the first area substantially parallel with the bottom surface, and a third area extending from the second area to the bottom surface.
According to another aspect of the present disclosure, a portion of the third area may include a curved surface.
According to another aspect of the present disclosure, the first surface may include a concave portion extending toward the second surface.
According to another aspect of the present disclosure, the concave portion extends from a center point of the concave portion where the first surface and the third surface meet each other.
According to another aspect of the present disclosure, the concave portion is angled from a boundary between the first surface and the third surface to a maximum depression position of the concave portion.
In another aspect, there is a backlight unit comprising an optical sheet, a substrate opposite the optical sheet, a light source between the substrate and the optical sheet and on the substrate, and an optical lens covering the light source, the optical lens including a first surface at an upper part of the optical lens, a second surface at a lower part of the optical lens, wherein a portion of the second surface is a bottom surface of the optical lens, and a third surface connecting the first surface and the second surface, wherein an inclined portion of the second surface is at an angle from the bottom surface toward the third surface.
In yet another aspect, there is a display device comprising a display panel, a backlight unit behind the display panel, a frame behind the backlight unit, and a back cover behind the frame, wherein the backlight unit includes a light source and an optical lens covering the light source, the optical lens including a first surface at an upper part, a second surface at a lower part, a portion of the second surface forming a bottom surface, and a third surface connecting the first surface and the second surface, wherein an inclined portion of the second surface is at an angle from the bottom surface toward the third surface.
According to another aspect of the present disclosure, the backlight unit further may include an optical sheet, a substrate opposite the optical sheet, and a light source between the substrate and the optical sheet and on the substrate.
According to another aspect of the present disclosure, a diameter of the first surface of the optical lens may be different than a diameter of the second surface of the optical lens.
According to at least one aspect of the present disclosure, the present disclosure can provide the optical lens for efficiently controlling an optical path.
According to at least one aspect of the present disclosure, the present disclosure can provide the backlight unit for uniformly irradiating light.
According to at least one aspect of the present disclosure, the present disclosure can provide the display device having excellent image quality.
The accompanying drawings, which are included to provide a further understanding of the invention and are incorporated in and constitute a part of this specification, illustrate embodiments of the invention and together with the description serve to explain the principles of the invention. In the drawings:
Reference will now be made in detail embodiments of the invention examples of which are illustrated in the accompanying drawings. Since the present invention may be modified in various ways and may have various forms, specific embodiments are illustrated in the drawings and are described in detail in the present specification. However, it should be understood that the present invention are not limited to specific disclosed embodiments, but include all modifications, equivalents and substitutes included within the spirit and technical scope of the present invention.
The terms ‘first’, ‘second’, etc. may be used to describe various components, but the components are not limited by such terms. The terms are used only for the purpose of distinguishing one component from other components. For example, a first component may be designated as a second component without departing from the scope of the present invention. In the same manner, the second component may be designated as the first component.
The term “and/or” encompasses both combinations of the plurality of related items disclosed and any item from among the plurality of related items disclosed.
When an arbitrary component is described as “being connected to” or “being linked to” another component, this should be understood to mean that still another component(s) may exist between them, although the arbitrary component may be directly connected to, or linked to, the second component. In contrast, when an arbitrary component is described as “being directly connected to” or “being directly linked to” another component, this should be understood to mean that no component exists between them.
The terms used in the present application are used to describe only specific embodiments or examples, and are not intended to limit the present invention. A singular expression can include a plural expression as long as it does not have an apparently different meaning in context.
In the present application, the terms “include” and “have” should be understood to be intended to designate that illustrated features, numbers, steps, operations, components, parts or combinations thereof exist and not to preclude the existence of one or more different features, numbers, steps, operations, components, parts or combinations thereof, or the possibility of the addition thereof.
Unless otherwise specified, all of the terms which are used herein, including the technical or scientific terms, have the same meanings as those that are generally understood by a person having ordinary knowledge in the art to which the present invention pertains. The terms defined in a generally used dictionary must be understood to have meanings identical to those used in the context of a related art, and are not to be construed to have ideal or excessively formal meanings unless they are obviously specified in the present application.
The following example embodiments of the present invention are provided to those skilled in the art in order to describe the present invention more completely. Accordingly, shapes and sizes of elements shown in the drawings may be exaggerated for clarity.
Hereinafter, the embodiments of the invention are described using a liquid crystal display panel as an example of a display panel. Other display panels may be used. For example, a plasma display panel (PDP), a field emission display (FED) panel, and an organic light emitting diode (OLED) display panel may be used.
In what follows, a display panel may include a first long side LS1, a second long side LS2 opposite the first long side LS1, a first short side SS1 adjacent to the first long side LS1 and the second long side LS2, and a second short side SS2 opposite the first short side SS1.
In the embodiment disclosed herein, the first short side SS1 may be referred to as a first side area; the second short side SS2 may be referred to as a second side area opposite the first side area; the first long side LS1 may be referred to as a third side area which is adjacent to the first side area and the second side area and is positioned between the first side area and the second side area; and the second long side LS2 may be referred to as a fourth side area which is adjacent to the first side area and the second side area, is positioned between the first side area and the second side area, and is opposite to the third side area.
The embodiment of the invention describes that lengths of the first and second long sides LS1 and LS2 are longer than lengths of the first and second short sides SS1 and SS2 for the sake of brevity and ease of reading. However, the lengths of the first and second long sides LS1 and LS2 may be almost equal to the lengths of the first and second short sides SS1 and SS2.
In the following description, a first direction DR1 may be a direction parallel to the long sides LS1 and LS2 of the display panel, and a second direction DR2 may be a direction parallel to the short sides SS1 and SS2 of the display panel.
Further, a third direction DR3 may be a direction vertical to the first direction DR1 and/or the second direction DR2.
In the embodiment disclosed herein, the first direction DR1 and the second direction DR2 may be commonly referred to as a horizontal direction.
Further, the third direction DR3 may be referred to as a vertical direction.
As shown in
The back cover 150 may be connected to the display panel 110 in a sliding manner in a direction (i.e., the second direction DR2) from the first long side LS1 to the second long side LS2. In other words, the back cover 150 may be inserted into the first short side SS1, the second short side SS2 opposite the first short side SS1, and the first long side LS1 which is adjacent to the first and second short sides SS1 and SS2 and is positioned between the first short side SS1 and the second short side SS2, of the display panel 110 in the sliding manner.
The back cover 150 and/or other components adjacent to the back cover 150 may include a protrusion, a sliding unit, a connection unit, etc., so that the back cover 150 is connected to the display panel 110 in the sliding manner.
As shown in
The front cover 105 may cover at least a portion of a front surface and a side surface of the display panel 110. The front cover 105 may have a rectangular fame shape, in which a center portion is empty. Because the center portion of the front cover 105 is empty, an image displayed on the display panel 110 may be seen to the outside.
The front cover 105 may include a front cover and a side cover. Namely, the front cover 105 may include the front cover positioned at the front surface of the display panel 110 and the side cover at the side surface of the display panel 110. The front cover and the side cover may be separately configured. One of the front cover and the side cover may be omitted. For example, the front cover may be omitted, and only the side cover may be absent in terms of a beautiful appearance of the display device 100.
The display panel 110 may be positioned in front of the display device 100 and may display an image. The display panel 110 may divide the image into a plurality of pixels and may output the image while controlling color, brightness, and chroma of each pixel. The display panel 110 may include an active area, on which the image is displayed, and an inactive area, on which the image is not displayed. The display panel 110 may include a front substrate and a back substrate which are positioned opposite each other with a liquid crystal layer interposed therebetween.
The front substrate may include a plurality of pixels each including red, green, and blue subpixels. The front substrate may generate an image corresponding to the red, green, or blue color in response to a control signal.
The back substrate may include switching elements. The back substrate may turn on pixel electrodes. For example, the pixel electrode may change a molecule arrangement of the liquid crystal layer in response to a control signal received from the outside. The liquid crystal layer may include a plurality of liquid crystal molecules. The arrangement of the liquid crystal molecules may change depending on a voltage difference between the pixel electrode and a common electrode. The liquid crystal layer may transmit light provided by the backlight unit 120 to the front substrate.
The backlight unit 120 may be positioned at a back surface of the display panel 110. The backlight unit 120 may include a plurality of light sources. The light sources of the backlight unit 120 may be arranged in an edge type or a direct type. In the instance of the edge type backlight unit 120, a light guide plate may be added.
The backlight unit 120 may be coupled to a front surface of the frame 130. For example, the plurality of light sources may be disposed at the front surface of the frame 130. In this instance, the backlight unit 120 may be commonly called the direct type backlight unit 120.
The backlight unit 120 may be driven in an entire driving method or a partial driving method such as a local dimming method and an impulsive driving method. The backlight unit 120 may include an optical sheet 125 and an optical layer 123.
The optical sheet 125 can cause light of the light sources to be uniformly transferred to the display panel 110. The optical sheet 125 may include a plurality of layers. For example, the optical sheet 125 may include at least one prism sheet and/or at least one diffusion sheet.
The optical sheet 125 may further include at least one coupling unit 125d. The coupling unit 125d may be coupled to the front cover 105 and/or the back cover 150. Namely, the coupling unit 125d may be directly coupled to the front cover 105 and/or the back cover 150. Alternatively, the coupling unit 125d may be coupled to a structure formed on the front cover 105 and/or the back cover 150. Namely, the coupling unit 125d may be indirectly coupled to the front cover 105 and/or the back cover 150.
The optical layer 123 may include the light source, etc. The detailed configuration of the optical layer 123 will be described in the corresponding paragraphs.
The frame 130 may support components constituting the display device 100. For example, the frame 130 may be coupled to the backlight unit 120. The frame 130 may be formed of a metal material, for example, an aluminum alloy.
The back cover 150 may be positioned at a back surface of the display device 100. The back cover 150 may protect inner configuration of the display device 100 from the outside. At least a portion of the back cover 150 may be coupled to the frame 130 and/or the front cover 105. The back cover 150 may be an injection production (or injection molded) formed of a resin material.
As shown in
The display panel 110 may be positioned at a front surface of the optical sheet 125. An edge of the display panel 110 may be coupled to the first guide panel 117. Namely, the display panel 110 may be supported by the first guide panel 117.
An edge area of the front surface of the display panel 110 may be surrounded by the front cover 105. For example, the display panel 110 may be positioned between the first guide panel 117 and the front cover 105.
As shown in
As shown in
Referring to
The substrate 122 may include a plurality of straps, which extend in a first direction and are separated from one another by a predetermined distance in a second direction perpendicular to the first direction.
At least one light assembly 124 may be mounted on the substrate 122. The substrate 122 may have an electrode pattern for connecting an adaptor to the light assembly 124. For example, a carbon nanotube electrode pattern for connecting the adaptor to the light assembly 124 may be formed on the substrate 122.
The substrate 122 may be formed of at least one of polyethylene terephthalate (PET), glass, polycarbonate (PC), and silicon. The substrate 122 may be a printed circuit board (PCB), on which at least one light assembly 124 is mounted.
The light assemblies 124 may be disposed on the substrate 122 at predetermined intervals in the first direction. A diameter of the light assembly 124 may be greater than a width of the substrate 122. Namely, the diameter of the light assembly 124 may be greater than a length of the substrate 122 in the second direction.
The light assembly 124 may be one of a light emitting diode (LED) chip and a LED package having at least one LED chip.
The light assembly 124 may be configured as a colored LED emitting at least one of red, green, and blue light or a white LED. The colored LED may include at least one of a red LED, a green LED, and a blue LED.
The light source included in the light assembly 124 may be a COB (Chip-On-Board) type. The COB light source may have a configuration, in which the LED chip as the light source is directly coupled to the substrate 122. Thus, the process may be simplified. Further, a resistance may be reduced, and a loss of energy resulting from heat may be reduced. Namely, power efficiency of the light assembly 124 may increase. The COB light source can provide the brighter lighting and may be implemented to be thinner and lighter than a related art.
The reflecting sheet 126 may be positioned at the front surface of the substrate 122. The reflecting sheet 126 may be positioned in an area excluding a formation area of the light assemblies 124 of the substrates 122. Namely, the reflecting sheet 126 may have a plurality of holes 235.
The reflecting sheet 126 may reflect light emitted from the light assembly 124 to a front surface of the reflecting sheet 126. Further, the reflecting sheet 126 may again reflect light reflected from the diffusion plate 129.
The reflecting sheet 126 may include at least one of metal and metal oxide which are a reflection material. The reflecting sheet 126 may include metal and/or metal oxide having a high reflectance, for example, aluminum (Al), silver (Ag), gold (Au), and titanium dioxide (TiO2).
The reflecting sheet 126 may be formed by depositing and/or coating the metal or the metal oxide on the substrate 122. An ink including the metal material may be printed on the reflecting sheet 126. On the reflecting sheet 126, a deposition layer may be formed using a heat deposition method, an evaporation method, or a vacuum deposition method such as a sputtering method. On the reflecting sheet 126, a coating layer and/or a printing layer may be formed using a printing method, a gravure coating method or a silk screen method.
An air gap may be positioned between the reflecting sheet 126 and the diffusion plate 129. The air gap may serve as a buffer capable of widely diffusing light emitted from the light assembly 124.
A resin may be deposited on the light assembly 124 and/or the reflecting sheet 126. The resin may function to diffuse light emitted from the light assembly 124.
The diffusion plate 129 may upwardly diffuse light emitted from the light assembly 124.
The optical sheet 125 may be positioned at a front surface of the diffusion plate 129. A back surface of the optical sheet 125 may be adhered to the diffusion plate 129, and a front surface of the optical sheet 125 may be adhered to the back surface of the display panel 110.
The optical sheet 125 may include at least one sheet. More specifically, the optical sheet 125 may include one or more prism sheets and/or one or more diffusion sheets. The plurality of sheets included in the optical sheet 125 may be attached and/or adhered to one another.
In other words, the optical sheet 125 may include a plurality of sheets having different functions. For example, the optical sheet 125 may include first to third optical sheets 125a to 125c. The first optical sheets 125a may function as a diffusion sheet, and the second and third optical sheets 125b and 125c may function as a prism sheet. A number and/or a position of the diffusion sheets and the prism sheets may be changed. For example, the optical sheet 125 may include the first optical sheets 125a as the diffusion sheet and the second optical sheet 125b as the prism sheet.
The diffusion sheet may prevent light coming from the diffusion plate from being partially concentrated and may homogenize a luminance of the light. The prism sheet may concentrate light coming from the diffusion sheet and may make the concentrated light be vertically incident on the display panel 110.
The coupling unit 125d may be formed on at least one of corners of the optical sheet 125. The coupling unit 125d may be formed in at least one of the first to third optical sheets 125a to 125c.
The coupling unit 125d may be formed at the corner on the long side of the optical sheet 125. The coupling unit 125d formed on the first long side and the coupling unit 125d formed on the second long side may be asymmetric. For example, a number and/or a position of the coupling units 125d formed on the first long side may be different from a number and/or a position of the coupling units 125d formed on the second long side.
Referring to
The line electrode 232 may extend in the second direction. The line electrode 232 may be connected to the ends of the substrates 122 at predetermined intervals in the second direction. The substrates 122 may be electrically connected to the adaptor through the line electrode 232.
The light assemblies 124 may be mounted on the substrate 122 at predetermined intervals in the first direction. A diameter of the light assembly 124 may be greater than a width of the substrate 122 in the second direction. Hence, an outer area of the light assembly 124 may be positioned beyond a formation area of the substrate 122.
As shown in
The emission layer 135 may be positioned on the substrate 122. The emission layer 135 may emit one of red, green, and blue light. The emission layer 135 may include one of Firpic, (CF3ppy)2Ir(pic), 9,10-di(2-naphthyl)anthracene(AND), perylene, distyrybiphenyl, PVK, OXD-7, UGH-3(Blue), and a combination thereof.
The first and second electrodes 147 and 149 may be positioned on both sides of a lower surface of the emission layer 135. The first and second electrodes 147 and 149 may transmit an external driving signal to the emission layer 135.
The fluorescent layer 137 may cover the emission layer 135 and the first and second electrodes 147 and 149. The fluorescent layer 137 may include a fluorescent material converting light of a spectrum generated from the emission layer 135 into white light. A thickness of the emission layer 135 on the fluorescent layer 137 may be uniform. The fluorescent layer 137 may have a refractive index of 1.4 to 2.0.
The COB light source 203 according to the embodiment of the invention may be directly mounted on the substrate 122. Thus, the size of the light assembly 124 may decrease.
Because heat dissipation of the light sources 203 is excellent by forming the light sources 203 on the substrate 122, the light sources 203 may be driven at a high current. Hence, a number of light sources 203 required to secure the same light quantity may decrease.
Further, because the light sources 203 are mounted on the substrate 122, a wire bonding process may not be necessary. Hence, the manufacturing cost may be reduced due to the simplification of the manufacturing process.
As shown in
As shown in
The light source 203 may be various sources emitting light. For example, the light source 203 may be a COB type LED as described above.
The lens 300 may be positioned on the light source 203. At least a partial area of the light source 203 may overlap the lens 300. For example, the light source 203 may be inserted into a groove inside the lens 300. Alternatively, an area of the light source 203, from which light is substantially emitted, may be inserted into the lower side of the lens 300. For example, when the lens 300 has a leg structure, a portion of the upper side of the light source 203 may be inserted into the lower side of the lens 300.
The lens 300 may reflect a portion of light emitted from the light source 203 and may refract a portion of the light. For example, the lens 300 may be a refractive lens or a reflective lens. The light emitted from the light source 203 may be uniformly and entirely diffused through the reflection in a portion of the lens 300 and/or the refraction in a portion of the lens 300.
The light source 203 inserted into the lens 300 may be adhered to the lens 300. For example, the lens 300 and the light source 203 may be attached to each other using an adhesive.
The lens 300 may correspond to each light source 203. For example, first to third lenses 300a to 300c may be respectively positioned on first to third light sources 203a to 203c.
The lens 300 may control a path of light emitted from the light source 203. Namely, the lens 300 may control the light source 203 so that the light of the light source 203 is not concentrated on a specific location. In other words, the lens 300 may cause the light of the light source 203 to be uniformly diffused. The lens 300 according to the embodiment of the invention may efficiently control the path of the light of the light source 203. The lens 300 according to the embodiment of the invention may efficiently control light emitted from the side of the light source 203.
As shown in
As shown in
As shown in
As shown in
As shown in
As described above, the lens 300 may be a refractive lens or a reflective lens. For example, at least a portion of light emitted from the upper side of the lens 300 may be refracted or reflected due to a shape of a first concave portion A1. The light may be uniformly distributed to the outside of the lens 300 by the refraction or the reflection from the first concave portion A1. The lens 300 having the above-described configuration can obtain an effect different from a related art lens, which mainly used the refraction of light.
As shown in
As shown in
The first surface S1 may be an upper part or an upper side of the lens 300. At least a portion of the first surface S1 of the lens 300 according to the embodiment of the invention may be depressed. A depressed portion of the first surface S1 may have a shape curved from the center of the lens 300 to the outside of the lens 300. For example, a first concave portion A1 may be formed on the first surface S1.
An uppermost area of the first surface S1 may be referred as a top surface TS. The first surface S1 may have a circular shape. Light emitted from the upper side of the light source 203 may be upwardly emitted through the first surface S1 of the lens 300.
The second surface S2 may be a lower part or a lower side of the lens 300. Namely, the second surface S2 may be a surface opposite the first surface S1 corresponding to the upper part of the lens 300. At least a portion of the second surface S2 of the lens 300 according to the embodiment of the invention may be depressed. For example, a second concave portion A2 may be formed on the second surface S2.
A radius of the second concave portion A2 on the second surface S2 may be denoted as R2. The radius R2 of the second concave portion A2 may be 1.5 to 4 times a radius of the light source 203 coupled to the lens 300.
A lowermost area of the second surface S2 may be referred to as a bottom or a bottom surface BS. The second surface S2 may have a circular shape. The light source 203 may be coupled to the second surface S2. As described above, a portion of the light source 203 may be inserted into the second surface S2.
A radius of the second surface S2 may be “R2+R3”. A radius R1 of the first surface S1 may be 1 to 3 times the radius (R2+R3) of the second surface S2. Namely, a width of the top surface TS may be greater than a width of the bottom surface BS.
The radius (R2+R3) of the second surface S2 may be 2 to 4 times a radius R2 of the second concave portion A2.
The third surface S3 may be a surface connecting the first surface S1 and the second surface S2. Namely, the third surface S3 may be a side surface connecting the upper surface and the lower surface of the lens 300. The first surface S1 and the second surface S2 each have the circular shape, and the third surface S3 forms an outer surface connecting the first surface S1 and the second surface S2. Therefore, the lens 300 may have an outline of a cylindrical shape having a height H. In the cylindrical shape of the lens 300, at least a portion of the first to third surfaces S1 to S3 may be changed.
As shown in
The center point A2T may be a center point of the lens 300 and/or a center point of the second concave portion A2. The center point A2T may be a location, at which a groove of the second concave portion A2 has a maximum height and/or a maximum depth. The second concave portion A2 may have a shape falling from the center point A2T.
The first area A2S may have a shape obliquely falling from the center point A2T.
The second area A2U may be an area extending from the first area A2S. The second area A2U may be substantially parallel with the bottom surface BS of the second surface S2. For example, the second area A2U may have a shape capable of maintaining a height H2 from the bottom surface BS to the second area A2U.
At least a portion of the light source 203 may be positioned in the second area A2U, the first area A2S, and/or the center point A2T. For example, an area of the light source 203 emitting light may overlap the inside of the lens 300.
The third area A2R may be an area extending from the second area A2U. More specifically, the third area A2R may extend from the second area A2U to the bottom surface BS of the second surface S2.
The third area A2R may have a curved surface toward the center of the second surface S2. Namely, a boundary between the second area A2U and the third area A2R may be rounded.
The third area A2R may be an area transmitting the side light emitted from the light source 203. The round shape of the third area A2R may be suitable to disperse the side light emitted from the light source 203.
When the third area A2R includes a linear horizontal area A2H and a linear vertical area A2V, the side light may be emitted in a path of a first dispersion angle AG1. For example, light, which relatively upwardly travels among light emitted from the light source 203, may be totally reflected from an inner surface of the horizontal area A2H and cannot be upwardly emitted.
When the third area A2R according to the embodiment of the invention is configured as the round shape, the side light may be dispersed along the round shape of the third area A2R. Namely, the side light may be more widely emitted to the outside in a path of a second dispersion angle AG2 greater than the first dispersion angle AG1. Because the embodiment of the invention can disperse the side light, the contrast resulting from the concentration of light may be reduced.
As shown in
A radius of a bottom surface of the lens 300 may be denoted as R4. A radius of the second concave portion A2 may be denoted as R2. The radius R4 may be 2 to 4 times the radius R2.
As shown in
An oval, i.e., a first circle C1 determining a shape of the third area A2R may use a predetermined position as a focus F. For example, when a radius of the second concave portion A2 is R2, the focus F may be positioned between ¼ (R2/4) and ½ (R2/2) of R2. Namely, the third area A2R may be formed along a trace of the oval, in which the focus F exists at a predetermined position of a focus area FD. The shape of the third area A2R may change depending on a position of the focus F inside the focus area FD.
As shown in
As shown in
As shown in
As shown in
The third surface S3 may entirely have a shape inclined from a vertical line by a predetermined angle. The predetermined angle may be within the range of an angle S3D from a vertical line starting at a boundary point TSE between the first surface S1 and the third surface S3. The angle S3D may be between 0° and 60°. For example, the third surface S3 may be formed along an angle S3D1 less than the angle S3D.
As shown in
The straight surface S31 may extend from the boundary point TSE toward the second surface S2.
The curved surface S32 may be positioned between the straight surface S31 and the second surface S2. Namely, the curved surface S32 may be closer to the second surface S2 than the straight surface S31.
The curved surface S32 may be formed at a location corresponding to a shape of an imaginary circle or an imaginary oval of a predetermined range. For example, an imaginary line L1, which uses a boundary between the second area A2U and the third area A2R of the second concave portion A2 as a starting point and connects ¼ (1H/4) to ¾ (3H/4) of a height H of the lens 300, may be set. Imaginary horizontal lines HL1, HL2, and HL3 of the third surface S3 may be set. The curved surface S32 may have a shape corresponding to an arc contacting an imaginary oval using one of intersection points F1, F2, and F3 between the imaginary line L1 and the imaginary horizontal lines HL1, HL2, and HL3 as a focus.
As shown in
A curvature of the curved surface S32 may be different from a curvature of the third area A2R. Namely, a curvature of the side of the second concave portion A2 may be different from a curvature of the side of the third surface S3. Because a curvature of the inside of the lens 300 is different from a curvature of the outside of the lens 300, a path of light emitted from the light source may be further diversified. Namely, light emitted from the light source is not concentrated at a specific location or a specific area and may be uniformly radiated.
As shown in
The first concave portion A1 may have a shape, in which the first surface S1 is depressed toward the second surface S2. For example, a center portion of the lens 300 has a maximum depression depth, a center point, and a depression depth of the lens 300 may decrease as the lens 300 goes from the center portion to an outer portion.
When a height of the second concave portion A2 of the lens 300 is denoted as H1, a maximum depression position of the first concave portion A1 may be other portion except a portion having the height H1. Namely, the maximum depression position of the first concave portion A1 may exist in a portion having a height H3.
The first concave portion A1 may have a curved shape. For example, the first concave portion A1 may have a predetermined curved shape, as in a 1a concave portion A11 and a 1b concave portion A12.
As shown in
As shown in
The light emitted from the side of the light source 203 may be firstly diffused from the second concave portion A2. Namely, as described above, the light path LP may be radiated due to a shape of a third area A2R of the second concave portion A2.
The light path LP distributed from the side of the second concave portion A2 may be again radiated via a curved surface S32 of the third surface S3.
At least a portion of the light path LP passing through the second concave portion A2, etc., may be refracted and/or reflected from the first concave portion A1. Thus, the light path LP may be prevented from being concentrated on a specific location. As a result, light may be uniformly distributed on the optical sheet 125.
As shown in
As shown in
As shown in
The light source 203 may have the relatively small size. The light source 203 may have a performance of high power. Thus, the first and second light sources 203a and 203b may correspond to one lens 300.
The second concave portion A2 may have an oval shape. For example, the second concave portion A2 may have the shape, in which a width A2W of the second concave portion A2 is greater than a height A2H of the second concave portion A2. The plurality of light sources 203a and 203b may be positioned in a space obtained by configuring the second concave portion A2 in the oval shape.
When the plurality of light sources 203 are positioned inside the second concave portion A2, the shape of the second concave portion A2 and/or the curved surface S32 of the third surface S3 may importantly operate in the embodiment of the invention. Namely, because a large amount of light may be generated from the sides of the first and second light sources 203a and 203b, it is necessary to more efficiently control the light emitted from the sides of the first and second light sources 203a and 203b. The embodiment of the invention may efficiently distribute the light emitted from the sides of the light sources through a curved third area A2R on the side of the second concave portion A2 and/or the curved surface S32 on the lower side of the third surface S3.
As shown in
As shown in
As shown in
The third surface S3 may include a straight surface S31 and a curved surface S32. The curved surface S32 may be connected to the second surface S2.
The third area A2R may be formed on the second concave portion A2. Namely, a curved surface may be formed in an area extending from the lower side of the second concave portion A2 to the bottom surface BS. The light emitted from the light source may be diffused due to the third area A2R. In particular, the third area A2R may improve the uniformity of the light emitted from the side of the light source.
As shown in
Third areas A2R1 and A2R2 may be formed on the second concave portion A2. Namely, a curved surface may be formed in a portion of an area where the second concave portion A2 and the bottom surface BS meet. The third areas A2R1 and A2R2 may include a 3a area A2R1 and a 3b area A2R2. Namely, a plurality of curved surfaces may be formed in a plurality of areas where the second concave portion A2 and the bottom surface BS meet.
As shown in
Referring to
Referring to
Referring to
The inclined surface of the second surface S2 may be flat. The fact that the inclined surface of the second surface S2 is flat may mean that the inclined surface of the second surface S2 entirely has a straight cross-sectional shape. The predetermined angle θ2 may be equal to or less than 30°. When the predetermined angle θ2 is equal to or less than 30°, the control of light at the side of the lens 300 may be more efficiently performed. A height H2 at a position where the inclined surface of the second surface S2 and the third surface S3 meet each other may be equal to or less than ⅓ of a total height H1 of the lens 300. When the height H2 is equal to or less than ⅓ of the total height H1 of the lens 300, the control of light at the side of the lens 300 may be more efficiently performed.
Referring to
The third surface S3 may have a shape entirely inclined from a vertical dotted line by a predetermined angle. The predetermined angle may be within the range of a predetermined angle θ1 from the vertical dotted line starting at a boundary point P23 between the second surface S2 and the third surface S3. In this instance, the predetermined angle θ1 may be inclined from the vertical dotted line in a counterclockwise direction CCW. The predetermined angle θ1 may be between 0° and 5°. For example, the third surface S3 may be formed as the shape inclined from the vertical dotted line starting at the boundary point P23 between the second surface S2 and the third surface S3 by about 1° in the counterclockwise direction CCW.
Referring to
The third surface S3 may have a shape entirely inclined from a vertical dotted line by a predetermined angle. The predetermined angle may be within the range of a predetermined angle θ1 from the vertical dotted line starting at a boundary point P23 between the second surface S2 and the third surface S3. In this instance, the predetermined angle θ1 may be inclined from the vertical dotted line in a clockwise direction CW. The predetermined angle θ1 may be between 0° and 5°. For example, the third surface S3 may be formed as the shape inclined from the vertical dotted line starting at the boundary point P23 between the second surface S2 and the third surface S3 by about 1° in the clockwise direction CW.
Referring to
Referring to
The third surface S3 may have a shape entirely inclined from a vertical dotted line by a predetermined angle. The predetermined angle may be within the range of a predetermined angle θ1 from the vertical dotted line starting at a boundary point P23 between the second surface S2 and the third surface S3. In this instance, the predetermined angle θ1 may be inclined from the vertical dotted line in a clockwise direction CW. The predetermined angle θ1 may be between 0° and 5°. For example, the third surface S3 may be formed as the shape inclined from the vertical dotted line starting at the boundary point P23 between the second surface S2 and the third surface S3 by about 1° in the clockwise direction CW.
Referring to
The third surface S3 may have a shape entirely inclined from a vertical dotted line by a predetermined angle. The predetermined angle may be within the range of a predetermined angle θ1 from the vertical dotted line starting at a boundary point P23 between the second surface S2 and the third surface S3. In this instance, the predetermined angle θ1 may be inclined from the vertical dotted line in a counterclockwise direction CCW. The predetermined angle θ1 may be between 0° and 5°. For example, the third surface S3 may be formed as the shape inclined from the vertical dotted line starting at the boundary point P23 between the second surface S2 and the third surface S3 by about 1° in the counterclockwise direction CCW.
Referring to
Referring to
The third surface S3 may have a shape entirely inclined from a vertical dotted line by a predetermined angle. The predetermined angle may be within the range of a predetermined angle θ1 from the vertical dotted line starting at a boundary point P23 between the second surface S2 and the third surface S3. In this instance, the predetermined angle θ1 may be inclined from the vertical dotted line in a clockwise direction CW. The predetermined angle θ1 may be between 0° and 5°. For example, the third surface S3 may be formed as the shape inclined from the vertical dotted line starting at the boundary point P23 between the second surface S2 and the third surface S3 by about 1° in the clockwise direction CW.
Referring to
The third surface S3 may have a shape entirely inclined from a vertical dotted line by a predetermined angle. The predetermined angle may be within the range of a predetermined angle θ1 from the vertical dotted line starting at a boundary point P23 between the second surface S2 and the third surface S3. In this instance, the predetermined angle θ1 may be inclined from the vertical dotted line in a counterclockwise direction CCW. The predetermined angle θ1 may be between 0° and 5°. For example, the third surface S3 may be formed as the shape inclined from the vertical dotted line starting at the boundary point P23 between the second surface S2 and the third surface S3 by about 1° in the counterclockwise direction CCW.
Referring to
A height H2 at a position where the inclined surface of the second surface S2 and the third surface S3 meet each other may be equal to or less than ⅓ of a total height H1 of the lens 300. When the height H2 is equal to or less than ⅓ of the total height H1 of the lens 300, the control of light at the side of the lens 300 may be more efficiently performed.
Referring to
A height H2 at a position where the inclined surface of the second surface S2 and the third surface S3 meet each other may be equal to or less than ⅓ of a total height H1 of the lens 300. When the height H2 is equal to or less than ⅓ of the total height H1 of the lens 300, the control of light at the side of the lens 300 may be more efficiently performed.
The third surface S3 may have a shape entirely inclined from a vertical dotted line by a predetermined angle. The predetermined angle may be within the range of a predetermined angle θ1 from the vertical dotted line starting at a boundary point P23 between the second surface S2 and the third surface S3. In this instance, the predetermined angle θ1 may be inclined from the vertical dotted line in a clockwise direction CW. The predetermined angle θ1 may be between 0° and 5°. For example, the third surface S3 may be formed as the shape inclined from the vertical dotted line starting at the boundary point P23 between the second surface S2 and the third surface S3 by about 1° in the clockwise direction CW.
Referring to
A height H2 at a position where the inclined surface of the second surface S2 and the third surface S3 meet each other may be equal to or less than ⅓ of a total height H1 of the lens 300. When the height H2 is equal to or less than ⅓ of the total height H1 of the lens 300, the control of light at the side of the lens 300 may be more efficiently performed.
The third surface S3 may have a shape entirely inclined from a vertical dotted line by a predetermined angle. The predetermined angle may be within the range of a predetermined angle θ1 from the vertical dotted line starting at a boundary point P23 between the second surface S2 and the third surface S3. In this instance, the predetermined angle θ1 may be inclined from the vertical dotted line in a counterclockwise direction CCW. The predetermined angle θ1 may be between 0° and 5°. For example, the third surface S3 may be formed as the shape inclined from the vertical dotted line starting at the boundary point P23 between the second surface S2 and the third surface S3 by about 1° in the counterclockwise direction CCW.
Referring to
A height H2 at a position where the inclined surface of the second surface S2 and the third surface S3 meet each other may be equal to or less than ⅓ of a total height H1 of the lens 300. When the height H2 is equal to or less than ⅓ of the total height H1 of the lens 300, the control of light at the side of the lens 300 may be more efficiently performed.
Referring to
A height H2 at a position where the inclined surface of the second surface S2 and the third surface S3 meet each other may be equal to or less than ⅓ of a total height H1 of the lens 300. When the height H2 is equal to or less than ⅓ of the total height H1 of the lens 300, the control of light at the side of the lens 300 may be more efficiently performed.
The third surface S3 may have a shape entirely inclined from a vertical dotted line by a predetermined angle. The predetermined angle may be within the range of a predetermined angle θ1 from the vertical dotted line starting at a boundary point P23 between the second surface S2 and the third surface S3. In this instance, the predetermined angle θ1 may be inclined from the vertical dotted line in a clockwise direction CW. The predetermined angle θ1 may be between 0° and 5°. For example, the third surface S3 may be formed as the shape inclined from the vertical dotted line starting at the boundary point P23 between the second surface S2 and the third surface S3 by about 1° in the clockwise direction CW.
Referring to
A height H2 at a position where the inclined surface of the second surface S2 and the third surface S3 meet each other may be equal to or less than ⅓ of a total height H1 of the lens 300. When the height H2 is equal to or less than ⅓ of the total height H1 of the lens 300, the control of light at the side of the lens 300 may be more efficiently performed.
The third surface S3 may have a shape entirely inclined from a vertical dotted line by a predetermined angle. The predetermined angle may be within the range of a predetermined angle θ1 from the vertical dotted line starting at a boundary point P23 between the second surface S2 and the third surface S3. In this instance, the predetermined angle θ1 may be inclined from the vertical dotted line in a counterclockwise direction CCW. The predetermined angle θ1 may be between 0° and 5°. For example, the third surface S3 may be formed as the shape inclined from the vertical dotted line starting at the boundary point P23 between the second surface S2 and the third surface S3 by about 1° in the counterclockwise direction CCW.
Referring to
The third surface S3 may include a straight surface S31 and a curved surface S32. The straight surface S31 may extend from a boundary point P13 toward the second surface S2. The curved surface S32 may be positioned between the straight surface S31 and the second surface S2. Namely, the curved surface S32 may be closer to the second surface S2 than the straight surface S31.
The curved surface S32 may be formed at a location corresponding to a shape of an imaginary circle or an imaginary oval of a predetermined range. A curvature R of the curved surface S32 may be diversified. The curvature R of the curved surface S32 may be different from a curvature of the second surface S2.
Because the curvatures of the curved surfaces of the lens 300 are different from one another, a path of light from the light source may be further diversified. Namely, light from the light source is not concentrated at a specific location or a specific area and may be uniformly radiated.
Referring to
The third surface S3 may include a straight surface S31 and a curved surface S32. The straight surface S31 may extend from a boundary point P13 toward the second surface S2. The curved surface S32 may be positioned between the straight surface S31 and the second surface S2. Namely, the curved surface S32 may be closer to the second surface S2 than the straight surface S31.
The curved surface S32 may be formed at a location corresponding to a shape of an imaginary circle or an imaginary oval of a predetermined range. A curvature R of the curved surface S32 may be diversified. The curvature R of the curved surface S32 may be different from a curvature of the second surface S2.
Because the curvatures of the curved surfaces of the lens 300 are different from one another, a path of light from the light source may be further diversified. Namely, light from the light source is not concentrated at a specific location or a specific area and may be uniformly radiated.
The third surface S3 may have a shape entirely inclined from a vertical dotted line by a predetermined angle. The predetermined angle may be within the range of a predetermined angle θ1 from the vertical dotted line starting at a boundary point P23 between the second surface S2 and the third surface S3. In this instance, the predetermined angle θ1 may be inclined from the vertical dotted line in a clockwise direction CW. The predetermined angle θ1 may be between 0° and 5°. For example, the third surface S3 may be formed as the shape inclined from the vertical dotted line starting at the boundary point P23 between the second surface S2 and the third surface S3 by about 1° in the clockwise direction CW.
Referring to
The third surface S3 may include a straight surface S31 and a curved surface S32. The straight surface S31 may extend from a boundary point P13 toward the second surface S2. The curved surface S32 may be positioned between the straight surface S31 and the second surface S2. Namely, the curved surface S32 may be closer to the second surface S2 than the straight surface S31.
The curved surface S32 may be formed at a location corresponding to a shape of an imaginary circle or an imaginary oval of a predetermined range. A curvature R of the curved surface S32 may be diversified. The curvature R of the curved surface S32 may be different from a curvature of the second surface S2.
Because the curvatures of the curved surfaces of the lens 300 are different from one another, a path of light from the light source may be further diversified. Namely, light from the light source is not concentrated at a specific location or a specific area and may be uniformly radiated.
The third surface S3 may have a shape entirely inclined from a vertical dotted line by a predetermined angle. The predetermined angle may be within the range of a predetermined angle θ1 from the vertical dotted line starting at a boundary point P23 between the second surface S2 and the third surface S3. In this instance, the predetermined angle θ1 may be inclined from the vertical dotted line in a counterclockwise direction CCW. The predetermined angle θ1 may be between 0° and 5°. For example, the third surface S3 may be formed as the shape inclined from the vertical dotted line starting at the boundary point P23 between the second surface S2 and the third surface S3 by about 1° in the counterclockwise direction CCW.
Referring to
The third surface S3 may include a straight surface S31 and a curved surface S32. The straight surface S31 may extend from a boundary point P13 toward the second surface S2. The curved surface S32 may be positioned between the straight surface S31 and the second surface S2. Namely, the curved surface S32 may be closer to the second surface S2 than the straight surface S31.
The curved surface S32 may be formed at a location corresponding to a shape of an imaginary circle or an imaginary oval of a predetermined range. A curvature R of the curved surface S32 may be diversified. The curvature R of the curved surface S32 may be different from a curvature of the second surface S2.
Because the curvatures of the curved surfaces of the lens 300 are different from one another, a path of light from the light source may be further diversified. Namely, light from the light source is not concentrated at a specific location or a specific area and may be uniformly radiated.
Referring to
The third surface S3 may have a shape entirely inclined from a vertical dotted line by a predetermined angle. The predetermined angle may be within the range of a predetermined angle θ1 from the vertical dotted line starting at a boundary point P23 between the second surface S2 and the third surface S3. In this instance, the predetermined angle θ1 may be inclined from the vertical dotted line in a clockwise direction CW. The predetermined angle θ1 may be between 0° and 5°. For example, the third surface S3 may be formed as the shape inclined from the vertical dotted line starting at the boundary point P23 between the second surface S2 and the third surface S3 by about 1° in the clockwise direction CW.
The third surface S3 may include a straight surface S31 and a curved surface S32. The straight surface S31 may extend from a boundary point P13 toward the second surface S2. The curved surface S32 may be positioned between the straight surface S31 and the second surface S2. Namely, the curved surface S32 may be closer to the second surface S2 than the straight surface S31.
The curved surface S32 may be formed at a location corresponding to a shape of an imaginary circle or an imaginary oval of a predetermined range. A curvature R of the curved surface S32 may be diversified. The curvature R of the curved surface S32 may be different from a curvature of the second surface S2.
Because the curvatures of the curved surfaces of the lens 300 are different from one another, a path of light from the light source may be further diversified. Namely, light from the light source is not concentrated at a specific location or a specific area and may be uniformly radiated.
Referring to
The third surface S3 may have a shape entirely inclined from a vertical dotted line by a predetermined angle. The predetermined angle may be within the range of a predetermined angle θ1 from the vertical dotted line starting at a boundary point P23 between the second surface S2 and the third surface S3. In this instance, the predetermined angle θ1 may be inclined from the vertical dotted line in a counterclockwise direction CCW. The predetermined angle θ1 may be between 0° and 5°. For example, the third surface S3 may be formed as the shape inclined from the vertical dotted line starting at the boundary point P23 between the second surface S2 and the third surface S3 by about 1° in the counterclockwise direction CCW.
The third surface S3 may include a straight surface S31 and a curved surface S32. The straight surface S31 may extend from a boundary point P13 toward the second surface S2. The curved surface S32 may be positioned between the straight surface S31 and the second surface S2. Namely, the curved surface S32 may be closer to the second surface S2 than the straight surface S31.
The curved surface S32 may be formed at a location corresponding to a shape of an imaginary circle or an imaginary oval of a predetermined range. A curvature R of the curved surface S32 may be diversified. The curvature R of the curved surface S32 may be different from a curvature of the second surface S2.
Because the curvatures of the curved surfaces of the lens 300 are different from one another, a path of light from the light source may be further diversified. Namely, light from the light source is not concentrated at a specific location or a specific area and may be uniformly radiated.
Referring to
The third surface S3 may include a straight surface S31 and a curved surface S32. The straight surface S31 may extend from a boundary point P13 toward the second surface S2. The curved surface S32 may be positioned between the straight surface S31 and the second surface S2. Namely, the curved surface S32 may be closer to the second surface S2 than the straight surface S31.
The curved surface S32 may be formed at a location corresponding to a shape of an imaginary circle or an imaginary oval of a predetermined range. A curvature R of the curved surface S32 may be diversified. The curvature R of the curved surface S32 may be different from a curvature of the second surface S2.
Because the curvatures of the curved surfaces of the lens 300 are different from one another, a path of light from the light source may be further diversified. Namely, light from the light source is not concentrated at a specific location or a specific area and may be uniformly radiated.
Referring to
The third surface S3 may have a shape entirely inclined from a vertical dotted line by a predetermined angle. The predetermined angle may be within the range of a predetermined angle θ1 from the vertical dotted line starting at a boundary point P23 between the second surface S2 and the third surface S3. In this instance, the predetermined angle θ1 may be inclined from the vertical dotted line in a clockwise direction CW. The predetermined angle θ1 may be between 0° and 5°. For example, the third surface S3 may be formed as the shape inclined from the vertical dotted line starting at the boundary point P23 between the second surface S2 and the third surface S3 by about 1° in the clockwise direction CW.
The third surface S3 may include a straight surface S31 and a curved surface S32. The straight surface S31 may extend from a boundary point P13 toward the second surface S2. The curved surface S32 may be positioned between the straight surface S31 and the second surface S2. Namely, the curved surface S32 may be closer to the second surface S2 than the straight surface S31.
The curved surface S32 may be formed at a location corresponding to a shape of an imaginary circle or an imaginary oval of a predetermined range. A curvature R of the curved surface S32 may be diversified. The curvature R of the curved surface S32 may be different from a curvature of the second surface S2.
Because the curvatures of the curved surfaces of the lens 300 are different from one another, a path of light from the light source may be further diversified. Namely, light from the light source is not concentrated at a specific location or a specific area and may be uniformly radiated.
Referring to
The third surface S3 may have a shape entirely inclined from a vertical dotted line by a predetermined angle. The predetermined angle may be within the range of a predetermined angle θ1 from the vertical dotted line starting at a boundary point P23 between the second surface S2 and the third surface S3. The predetermined angle θ1 may be inclined from the vertical dotted line in a counterclockwise direction CCW. The predetermined angle θ1 may be between 0° and 5°. For example, the third surface S3 may be formed as the shape inclined from the vertical dotted line starting at the boundary point P23 between the second surface S2 and the third surface S3 by about 1° in the counterclockwise direction CCW.
The third surface S3 may include a straight surface S31 and a curved surface S32. The straight surface S31 may extend from a boundary point P13 toward the second surface S2. The curved surface S32 may be positioned between the straight surface S31 and the second surface S2. Namely, the curved surface S32 may be closer to the second surface S2 than the straight surface S31.
The curved surface S32 may be formed at a location corresponding to a shape of an imaginary circle or an imaginary oval of a predetermined range. A curvature R of the curved surface S32 may be diversified. The curvature R of the curved surface S32 may be different from a curvature of the second surface S2.
Because the curvatures of the curved surfaces of the lens 300 are different from one another, a path of light from the light source may be further diversified. Namely, light from the light source is not concentrated at a specific location or a specific area and may be uniformly radiated.
Referring to
A height H2 at a position where the inclined surface of the second surface S2 and the third surface S3 meet each other may be equal to or less than ⅓ of a total height H1 of the lens 300. When the height H2 is equal to or less than ⅓ of the total height H1 of the lens 300, the control of light at the side of the lens 300 may be more efficiently performed.
The third surface S3 may include a straight surface S31 and a curved surface S32. The straight surface S31 may extend from a boundary point P13 toward the second surface S2. The curved surface S32 may be positioned between the straight surface S31 and the second surface S2. Namely, the curved surface S32 may be closer to the second surface S2 than the straight surface S31.
The curved surface S32 may be formed at a location corresponding to a shape of an imaginary circle or an imaginary oval of a predetermined range. A curvature R of the curved surface S32 may be diversified. The curvature R of the curved surface S32 may be different from a curvature of the second surface S2.
Because the curvatures of the curved surfaces of the lens 300 are different from one another, a path of light from the light source may be further diversified. Namely, light from the light source is not concentrated at a specific location or a specific area and may be uniformly radiated.
Referring to
A height H2 at a position where the inclined surface of the second surface S2 and the third surface S3 meet each other may be equal to or less than ⅓ of a total height H1 of the lens 300. When the height H2 is equal to or less than ⅓ of the total height H1 of the lens 300, the control of light at the side of the lens 300 may be more efficiently performed.
The third surface S3 may have a shape entirely inclined from a vertical dotted line by a predetermined angle. The predetermined angle may be within the range of a predetermined angle θ1 from the vertical dotted line starting at a boundary point P23 between the second surface S2 and the third surface S3. In this instance, the predetermined angle θ1 may be inclined from the vertical dotted line in a clockwise direction CW. The predetermined angle θ1 may be between 0° and 5°. For example, the third surface S3 may be formed as the shape inclined from the vertical dotted line starting at the boundary point P23 between the second surface S2 and the third surface S3 by about 1° in the clockwise direction CW.
The third surface S3 may include a straight surface S31 and a curved surface S32. The straight surface S31 may extend from a boundary point P13 toward the second surface S2. The curved surface S32 may be positioned between the straight surface S31 and the second surface S2. Namely, the curved surface S32 may be closer to the second surface S2 than the straight surface S31.
The curved surface S32 may be formed at a location corresponding to a shape of an imaginary circle or an imaginary oval of a predetermined range. A curvature R of the curved surface S32 may be diversified. The curvature R of the curved surface S32 may be different from a curvature of the second surface S2.
Because the curvatures of the curved surfaces of the lens 300 are different from one another, a path of light from the light source may be further diversified. Namely, light from the light source is not concentrated at a specific location or a specific area and may be uniformly radiated.
Referring to
A height H2 at a position where the inclined surface of the second surface S2 and the third surface S3 meet each other may be equal to or less than ⅓ of a total height H1 of the lens 300. When the height H2 is equal to or less than ⅓ of the total height H1 of the lens 300, the control of light at the side of the lens 300 may be more efficiently performed.
The third surface S3 may have a shape entirely inclined from a vertical dotted line by a predetermined angle. The predetermined angle may be within the range of a predetermined angle θ1 from the vertical dotted line starting at a boundary point P23 between the second surface S2 and the third surface S3. The predetermined angle θ1 may be inclined from the vertical dotted line in a counterclockwise direction CCW. The predetermined angle θ1 may be between 0° and 5°. For example, the third surface S3 may be formed as the shape inclined from the vertical dotted line starting at the boundary point P23 between the second surface S2 and the third surface S3 by about 1° in the counterclockwise direction CCW.
The third surface S3 may include a straight surface S31 and a curved surface S32. The straight surface S31 may extend from a boundary point P13 toward the second surface S2. The curved surface S32 may be positioned between the straight surface S31 and the second surface S2. Namely, the curved surface S32 may be closer to the second surface S2 than the straight surface S31.
The curved surface S32 may be formed at a location corresponding to a shape of an imaginary circle or an imaginary oval of a predetermined range. A curvature R of the curved surface S32 may be diversified. The curvature R of the curved surface S32 may be different from a curvature of the second surface S2.
Because the curvatures of the curved surfaces of the lens 300 are different from one another, a path of light from the light source may be further diversified. Namely, light from the light source is not concentrated at a specific location or a specific area and may be uniformly radiated.
Referring to
A height H2 at a position where the inclined surface of the second surface S2 and the third surface S3 meet each other may be equal to or less than ⅓ of a total height H1 of the lens 300. When the height H2 is equal to or less than ⅓ of the total height H1 of the lens 300, the control of light at the side of the lens 300 may be more efficiently performed.
The third surface S3 may include a straight surface S31 and a curved surface S32. The straight surface S31 may extend from a boundary point P13 toward the second surface S2. The curved surface S32 may be positioned between the straight surface S31 and the second surface S2. Namely, the curved surface S32 may be closer to the second surface S2 than the straight surface S31.
The curved surface S32 may be formed at a location corresponding to a shape of an imaginary circle or an imaginary oval of a predetermined range. A curvature R of the curved surface S32 may be diversified. The curvature R of the curved surface S32 may be different from a curvature of the second surface S2.
Because the curvatures of the curved surfaces of the lens 300 are different from one another, a path of light from the light source may be further diversified. Namely, light from the light source is not concentrated at a specific location or a specific area and may be uniformly radiated.
Referring to
A height H2 at a position where the inclined surface of the second surface S2 and the third surface S3 meet each other may be equal to or less than ⅓ of a total height H1 of the lens 300. When the height H2 is equal to or less than ⅓ of the total height H1 of the lens 300, the control of light at the side of the lens 300 may be more efficiently performed.
The third surface S3 may have a shape entirely inclined from a vertical dotted line by a predetermined angle. The predetermined angle may be within the range of a predetermined angle θ1 from the vertical dotted line starting at a boundary point P23 between the second surface S2 and the third surface S3. In this instance, the predetermined angle θ1 may be inclined from the vertical dotted line in a clockwise direction CW. The predetermined angle θ1 may be between 0° and 5°. For example, the third surface S3 may be formed as the shape inclined from the vertical dotted line starting at the boundary point P23 between the second surface S2 and the third surface S3 by about 1° in the clockwise direction CW.
The third surface S3 may include a straight surface S31 and a curved surface S32. The straight surface S31 may extend from a boundary point P13 toward the second surface S2. The curved surface S32 may be positioned between the straight surface S31 and the second surface S2. Namely, the curved surface S32 may be closer to the second surface S2 than the straight surface S31.
The curved surface S32 may be formed at a location corresponding to a shape of an imaginary circle or an imaginary oval of a predetermined range. A curvature R of the curved surface S32 may be diversified. The curvature R of the curved surface S32 may be different from a curvature of the second surface S2.
Because the curvatures of the curved surfaces of the lens 300 are different from one another, a path of light from the light source may be further diversified. Namely, light from the light source is not concentrated at a specific location or a specific area and may be uniformly radiated.
Referring to
A height H2 at a position where the inclined surface of the second surface S2 and the third surface S3 meet each other may be equal to or less than ⅓ of a total height H1 of the lens 300. When the height H2 is equal to or less than ⅓ of the total height H1 of the lens 300, the control of light at the side of the lens 300 may be more efficiently performed.
The third surface S3 may have a shape entirely inclined from a vertical dotted line by a predetermined angle. The predetermined angle may be within the range of a predetermined angle θ1 from the vertical dotted line starting at a boundary point P23 between the second surface S2 and the third surface S3. The predetermined angle θ1 may be inclined from the vertical dotted line in a counterclockwise direction CCW. The predetermined angle θ1 may be between 0° and 5°. For example, the third surface S3 may be formed as the shape inclined from the vertical dotted line starting at the boundary point P23 between the second surface S2 and the third surface S3 by about 1° in the counterclockwise direction CCW.
The third surface S3 may include a straight surface S31 and a curved surface S32. The straight surface S31 may extend from a boundary point P13 toward the second surface S2. The curved surface S32 may be positioned between the straight surface S31 and the second surface S2. Namely, the curved surface S32 may be closer to the second surface S2 than the straight surface S31.
The curved surface S32 may be formed at a location corresponding to a shape of an imaginary circle or an imaginary oval of a predetermined range. A curvature R of the curved surface S32 may be diversified. The curvature R of the curved surface S32 may be different from a curvature of the second surface S2.
Because the curvatures of the curved surfaces of the lens 300 are different from one another, a path of light from the light source may be further diversified. Namely, light from the light source is not concentrated at a specific location or a specific area and may be uniformly radiated.
As shown in
As shown in
The light assemblies 124 shown in
As shown in
The light assemblies 124 different from the light assemblies 124 arranged in the inner area of the array may be arranged on the outermost side of the array. Thus, the light assembly 124 positioned on the outermost side of the array may include the lens 300 different from the light assembly 124 positioned in the inner area of the array, so as to uniformly distribute light.
As shown in
Although embodiments have been described with reference to a number of illustrative embodiments thereof, it should be understood that numerous other modifications and embodiments can be devised by those skilled in the art that will fall within the scope of the principles of this disclosure. More particularly, various variations and modifications are possible in the component parts and/or arrangements of the subject combination arrangement within the scope of the disclosure, the drawings and the appended claims. In addition to variations and modifications in the component parts and/or arrangements, alternative uses will also be apparent to those skilled in the art.
Number | Date | Country | Kind |
---|---|---|---|
10-2015-0104833 | Jul 2015 | KR | national |